

Mathematical Modelling of Hormonal Regulation

Susanna Röblitz

Computational Biology Unit Department of Informatics University of Bergen

Woudschoten Conference, September 27, 2024

Stochasticity in biological systems

Fluorescence imaging of individual E. coli reveals marked variability in protein expression [Raj et al. 2008. DOI 10.1016/j.cell.2008.09.050]

extrinsic noise:

fluctuations in cellular environmental factors

intrinsic noise:

fluctuations arising from low copy numbers (*E.coli*: 10 mRNA molecules per cell)

This presentation focuses on modelling of extrinsic noise!

Challenge

Integration of experimental data (in vitro and in vivo) into a system's understanding at different scales in space and time

- Why modelling hormonal regulation?
- Physiological background
- Experimental data in vivo
- Model development for the human menstrual cycle
- Conclusion and outlook

Hormones

- hormones control a lot of functions: sexual reproduction and development, whole-body metabolism, blood glucose levels, plasma calcium concentration, growth,...
- hormones are produced in, and released from, diverse places
- they are carried in the bloodstream and capable of acting on target cells throughout the body

[https://opentextbc.ca/introductiontopsychology/chapter/

3-4-putting-it-all-together-the-nervous-system-and-the-endocrine-system/]

Hormonal axes

Source: Davidson's Essentials of Medicine, 2nd ed.

Hormonal regulation

Feedback mechanisms lead to **oscillatory behavior** (milliseconds to days) \rightarrow significant implications for treatment

- endocrine axes are largely studied in isolation (reductive approach)
- dynamic changes in hormone levels are not captured well by single-point measurements
- challenging to collect longitudinal data on long-time processes like puberty and menopausal transition
- under-representation of women in clinical studies due to (i) potential maternal-fetal liability and (ii) the menstrual cycle as confounding variable

- endocrine axes are largely studied in isolation (reductive approach)
- dynamic changes in hormone levels are not captured well by single-point measurements
- challenging to collect longitudinal data on long-time processes like puberty and menopausal transition
- under-representation of women in clinical studies due to (i) potential maternal-fetal liability and (ii) the menstrual cycle as confounding variable

Mathematical modelling...

- endocrine axes are largely studied in isolation (reductive approach)
- dynamic changes in hormone levels are not captured well by single-point measurements
- challenging to collect longitudinal data on long-time processes like puberty and menopausal transition
- under-representation of women in clinical studies due to (i) potential maternal-fetal liability and (ii) the menstrual cycle as confounding variable

Mathematical modelling...

• allows to formulate and test hypothesis *in-silico* (answer various "what if?" scenarios), including those that are costly, challenging or not feasible in-vitro or in-vivo

- endocrine axes are largely studied in isolation (reductive approach)
- dynamic changes in hormone levels are not captured well by single-point measurements
- challenging to collect longitudinal data on long-time processes like puberty and menopausal transition
- under-representation of women in clinical studies due to (i) potential maternal-fetal liability and (ii) the menstrual cycle as confounding variable

Mathematical modelling...

- allows to formulate and test hypothesis *in-silico* (answer various "what if?" scenarios), including those that are costly, challenging or not feasible in-vitro or in-vivo
- provides new information about potential mechanisms and can identify areas of deficient knowledge

- endocrine axes are largely studied in isolation (reductive approach)
- dynamic changes in hormone levels are not captured well by single-point measurements
- challenging to collect longitudinal data on long-time processes like puberty and menopausal transition
- under-representation of women in clinical studies due to (i) potential maternal-fetal liability and (ii) the menstrual cycle as confounding variable

Mathematical modelling...

- allows to formulate and test hypothesis *in-silico* (answer various "what if?" scenarios), including those that are costly, challenging or not feasible in-vitro or in-vivo
- provides new information about potential mechanisms and can identify areas of deficient knowledge
- helps in quantifying inter- and intra-individual variability

Reproductive medicine

Increased chance for successful pregnancy by modern techniques:

- In-vitro fertilization (IVF)
- Intracytoplasmic sperm injection (ICSI)

Success rates: 8 - 35%

Depending on the clinic due to different treatment strategies!

Aim: supply of model-based *clinical decision support system* for reproductive endocrinologists

- better understanding of complex processes
- simulation and optimization of treatment strategies in silico (cost-saving and efficient)

The human menstrual cycle

[Chris 73 / Wikimedia Commons]

Orchestrated interplay of hormones along the HPG-axis:

Follicular development

Clinical trials: Hormone blood data from healthy women

Clinical trials: Pharmacokinetik (PK) data

Ovarian stimulation: Treatment protocol data

- time series data of a few components
- many patients, but few data points per patient, mostly under treatment
- high inter- and intra-individual variability
- different physical units, sometimes not even convertible
- missing measurement errors
- missing information about the cycle day
- averaged data for women with different cycle length or in different stages of the cycle

Modelling in biology and medicine

Modelling in biology and medicine

"Essentially, all models are wrong, but some are useful" (George Box) "fitness for purpose" rather than being "right or true"

"A (mathematical) model should be as simple as possible, but not any simpler"

(A. Einstein)

Susanna Röblitz	(CBU	/UiB
-----------------	------	------

Conceptual model

Compartments: blood, ovaries, uterus, pituitary, hypothalamus Components:

- Estradiol
- Progesterone
- Inhibin A and B
- LH + receptor binding
- FSH + receptor binding
- GnRH + receptor binding
- 6 follicular stages
- 6 luteal stages (corpus luteum)

Mathematical model

The model: ordinary differential equations (ODEs)

 $x'(t) = f(x(t), u(t), \theta), x(0) = x_0$

Experimental measurements (with additive Gaussian noise):

 $y(t) = h(x) + \epsilon(t), \quad \epsilon(t) \sim \mathcal{N}(0, \sigma^2(t))$

$$\begin{aligned} Syn_{LH}(t) &= (b_{Syn_{LH}} + m_{E2} \cdot H^{+}(E2, T_{E2}; n_{E2})) \cdot H^{-}(P4, T_{P4}; n_{P4}) \\ Rel_{LH}(t) &= (b_{Rel_{LH}} + m_{GnRH-R} \cdot H^{+}(GnRH-R, T_{GnRH-R}, n_{GnRH-R})) \cdot LH_{Pit}(t) \\ \frac{d}{dt}LH_{Pit}(t) &= Syn_{LH}(t) - Rel_{LH}(t) \\ \frac{d}{dt}LH_{blood}(t) &= \frac{1}{V_{blood}}Rel_{LH}(t) - k_{on} \cdot LH_{blood} \cdot R_{LH} - c \cdot LH_{blood} \end{aligned}$$

The FemCyc model

Purpose: simulate the effect of birth control pill on hormone blood concentrations

[I. Reinecke, P. Deuflhard. A complex mathematical model of the human menstrual cycle. J Theor Biol. 2007; 247(2):303-30. doi: 10.1016/j.jtbi.2007.03.011]

The GynCycle model

Purpose: development of a pharmacokinetik/pharmacodynamic (PKPD) model for single and multiple dose administration of GnRH analogues (in collaboration with Pfizer UK)

Blood measurements (drug, LH, FSH, E2):

PKPD Modelling: GnRH agonists

G protein-coupled receptor (GPCR) model coupled to PK model for GnRH agonists and antagonists

Drug Database

PK description as unique parametrizations of important drugs:

Administered compound	dimension	dose	beta	clearance rate
Triptorelin (Decapeptyl 0.1 mg)	mg	2.5	250.0	6.00
FSH (Merional 75 I.E.)	I.E.	5.347	4.271	0.488
FSH (Menopur 600 I.E.)	I.E.	13.378	9.871	0.417
FSH (Puregon/Gonal-f 600 I.E.)	I.E.	21.387	4.271	0.488
LH (Merional 75 I.E.)	I.E.	0.594	6.041	3.199
LH (Menopur 600 I.E.)	I.E.	5.669	6.041	3.199
LH (Ovitrelle 250)	I.E.	39.632	6.041	3.199
Norethisterone (Primolut N)	mg	27.291	52.324	11.090

http://www.kompendium.ch/home/de

$$\frac{dc_{\mathsf{drug}}\left(t\right)}{dt} = D\beta^{2}t\exp\left(-\beta t\right) - c_{\mathsf{L}}c_{\mathsf{drug}}\left(t\right)$$

parameters can be determined via nonlinear equations from PK parameters

 $t_{\max}, c_{\max}, AUC_{0-\infty}$

The GynCycle model

GynCycle: 33(+8) ODEs, 114 parameters BioModels database: http://biomodels.caltech.edu/BIOMD0000000494

[S. Röblitz et al. A mathematical model of the human menstrual cycle for the administration of GnRH analogues. *J. Theoret. Biol.* 321:8–27, 2013. DOI: 10.1016/j.jtbi.2012.11.020]

GynCycle: Results

The model allows to

 systematically study the influence of drug, dose and timing of administration on hormone profiles in a "normal" menstrual cycle

• study **long-time effect** of drug administration under different **compliance** behaviors

The PAEON model

Purpose: Simulation of female fertility treatments

downregulation + stimulation + oocyte retrieval LONG DOWN REGULATION PROTOCOL

Aim: between 11 and 15 mature oocytes **Risk**: Ovarian hyperstimulation syndrome (OHSS)

Treatment protocol data

Treatment cycle: ultrasound measurements

The PAEON model

Tasks:

- create a virtual patient population
- develop a new model for follicular development to simulate the stimulation phase

PAEON project: Model-Driven Computation of Treatments for Infertility Related Endocrinological Diseases (02/13-01/16)

Partners: ZIB, La Sapienza U Rome, U Lucerne, U Hospital Zürich, Hannover Medical School

Parameter estimation

Frequentists's approach:

$$\|F(\theta)\|_2^2 \xrightarrow{\theta} \min$$

with sum of least squares errors

 $\|F(\theta)\|_{2}^{2} = \sum_{k=1}^{n} \sum_{l=1}^{m_{k}} \frac{(z_{kl} - y_{k}(t_{l}, \theta))^{2}}{2\sigma_{kl}^{2}}$

Bayesian approach: computation of probability distributions according to Bayes' theorem

 $P(\theta|z) \propto P(z|\theta)P(\theta)$

with likelihood

 $P(z| heta) \propto \exp\left(-\|F(heta)\|_2^2
ight)$

We introduced a nonparametric, transformation-invariant estimator for the prior distribution defined in terms of the missing information.

[Klebanov et al. Objective priors in the empirical Bayes framework. Scand J Statistics 48(4), 2021.]

Replacing the "old" follicle model with a new one...

A new follicle model

Purpose: simulate the competitive growth of multiple follicles

$$x_i' = x_i(\xi - x_i)(\gamma - \kappa(\Sigma_j x_j^{\nu} - \mu x_i^{\nu})), \quad x_i(0) \in (0, \xi)$$

 $\begin{array}{l} x_i(t)[mm]: \text{ diameter of follicle } i=1,\ldots,n\\ \xi[mm]: \text{ upper limit for the size of a follicle (usually 20 mm)}\\ \gamma[1/(mm\cdot d)]: \text{ individual growth rate}\\ \kappa[1/(mm^3\cdot d)]: \text{ strength of competition}\\ \mu\in(0,1): \text{ proportion of self-harm}\\ \nu: \text{ fractal dimension} \end{array}$

Fit to bovine ultrasound data: [S. Cummins et al. *J Dairy Science* 95(7), 2012]

Number of dominant follicles:

$$\mathbf{d} = \left[\mu + \frac{\gamma}{\kappa \xi^{\nu}}\right]$$

[Lange et al. (2019). doi: 10.1007/s00285-018-1284-0]

A hormone-dependent follicle model

Biological knowledge:

- FSH concentrations need to surpass a distinct level to stimulate ovarian follicle growth (FSH threshold concept).
- A limited duration of elevated FSH levels above the threshold is needed for single dominant follicle selection (FSH window concept).
- Progesterone exerts an inhibitory action on follicular development.
- There is follicle-to-follicle variablity in the response to FSH.

A hormone-dependent follicle model

Biological knowledge:

- FSH concentrations need to surpass a distinct level to stimulate ovarian follicle growth (FSH threshold concept).
- A limited duration of elevated FSH levels above the threshold is needed for single dominant follicle selection (FSH window concept).
- Progesterone exerts an inhibitory action on follicular development.
- There is follicle-to-follicle variablity in the response to FSH.

Model assumptions:

- The FSH-receptor complex level regulates growth and selection.
- High system level FSH inhibits competition.
- Progesterone inhibits the follicular growth rate.
- Follicles have individual FSH sensitivity thresholds.

 $\frac{d}{dt}x_{i} = H^{+}(FSHR, T_{FSHR}(i), n_{FSHR}) \cdot (\xi - x_{i})x_{i}\left(\gamma - \kappa\left(\sum x^{2} - x_{i}^{2}\right)\right)$ $\kappa = \kappa_{0}, H^{-}(FSH, T^{\kappa}, n^{\kappa})$

$$\gamma = \gamma_0 \cdot H^-(P4, T^{\gamma}_{P4}, n^{\gamma}_{P4}) \cdot H^+(FSHR, T^{\gamma}_{FSHR}, n^{\gamma}_{FSHR})$$

A stochastic follicle model

Biological knowledge:

- The higher the FSH blood level, the more follicles are recruited.
- Follicular artresia is irreversible.

Biological knowledge:

- The higher the FSH blood level, the more follicles are recruited.
- Follicular artresia is irreversible.

Model assumption:

• The recruitment of follicles follows a Poisson process. The Poisson parameter λ (expected number of follicles that start growing within a certain time interval) is modulated by the FSH concentration.

$$\lambda = \lambda_0 \cdot \left(1 + s_{\textit{FSH}}^{\textit{Pois}} \cdot \textit{H}^+(\textit{FSH}(\textit{T}), \textit{T}_{\textit{FSH}}^{\textit{Pois}}, \textit{n}_{\textit{FSH}}^{\textit{Pois}}) \right)$$

• Four possible follicular destinies:

(i) growth $(x'_i(t) \ge 0)$ (ii) ovulation $(x_i > 18$ mm, $LH \ge T_{LH} = 25 \text{ mIU/mL})$ (iii) decay $(x'_i(t) < 0)$ (iv) large $(x_i > 18$ mm) for 2 days, but not ovulating ($LH < T_{LH}$) Follicles (ii)-(iv) are removed from the simulation.

The PAEON model: Results

[Tronci et al. (2014). doi: 10.1109/FMCAD.2014.6987615] [Mancini et al. (2018). doi: 10.29007/g864]

Susanna Röblitz (CBU/UiB)

The PAEON model: Results

Design & Optimization w.r.t. efficacy, cost, safety

[Tronci et al. (2014). doi: 10.1109/FMCAD.2014.6987615] [Mancini et al. (2018). doi: 10.29007/g864]

Follicular dynamics under treatment

Note! The PAEON model is not fully coupled and can only be usd to simulate follicular growth dynamics under GnRH agonist treament when the feedback loop is interrupted due to GnRH-receptor downregulation n the pituitary.

A fully coupled model

Purpose: Simulation of hormone dynamics and follicular growth throughout consecutive cycles

$$FS = \pi \cdot \sum H^{+}(x_{i}, T_{FS}, n_{FS}) \cdot (x_{i})^{2}$$

$$E2(t) = b_{syn}^{E2} + s_{FS} \cdot FS + h_{E2} \cdot \exp\left(-w_{E2}(t - (T_{Ovu} + \tau))^{2}\right)$$

$$P4(t) = b_{syn}^{P4} + h_{P4} \cdot \exp\left(-w_{P4}(t - (T_{Ovu} + \tau))^{2}\right)$$

Susanna Röblitz (CBU/UiB)

Unstimulated cycle

- the model generates quasi-periodic solutions for all four hormones
- wave-like growth behavior of the follicles (not enforced by implementation!)
- ovulation of a dominant follicle 12 h after the LH peak
- variability in cycle length (30.56 ± 7.00) and number of follicles per cycle (16.19 ± 3.08) :
- no correlation between cycle length and follicular count

[S. Fischer et al. (2021). DOI: 10.3389/fendo.2021.613048]

- the likelihood $P(z|\theta)$ is difficult to compute for a stochastic model
- Approximate Bayesian Computation (ABC) rejection algorithm with summary statistics and log-normal prior
- acceptance criteria:
 - $\bullet\,$ characteristic FSH profile in >80% of the cycles
 - mean cycle lenght and standard deviation within physiological ranges

Results:

- μ (proportion of self-harm) is lower in normal cycles and negatively correlated with cycle length
- [S. Fischer et al. (2022). DOI: 10. 1016/j.jtbi.2022.111150]

Random start ovarian stimulation

	Luteal Phase Stimulation		Late Follicular Phase Stimulation		
	[Kuang et al.]	Simulation	[Zhu et al.]	Simulation	
# follicles	13.9 ± 7.8	11.1 ± 3.5		6.3 ± 2.2	
10 - 14 mm					
# follicles	11.1 ± 5.5	8.9 ± 3.7	11.7 ± 6.2	8.0 ± 2.2	
> 14 mm					
treatment	10.2 ± 1.6	9.4 ± 0.7	10.93 ± 1.66	6.0 ± 0.7	
duration					
[X. Zhu, Y. Fu. (2019). doi: 10.3389/fendo.2019.00448; Y. Kuang et al. (2014). doi					

0.1016/j.fertnstert.2013.09.007; S. Fischer et al. (2021). DOI: 10.3389/fendo.2021.613048]

• We provided a modelling and simulation framework for the dynamics of ovarian follicles and key hormones along the HPG axis throughout consecutive human menstrual cycles.

- We provided a modelling and simulation framework for the dynamics of ovarian follicles and key hormones along the HPG axis throughout consecutive human menstrual cycles.
- The model accounts for intra- and inter-individual variability in the cycle.

- We provided a modelling and simulation framework for the dynamics of ovarian follicles and key hormones along the HPG axis throughout consecutive human menstrual cycles.
- The model accounts for intra- and inter-individual variability in the cycle.
- The growth of ovarian follicles in waves is an emergent property in our model simulations and further supports the hypothesis that follicular waves are also present in humans.

- We provided a modelling and simulation framework for the dynamics of ovarian follicles and key hormones along the HPG axis throughout consecutive human menstrual cycles.
- The model accounts for intra- and inter-individual variability in the cycle.
- The growth of ovarian follicles in waves is an emergent property in our model simulations and further supports the hypothesis that follicular waves are also present in humans.
- Our modell suggests poor follicle quality as a main reason for irregular cycles.

- We provided a modelling and simulation framework for the dynamics of ovarian follicles and key hormones along the HPG axis throughout consecutive human menstrual cycles.
- The model accounts for intra- and inter-individual variability in the cycle.
- The growth of ovarian follicles in waves is an emergent property in our model simulations and further supports the hypothesis that follicular waves are also present in humans.
- Our modell suggests poor follicle quality as a main reason for irregular cycles.
- The model can serve as a quantitative systems pharmacology model for studying hormone drug treatment in women.

- We provided a modelling and simulation framework for the dynamics of ovarian follicles and key hormones along the HPG axis throughout consecutive human menstrual cycles.
- The model accounts for intra- and inter-individual variability in the cycle.
- The growth of ovarian follicles in waves is an emergent property in our model simulations and further supports the hypothesis that follicular waves are also present in humans.
- Our modell suggests poor follicle quality as a main reason for irregular cycles.
- The model can serve as a quantitative systems pharmacology model for studying hormone drug treatment in women.
- Model simulations confirm that ovarian hyperstimulation can be started at random time points in the cycle.

Outlook

The hypothalamic-pituitary-ovarian axis interacts with other endocrine sub-systems!

Susanna Röblitz	(CBU	/UiB]
-----------------	------	-------

Hormonal rhythms change with age and during pregnancy!

Simulation of menopausal transition by reducing the follicular recruitment rate:

Key publications

- S. Fischer-Holzhausen, S. Röblitz. Hormonal regulation of ovarian follicle growth in humans: Model-based exploration of cycle variability and parameter sensitivities. *Journal of Theoretical Biology* 547:111150, 2022. https://doi.org/10.1016/j.jtbi.2022.111150
- S. Fischer, R. Ehrig, S. Schäfer, E. Tronci, T. Mancini, M. Egli, F. Ille, T. H. C. Krüger, B. Leeners, S. Röblitz. Mathematical Modeling and Simulation Provides Evidence for New Strategies of Ovarian Stimulation. *Frontiers in Endocrinology* 12:613048, 2021. https://doi.org/10.3389/fendo.2021.613048
- A. Lange, R. Schwieger, J. Plöntzke, S. Schäfer and S. Röblitz. Follicular competition in cows: The selection of dominant follicles as a synergistic effect. *Journal of Mathematical Biology* 78(3):579–606, 2019. https://doi.org/10.1007/s00285-018-1284-0
- S. Röblitz, C. Stötzel, P. Deuflhard, H. M. Jones, D.-O. Azulay, P. van der Graaf, and S. W. Martin. A mathematical model of the human menstrual cycle for the administration of GnRH analogues. *J. Theoret. Biol.* 321:8–27, 2013. https://doi.org/10.1016/j.jtbi.2012.11.020.

Sophie Fischer

Collaborators:

Brigitte Leeners (U Hospital Zurich)

Enrico Tronci (La Sapienza U Rome)

Carolina Ramirez Mazo (UNAL/CBU)

