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Overview

I will focus on some practical aspects of rational approximation, and discuss applications to
problems in numerical linear algebra and scientific computing.

Main interest will be on rational Krylov methods but I will also mention algorithms for scalar
rational approximation in the second hour.
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Rational Krylov

Rational Krylov = combination of rational approximation and numerical linear algebra.

Natural extension of scalar rational approximation to matrices and vectors.

Many computational methods based on rational Krylov spaces (even if only implicitly).

First introduced by Axel Ruhe (LAA 1984):
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From scalars to vectors and matrices

Given a scalar rational function
r(z) =

p(z)

q(z)
,

a matrix A ∈ CN×N and a vector b ∈ CN . Assume that q(A) is nonsingular, then

r(A)b = q(A)−1p(A)b.

It is useful to consider the linear span of such vectors for p ∈ Pm−1.

Definition (rational Krylov space)

Given qm−1 ∈ Pm−1 such that qm−1(A) is nonsingular, we define

Qm(A, b) := qm−1(A)−1 span{b, Ab, . . . , Am−1b}.

Note that qm−1 is implicit in our notation of Qm(A, b).
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Rational Krylov space: properties

Qm(A, b) := qm−1(A)
−1 span{b, Ab, . . . , Am−1b}

Qm(A, b) ⊆ CN

there exists invariance index L ≤ N for (A, b) such that dim(Qm) = min{m,L}
Qm(A, b) = Km(A, qm−1(A)−1b) = polynomial Krylov space for qm−1(A)−1b

We can generally take qm−1 to be of the form

qm−1(z) =

m−1∏
j=1

ξj ̸=∞

(z − ξj)

for a sequence of poles ξ1, ξ2, . . . ∈ C. Then Q1 ⊂ Q2 ⊂ · · · ⊂ QL = QL+1 = · · ·
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Rational Krylov spaces: examples

Polynomial: if all ξj = ∞, then Qm(A, b) = Km(A, b)

Shift-invert: if ξj = σ fixed, then Qm(A, b) = Km((A− σI)−1, b)

Extended Krylov: if ξj ∈ {∞, 0} alternating, i.e.,

Qm(A, b) = span{b, Ab, A−1b, A2b, A−2b, . . .}

Partial fractions: if all ξj distinct and finite, then

Qm(A, b) = span{b, (A− ξ1I)
−1b, (A− ξ2I)

−1b, . . . , (A− ξm−1I)
−1b}
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Back to scalar rational approximation

Theorem
Given a pair (A, b) and a pole sequence ξ1, . . . , ξm−1. Assume that dim(Qm(A, b)) = m.
Then every vector v ∈ Qm(A, b) is in one-to-one correspondence with a rational function

rm(z) =
pm−1(z)

qm−1(z)

such that

v = rm(A)b, pm−1 ∈ Pm−1, qm−1 =

m−1∏
j=1

ξj ̸=∞

(z − ξj).
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Example: rational approximation with prescribed denominator

Aim: Find ratfun rm with negative poles s.t. rm(x) ≈ f(x) = exp(−x) for x ∈ [0, 1000]

Attempt 1:

N = 1e4; x = logspace(-3,3,N).';
f = exp(-x);
xi = linspace (-10,-1,50);
C = 1./(x - xi);

for j = 1: length(xi)
coeffs = C(:,1:j)\f;
err(j) = norm(f - C(:,1:j)*coeffs);
cnd(j) = cond(C(:,1:j));

end

semilogy(err), hold on, semilogy(cnd ,'k:')
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The basis matters

0 10 20 30 40 50
m

10-10

100

partial fraction error
eps*condition nr

Partial fraction basis results in Cauchy matrix C(i, j) = 1/(xi − ξj) with exponentially growing
condition number (Beckermann & Townsend 2019). Growth factor known in terms of cap(Σ,Ξ).
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Rational Arnoldi process Ruhe 1994

Aim: Construct orthonormal rational Krylov basis, one vector at a time

Input: matrix A ∈ CN×N , vector b ∈ CN , pole sequence ξ1, . . . , ξm

v1 = b/∥b∥
for j = 1 : m

w = (A− ξjI)
−1vj

for i = 1 : j

hi,j = v∗
i w

w = w − vihi,j

hj+1,j = ∥w∥
vj+1 = w/hj+1,j

Output: Orthonormal Vm+1 = [v1, . . . , vm+1], coefficients Hm = [hi,j ]
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Rational approximation with prescribed poles: revisited

Aim: Find ratfun rm with negative poles s. t. rm(x) ≈ f(x) = exp(−x) for x ∈ [0, 1000]

Attempt 2:

N = 1e4; x = logspace(-3,3,N).';
A = diag(x); b = ones(N,1); % define (A,b)
f = exp(-x); % function to approximate
xi = linspace (-10,-1,50);
[V,H] = ratarnoldi(A,b,xi);

for j = 1: length(xi)
coeffs = V(:,1:j)'*f;
ratfun = V(:,1:j)*coeffs; % = r(A)b
err(j) = norm(f - ratfun);

end

semilogy(err)
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Rational approximation with prescribed poles: revisited
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rational Arnoldi error

Arnoldi process fixes stability issue, but how do we evaluate rm(z)?
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Rerunning the Arnoldi process Berljafa & G. 2017

Given (A, b) and poles ξj , orthonormal rational Krylov basis Vm+1, and coefficients

coeffs = V ∗
m+1f .

Then Vm+1 · coeffs = rm(A)b with a unique rational function rm(z).

Idea: Rerun Arnoldi for arbitrary (Â, b̂) using the previous coefficients Hm and poles ξj .
This will return V̂m. Then form rm(Â)b̂ = V̂m+1 · coeffs.

Special case: scalar evaluation with Â = [z], b̂ = [1].

(Basis of the feval method in RKToolbox. Demo of that later.)
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Rational Krylov for matrix functions

Given a pair (A, b) and a scalar function f , we now consider the approximation of f(A)b,
where f(A) is a matrix function. (Higham 2008)

Definition (matrix function)

Given scalar function f(z) and diagonalizable matrix A = XDX−1, D = diag(λ1, . . . , λN ).
Then f(A) := Xf(D)X−1, where f(D) := diag(f(λ1), . . . , f(λN )).

In many applications, A is large and sparse and we cannot compute f(A) explicitly.

Solution: Use Arnoldi process to compute orthonormal rational Krylov basis Vm for (A, b)
and form the (rational) Arnoldi approximation

fm = Vmf(Am)V ∗
mb, Am = V ∗

mAVm.

If m ≪ N , computational cost dominated by m solves of linear systems (A− ξiI)wi = vi.
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Arnoldi approximation to f(A)b

fm = Vmf(Am)V ∗
mb, Am = V ∗

mAVm

Theorem (interpolation)

We have fm = rm(A)b, where rm = pm−1/qm−1 interpolates f at the eigenvalues of Am

(the rational Ritz values), and qm−1(z) =
∏m−1

j=1 (z − ξj).

Theorem (near-optimality)

Assume f is analytic in a neighborhood of the numerical range W(A) := {v∗Av : ∥v∥2 = 1}.
Then

∥f(A)b − fm∥2 ≤ 5∥b∥2 min
p∈Pm−1

∥∥∥∥f(z)− p(z)

qm−1(z)

∥∥∥∥
W(A)

.

Ericsson ’90, Saad ’92, Druskin-Knizhnerman ’98, Beckermann-Reichel ’09, G. ’10, Crouzeix-Palencia ’17, . . .
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Pole optimization

Near-optimality =⇒ focus on finding “good” poles ξj to make ∥f(A)b − fm∥2 small.

Essentially three approaches.

Analytic approach: Assuming knowledge of W(A), construct scalar rational approximant
(e.g., using Zolotarev functions, Faber transform) and use its poles as ξj parameters.

Scalar numerical: Use a method like Remez or AAA to compute best or near-best
rational approximant rm ≈ f on (a discretized version of) W(A). Use its poles.

Adaptive rational Krylov: Methods that choose their own pole parameters
(greedy rational Krylov, IRKA, RKFIT).
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RKToolbox demo

Demonstrate rational Arnoldi approximation of A−1/2b using RKToolbox.

We will use Zolotarev approximant rm(z) ≈ z−1/2 on spectral interval E.

This approximant is explicitly known in terms of elliptic functions.

Rel. appoximation error decreases like exp(−2/cap(E,F ))m, where F = (−∞, 0].

We evaluate rm(A)b and check the abs. error ∥A−1/2b − rm(A)b∥2 as a function of m.

%% install RKToolbox
unzip('http :// guettel.com/rktoolbox/rktoolbox.zip');
cd('rktoolbox '); addpath(fullfile(cd)); savepath

%% construct and evaluate RKFUN object
r = rkfun('invsqrt ',5,1e4); % degree 5 Zolotarev
r(8) % scalar evaluation
r(A,b) % compute r(A)*b
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RKToolbox demo

Poles of Zolotarev approximant rm(z) ≈ z−1/2 are not nested.

I.e., all m poles change when m increases.

In practice, we prefer nested pole sequences as we can simply add another pole (basis vector)
to the rational Krylov space if our Arnoldi approximation fm isn’t good enough.

For the case of z−1/2 on interval E = [λmin, λmax] > 0, we have some natural choices:

Leja–Bagby: nested discretization of equilibrium measure on (E,F )

=⇒ may require about twice as large m as Zolotarev

repeated single pole: ξj = −
√
λminλmax

=⇒ expected linear convergence at rate
4√κ−1
4√κ+1

, κ = λmax/λmin

extended Krylov: ξj ∈ {0,∞} alternating

=⇒ same
4√κ−1
4√κ+1

rate but only half as many solves
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Convergence of rational Arnoldi
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degree m (number of solves)
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RA Zolotarev 15
RA Leja-Bagby
RA extended

Approximating A−1/2b using direct evaluation rm(A)b of Zolotarev approximant
vs rational Arnoldi approximant with different pole sequences
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A closer look at the error behavior

For symmetric A = UΛU∗, Λ = diag(λ1, . . . , λN ), we have the following

∥f(A)b − rm(A)b∥22 =

N∑
i=1

|f(λi)− rm(λi)|2 · |u∗
i b|2

≤ ∥b∥22 · max
x∈[λmin,λmax]

|f(x)− rm(x)|2.

Uniform best approximant rm would minimize blue term, but the red error we’re actually
interested in could be smaller with another rm.

Recall that the rm underlying the rational Arnoldi approximant is a rational function with
the chosen poles ξj that interpolates f at the Ritz values Λ(V ∗

mAVm).

The function rm is therefore not necessarily a good uniform approximant; it actually
adapts to the discrete spectrum of A, leading to superlinear convergence! This is called
spectral adaptation.
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Spectral adaptation

Left: Superlinear convergence of rational Krylov approximant rn(A)b for f(A)b with
f(z) =

√
z + (hz/2)2 for an indefinite shifted 1D Laplacian A, compared to uniform Zolotarev

approximant on negative and positive spectral subinterval. Right: Error curves |f(z)− r10(z)|.
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Rational least squares fitting

RKFIT
Aims to compute a rational function rm such that

∥Fb − rm(A)b∥22 ⇝ min, F = f(A),

with the minimum taken over all rational functions rm(z) = pm(z)
qm(z) .

This is a nonlinear nonconvex approximation problem.

We know that rm(A)b is an element of some rational Krylov space

Qm+1(A, b) = span{b, (A− ξ1I)
−1b, . . . , (A− ξmI)−1b},

but what are good pole parameters ξ1, . . . , ξm?
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Rational least squares approximation

For every rational Krylov space Qm+1(A, b) there exists an orthonormal basis Vm+1 that
satisfies a rational Arnoldi decomposition:

Km HmA Vm+1 = Vm+1

where

Hm,Km are (m+ 1)×m upper-Hessenberg matrices

subdiagonal quotients hj+1,j/kj+1,j are the poles ξj

first column of Vm+1 is v1 = b/∥b∥2

Can show: One-to-one correspondence between v1 and ξ1, . . . , ξm.
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Rational implicit Q theorem1

Given rational Arnoldi decomposition AVm+1Km = Vm+1Hm

with ξj := hj+1,j/kj+1,j . Then the orthonormal basis Vm+1 and(
Hm,Km

)
are essentially uniquely determined by v1 and the poles ξ1, . . . , ξm.

=⇒ Allows us to move poles ξj by changing first column of Vm+1:

Km HmA Vm+1 = Vm+1

1Berljafa & G. 2015, Camps-Meerbergen-Vandebril 2019, . . .
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Rational implicit Q theorem1

Given rational Arnoldi decomposition AVm+1Km = Vm+1Hm

with ξj := hj+1,j/kj+1,j . Then the orthonormal basis Vm+1 and(
Hm,Km

)
are essentially uniquely determined by v1 and the poles ξ1, . . . , ξm.

=⇒ Allows us to move poles ξj by changing first column of Vm+1:

K̃m H̃mA Ṽm+1 = Ṽm+1

rotate basis to Ṽm+1 = Vm+1Pm+1

1Berljafa & G. 2015, Camps-Meerbergen-Vandebril 2019, . . .
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Rational implicit Q theorem1

Given rational Arnoldi decomposition AVm+1Km = Vm+1Hm
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Rational implicit Q theorem1

Given rational Arnoldi decomposition AVm+1Km = Vm+1Hm

with ξj := hj+1,j/kj+1,j . Then the orthonormal basis Vm+1 and(
Hm,Km

)
are essentially uniquely determined by v1 and the poles ξ1, . . . , ξm.

=⇒ Allows us to move poles ξj by changing first column of Vm+1:

K̂m ĤmA V̂m+1 = V̂m+1

QZ transform on lower m×m part of (Ĥm, K̂m)

Read off new poles ξ̂j := ĥj+1,j/k̂j+1,j

1Berljafa & G. 2015, Camps-Meerbergen-Vandebril 2019, . . .
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Rational least squares fitting with RKFIT

These pole transformations can be used to approximately solve

∥Fb − rm(A)b∥22 ⇝ min, F = f(A).

Idea: Given a set of poles ξ1, . . . , ξm and the corresponding Krylov basis Vm+1, find a unit
vector v ∈ span(Vm+1) so that Fv is well approximated by some rm(A)v ∈ span(Vm+1).

Solution:
arg minc∈Cm+1,∥c∥=1∥(I − Vm+1V

∗
m+1)FVm+1c∥2

Bring v to the first column of Vm+1 and read off new poles of rm(A)v . Iterate.

Theory: Can show that f ∈ Pm/qm will be identified in one iteration. (Berljafa-G. 2017)
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Application: Compressing layered waveguides Druskin et al. 2022
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Application: Compressing layered waveguides

Semi-discretization of indefinite Helmholtz problem on [0,+∞):

u ′′(x) = [A+ c(x)I ]u(x), u(0) = b, u(x) bounded as x → ∞.

Discretization with 300× 150 grid points + PML on the right, h = 1/150, effective wavenumber on
the left half is k = 16, on the right half is k = 9
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Application: Compressing layered waveguides

Semi-discretization of indef. Helmholtz problem on [0,+∞):

u ′′(x) = [A+ c(x)I ]u(x), u(0) = b, u(x) bounded as x → ∞.

Can write DtN map as u ′(0) = f(A)b BUT f(z) highly irregular near Λ(A):
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DtN function f
h

eigenvalues (A)

There is no way rm ≈ f uniformly on A’s spectral interval, but . . .

we can still compute RKFIT approximant due to spectral adaptation.
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Application: Compressing layered waveguides

Rational approximant rm of DtN map can be converted into equivalent finite difference
representation acting as perfectly matched layer (PML):

x

T

z

As consequence of spectral adaptation, fewer than 2 grid points per wavelength required:

30 / 40



Adaptive rational Krylov methods

There is large body of literature on methods that choose their pole parameters; e.g.:

greedy parameter selection for model order reduction
Grimme, 1997; Frangos & Jaimoukha, Proc. EEC 2007; Druskin & Simoncini, Syst. Control. Lett. 2011;
Benner, Gugercin, Willcox, SIAM Rev. 2015; Frie & Eberhard Multibody Sys. Dyn. 2023,. . .

greedy pole selection for matrix functions
Druskin, Lieberman, Zaslavsky, SIAM J. Sci. Comp. 2010; G. & Knizhnerman, BIT Numer. Math. 2013

automatic approximation of nonlinear eigenproblems
Lietaert, Pérez, Vandereycken, Meerbergen, IMA J. Numer. Anal. 2021

iterated poles for H2-optimal model reduction (IRKA)
Gugercin, Antoulas, Beattie, SIAM J. Matrix Anal. Appl. 2008; Flagg, Beattie, Gugercin, Syst. Control.
Lett. 2012; Borghi & Breiten, Adv. Comp. Math. 2024; Aumann Werner, Adv. Comp. Math. 2024

nonlinear rational least squares fitting (vector fitting, RKFIT)
Gustavsen & Semlyen, IEEE Trans. Power Del. 1999, Berljafa & G., SIAM J. Sci. Comp. 2017
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Algorithms for scalar rational approximation

Many interesting problems require merely scalar-valued rational approximation rm(z) ≈ f(z).

If approximation is around a single-point z = z0 in the complex plane, Padé approximation
is a popular approach (matching derivatives f (i)(0) ≈ r

(i)
m (z0), i = 0, 1, . . .). One can also

construct multi-point Padé approximants.

If the approximation is on a real interval and f is continuous, there is a unique best rational
approximant. Good implementation of Remez algorithm in Chebfun.

For scalar approximation on discrete sets, the AAA algorithm is a very powerful tool.
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AAA algorithm Nakatsukasa-Sète-Trefethen 2018

Stands for adaptive Antoulas–Anderson and uses barycentric interpolatory representation

rm(z) =

m∑
i=0

wifi
z − zi

m∑
i=0

wi

z − zi

=
nm(z)

dm(z)

with distinct support points zi and nonzero weights wi. As z → zi we have rm(z) → fi.

Key idea: Greedily add interpolation point zm+1 from a discrete set Σ such that

|f(zm+1)− rm(zm+1)| = max
z∈Σ

|f(z)− rm(z)|.

Then compute new weights w0, w1, . . . , wm+1 of rm+1 by solving

∥f(Σ)dm+1(Σ)− nm+1(Σ)∥2 → min
{wi}

.
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Variants of AAA

Over the last five years, many variations of AAA have been proposed, e.g., AAA-Lawson,
fastAAA, set-valued AAA, block-AAA, parametric-AAA, sketch-AAA, . . .

Has been very popular in particular in the model order reduction community.

Can also be applied to solve problems of the following form:

Nonlinear eigenvalue problem (NEP)

Given a holomorphic matrix-valued function F (z) : C → CN×N , find points λ ∈ C
(the eigenvalues) such that F (λ) is singular.

NEPs arise in many applications incl. structural mechanics, delay-differential equations,
ROMs with nonlinear parameter dependencies, etc. They can be large-scale.
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Nonlinear eigenvalue problems (NEPs)

There are many techniques to solve NEPs numerically, such as Newton-based methods,
contour-integral methods, but also methods based on rational approximation

Rm(z) ≈ F (z) for z ∈ Σ compact.

Then the NEP is solved for Rm in place of F . This is “easy” because Rm can be linearized.

It is crucial that Rm ≈ F is a uniformly accurate rational approximation.
For example, we may want to impose that

∥F −Rm∥Σ := max
z∈Σ

∥F (z)−Rm(z)∥2 ≤ ε,

because then the eigenvalues of Rm in Σ can be guaranteed to be approximations to some of
the eigenvalues of F . This can be seen as follows.
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Uniform rational approximation =⇒ good eigenvalue approximation

Assume that (λ, v) with λ ∈ Σ and ∥v∥2 = 1 is an eigenpair of Rm, i.e., Rm(λ)v = 0.
Then from

∥F (λ)v∥2 = ∥
(
F (λ)−Rm(λ)

)
v∥2 ≤ ∥F (λ)−Rm(λ)∥2 ≤ ε

we find that (λ, v) has a bounded residual for the original NEP F (λ)v = 0.

Conversely, if µ ∈ Σ is not an eigenvalue of F , i.e., F (µ) is nonsingular, then a sufficiently
accurate approximant Rm is also nonsingular at µ:
Assume that ∥F (µ)−Rm(µ)∥2 < ∥F (µ)−1∥−1, then

∥I − F (µ)−1Rm(µ)∥2 ≤ ∥F (µ)−1∥2∥F (µ)−Rm(µ)∥2 < 1.

Hence all eigenvalues of I − F (µ)−1Rm(µ) are strictly smaller in modulus than 1.
As a consequence, F (µ)−1Rm(µ) and hence Rm(µ) are nonsingular.

Ideally, Rm does not have any eigenvalues in Σ which are in the resolvent set of F .
In this case we say that Rm is free of spurious eigenvalues on Σ.
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Solving NEPs via rational approximation methods

Assume split form F (z) = f (1)(z)A1 + · · ·+ f (ℓ)(z)Aℓ with fixed matrices Ai.

Key steps:

1 Uniformly approximate scalar functions f (i) by r
(i)
m all sharing the same denominator

2 Linearize the rational NEP Rm(z) = r
(1)
m (z)A1 + · · ·+ r

(ℓ)
m (z)Aℓ

3 Solve generalized linear eigenvalue problem ANmx = λBNmx

For Step 1, use the set-valued AAA method (Lietaert-Meerbergen-Pérez-Vandereycken 2022)
or a randomized probing approach (G.-Kressner-Vandereycken 2024).

For Step 3, we can use a rational Krylov method as originally proposed by Ruhe in 1984.

See example in RKToolbox
http://guettel.com/rktoolbox/examples/html/example_nlep.html
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Summary

Rational Krylov = rational approximation + numerical linear algebra
Rational Arnoldi process to compute orthonormal rational Krylov bases
Arnoldi approximation of f(A)b, and some theory (interpolation, near-optimality)
Approaches to pole optimization: analytical, scalar numerical, greedy/iterated Krylov
RKFIT for rational least squares approximation rm(A)b ≈ Fb

Spectral adaptivity and application to PMLs for variable coefficient media
AAA algorithm and application to solving nonlinear eigenvalue problems
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