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Biological background:
@ the central dogma of molecular biology
@ stochastic gene expression
Mathematical modelling:
@ stochastic chemical kinetics and the chemical master equation
o Gillespie's stochastic simulation algorithm (SSA)
Markov state modelling (MSM):
@ metastability
@ robust Perron cluster analysis (PCCA+)
@ discretization and error estimation
Summary:
@ conclusion

o future work

Github repository with examples: https://github.com/sroeblitz/stochGRN
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The central dogma of molecular biology
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DNA Polymerase
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[ Dhorspool at en.wikipedia, CC BY-SA 3.0, via Wikimedia Commons]

Susanna Réblitz (CBU/UIB) Metastability in Biological Systems



Stochastic gene expression
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Fluorescence imaging of individual E. coli [Raj et al. 2008. DOI 10.1016/j.cell.2008.09.050]

Imaging technologies reveal marked variability in protein expression due to
extrinsic and intrinsic noise.
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Stochastic modelling

Cells are inherintly noisy biochemical reactors.

Extrinsic noise: Extrinsic noise can affect levels and types
o different cell cycle stages of intrinsic noise:
o spatial variation in environmental @ random collisions between reactants
signals across a population of cells due to low copy-number effects

(including discrete birth and death

cell-to-cell differences in energy events) and diffusive dynamics

budget (particularly ATP levels)
— chemical reactions are modelled as a

random partitioning of molecules at .
m P & Markov jump process (CME)

cell division

Environmental

Conditions

}
. . Stochastic

model parameters and initial values l @ Evems
are random variables cel s A

State \
Extrinsic i) Intrinsic
Noise ' " Noise
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Modelling stochastic gene expression

Gene expression can be modeled as a systems of coupled stochastic reactions.

gene mRNAs (R) proteins (P)
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Stochastic chemical kinetics

General reaction scheme (D species, R reactions):
ar(x)

E merl—’§ Nir Xi, =1,...,R

x = (x1,...,xp) € NP: state of the system (molecule numbers of species)
mj,, nj, € N: stoichiometric coefficients

a,(x) : NP — Rsq: reaction propensity, r =1,..., R
nir — My
a’(X) Ny — My, D
x———x+v(x), v = . ez
nne — My
The probability of reaction r taking place in the infinitesimal time interval
[t, t + dt) is given by a,(x(t))dt. J
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The chemical master equation (CME)

Assumption: dt is so small that at most one reaction can take place over
[t, t + dt).

p(x, t + dt) = (1—Za, ) Zar(x—vr dip(x — vy, t)

plect+d) =p(t) §n,

dt Z/r)P(X - Vr, t) - ar(X)p(X, t))

dp(x,t) _ > (ar(x = v)p(x — v, t) — 0, (x)p(x, 1))

linear ODE system with one ODE for each possible state
= compute single realizations rather than entire distribution
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The stochastic simulation algorithm (SSA)

Po(7|x, t): probability that no reaction takes place in the time interval [t, t + 7),
given X(t) = x

Assumption: what happens over [t,t + 7) is independent of what happens over
[t+7,t+ 7+ d7) (Markov property)

R
Po(t +d7|x,t) = Po(T|x,t) -l 1- Z aj(x)dT
—_— —— o

no reaction over[t,t+7+dT) no reaction over[t,t+7)

no reaction over[t+7,t+7+dT)

R
Po(7 + d7|x, t) — Po(7|x, t
o | dT) o(7| ):_asum(x)Po(7‘|x, 0, dam(x) =3 ay(x)
j=1

d7 — 0: linear scalar ODE with Py(0|x, t) =1 and solution

PO(T|X7 t) = eXp(—asum(X)T)
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Stochastic simulation algorithm (SSA)

Key quantity for SSA:

p(7,j|x, t)dT: probability that the next reaction will (a) be reaction j and (b)
occur in the time interval [t + 7, t + 7 + d7) given X(t) = x

p(rjlx, t)dr = Po(7lx,t) - aj(x)dr
—— ——

no reaction over[t,t+7) reaction j took place over[t+T,t+T+dT)

p(T,j|X, l') = : asum(X) eXp(_asum(X)T)

time until next reaction

next reaction index

— independent sampling of reaction index (chance of picking reaction j is

proportional to aj(x)) and reaction time (exponentially distributed) via uniform
(0,1) sample
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Stochastic Simulation Algorithm

Sample trajectories of that process can be generated by the Stochastic Simulation
Algorithm (SSA) [D. T. Gillespie (1976). https://doi.org/10.1016/0021-9991(76)90041-3]

@ Set t =0 and assign the initial number of molecules X(0).
@ Draw two uniform random numbers vy and uy in (0, 1).
@ Compute the total reaction intensity asym(X(t)). Generate the time to the

next reaction T by setting

7 1= —log uy /asym(X(1)).

Determine the next reaction j by the requirement that

ZO‘S(X(t)) < asum(X ()2 < ZO‘S(X(t))-

s=1

Update t := t 47 and X(t + 7) := X(t) + 1.
Repeat from 1. until some final time T is reached.

00
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Simulating stochastic gene expression

Noise in prokaryotic gene expression depends on the rates of transcription and

translatlon. [Ozbudak et al. (2002). Regulation of noise in the expression of a single gene. DOI: 10.1038/ng869]

high transcription, low translation low transcription, high translation

Lot

protein number
protein number

time in sec

time in sec

relative frequency
relative frequency

protein numbs

protein number

bursts of protein creation of average size b = kp/7g occurring at average rate kg

Code: stoch-gene-expression.py
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Transcriptional regulation

Gene expression is more complicated in eukaryotic cells!

[ Raj et al. (2006). Stochastic mRNA Synthesis in Mammalian Cells. DOI: 10.1371/journal.pbio.0040309]

sene el N "’“’“"5.“’) @ transcripts are modified in the nucleus
foovo] — Eé} O before they are exported to the cytoplasm
Yl Ik ) ® . for translation (transcriptional regulation)
l @ A stochastic model of gene activation and

%) %) inactivation can explain transcriptional
bursting

@ mRNA expression can be buffered at the
g protein level by slow protein degradation
§ rates
% 400

Code:

= (e 0 o stoch-gene-expresssion-RNA-bursts.py
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Transcriptional regulation

gene mRNAs (M) proteins (P)

u Hp .
EE—— EE} — 09
y A ® ’
i - s Sp :

[ |
T SR &

A e
@ rate of switching between active and inactive transcription state can depend
upon an external inducer (a molecule that regulates gene expression by
disabling repressors or binding to activators)

@ a protein can modulate the expression of its own gene (auto-regulation)
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Bistability
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Simple model of auto-activation reveals bistability

[ Hermsen et al. (2011). Speed, Sensitivity, and Bistability in Auto-activating Signaling Circuits. DOI: 10.1371/journal.pcbi.1002265]

G 2000 4000 6000 8000 10000 12000 14000

time in min

0 s 100 10 200 250
protein number

300

c'(t) = g(re)b/V — Bc
(/K +1/f
B0 = O ek T

c: TF concentration

r: fraction of activated transcription factors (TF)

b: burst size (each mRNA transcribed from the promoter
is instantly translated b times)

V: volume of the cell

B: degradation rate constant of the TF

«: maximal transcription rate at full activation

K: dissociation constant of the modified TF binding to
its operator

f: maximal fold change of the promoter (> /8 for
bimodality)

H: Hill coefficient

Code: stoch-gene-expression-1D-bistable.py
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Multistability

A network consisting of two mutually inhibiting genes displays multistability.

[Strasser et al. (2012). Stability and multiattractor dynamics of a toggle switch based on a two-stage model of stochastic gene expression. doi:
10.1016//j.bp;}.2011.11.4000]
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1000

1500
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Code: stoch-gene-expression-2D-multistable.py
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Rare events

Semi-mechanistic model of the genetic toggle switch [Gardner et al., Nature 403 (2000)]

reaction mechanism  propensity

n * = A a1 = /(e + BP)
r A— % Ot2=C3A
r *— B a3 =c/(cs+ A7)

ra B — x OL4ZC§B

0o 1 2 3 4 5
time X 105

time ¥ 10°

only 5 transitions between {(A, B) : A> B} and {(A, B) : A < B} within 5-10°
time steps = poor statistics: 3:2 (theoretically 1:1)
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Gene-regulatory networks

@ probabilistic framework results in
complex multi-attractor
dynamics

@ attractors can be identified with

-~ |(B) dedifferentiation committed and primed states in cell
y N\t A differentiation (cellular
r ~ (C) transdifferentiation

= direct conversion phenOtypes)
o @ since the dynamics can switch
between different attractors, we call

it metastable instead of multistable

Waddington's epigenetic landscape

[Han et al. (2022). https://doi.org/10.1253 /circj.CJ-21-0703]

How can we characterize the dynamics of these expression patterns?
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Detour: Molecular conformation dynamics

free energy
o

reaction coordinate
o

|
o

-10’

N - 200 400 600 800 1000
reaction coordinate time step

Identification of molecular conformations through the dominant eigenfunctions of
the transfer operator 77f(q) = [ps F(Mq®~"(q, p))n(p) dp
[Schiitte, Fischer, Huisinga, Deuflhard (1999). https://doi.org/10.1006/jcph.1999.6231]

Molecular Dynamics (MD)
@ continuous state space

o self-adjoint transfer operator
(reversible dynamics)

@ Boltzmann distribution (importance
sampling!)
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Detour: Molecular conformation dynamics

free energy
o

reaction coordinate
o

|
o

-10’

N - 200 400 600 800 1000
reaction coordinate time step

Identification of molecular conformations through the dominant eigenfunctions of
the transfer operator 77f(q) = [ps F(Mq®~"(q, p))n(p) dp
[Schiitte, Fischer, Huisinga, Deuflhard (1999). https://doi.org/10.1006/jcph.1999.6231]

Molecular Dynamics (MD) Gene-regulatory networks (GRN)
@ continuous state space o discrete state space
o self-adjoint transfer operator o transfer operator not self-adjoint
(reversible dynamics) @ unknown stationary distribution
@ Boltzmann distribution (importance
sampling!)
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Metastability

R
Orp(x,t) = Z [ar(x — v,)p(x — v, t) — ap(x)p(x, t)] =1 Mp(x, t),
r=1
Adjoint operator: M*q = ZL ar(x)[q(x +v,) — q(x)]
Conservation of mass:

Z Mp(x,t) =0

xEND
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Metastability

R
Orp(x,t) = Z [ar(x — v,)p(x — v, t) — ap(x)p(x, t)] =1 Mp(x, t),
r=1
Adjoint operator: M*q = ZL ar(x)[q(x +v,) — q(x)]
Conservation of mass:

Z Mp(x,t) =0

xEND

For a metastable set Q € NP, i.e. an area where a trajectory stays for a long
time before it switches to another metastable set, this conservation of mass
should still hold approximately:

Z Mp(x,t) =0

x€eQ
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From sets to functions

Definition

We call a set of functions {Cy : NP — [0, 1]} with >°, Ci(x) = Iyo Vx € NP a
metastable function partitioning if for any probability distribution p(x,t) and
all functions Ci(x): Z C()IMp(x, £) ~ 0

x€eND
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From sets to functions

Definition

We call a set of functions {Cy : NP — [0, 1]} with >°, Ci(x) = Iyo Vx € NP a
metastable function partitioning if for any probability distribution p(x,t) and

all functions Cy(x): Z Ci(x)Mp(x,t) ~ 0

x€NP

This definition can be restated in terms of the adjoint M* as

M*Ck(X) ~0

Eigenvalue problem

Metastable functions can be identified as right eigenfunctions of the adjoint
operator M* for eigenvalues close to zero:

M*Ck(X) = )\ka(X), )\k ~0
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Finite state space

Finite-dimensional subspace Q C NP: the CME operator can be written as
reaction rate matrix

R .
~ YR o), fori=)

Mij = ¢ a(x;), for all j such that x; = x; + v,
0, otherwise

In matrix notation, the CME reads

where p = [p(x1), p(xa), - ] -

If M is neither decomposable nor of splitting type, M has a unique stationary
distribution 7 = [7(x1), m(x2),...] " satisfying

7'M =0.
Discrete eigenvalue problem:

MX = XA, AN=diag(A,...,Anc), A1 =0, Aa o <O
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From eigenvectors to membership vectors

Aim: Transform the invariant subspace X to membership vectors x,
x = XA (Aregular) s.th.

Q >, xui)=1 Vie{l,...,N} (partition of unity)
Q@ w()>0 Vie{l,...,N}, Je{l,...,nc} (positivity)

How can we find this transformation A?
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From eigenvectors to membership vectors

Aim: Transform the invariant subspace X to membership vectors x,
x = XA (Aregular) s.th.

QO Y, w()=1 Vie{l,....,N} (partition of unity)
Q@ w()>0 Vie{l,...,N}, Je{l,...,nc} (positivity)

How can we find this transformation A?

The transition probability matrix P(7) := exp(7 - M) has the same eigenvectors! )

The transition probability matrices of metastable Markov jump processes (and
their eigenvectors) have (upon reordering of states) a characteristic structure:

@ high transition probabilities between
the states of a metastable set
0 (blocks)

et @ small transition probabilities to
states outside a metastable set

Pi

@ transition states
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Decoupled Markov chains

The dominant eigenvectors are constant on the blocks!

Example:
0 05 05 O 0 0 0 0 0
05 0 05 0 O O O O O
05 05 0 0 O O O 0 oO
0 0 0 0 05 05 O 0 0
P=120 0 0 05 0 05 O 0 0
0 0 0 05 05 0 0 0 0
0 0 0 0 0 0 0 05 05
o 0 0 0O 0 0 05 0 05
0 0 0 0 0 0 05 05 O
1 06 o oo o O O
0.5

3 05 gm = 04

% %M ‘Ztﬁ mo.z‘

3 0 202 ol

0.5 0.:) 8 —& o 05
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Nearly decoupled Markov chains

This structure is very robust upon perturbations!

eps=le-1;
P=P+eps*rand(9,9);
P=0.5%(P+P’);  YJreversibility
P=diag(l./sum(P,2))*P; Ystochasticity
1 05 o 55 gx
M X ox ox ox x x g8 8 02 prs
o 05 = O oo
E 2 x vi 0
H g 0 o w2 2
S 5 o0 0 o o
2 o % 0.2
x x % o %o
05 r 05 o 2 8 o ¢
5 10 5 10 -04 0.2 0 0.2 0.4
index state v2
eigenvalues eigenvectors simplex structure

[P. Deuflhard, M. Weber (2005).
10.1016//].1aa.2004.10.026]

Robust Perron cluster analysis in conformation dynamics. doi:
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Nearly decoupled Markov chains

The structure is also present in non-reversible Markov chains if separating real
and complex parts of the eigenvectors.

eps=le-1;
P=P+eps*rand(9,9);
P=diag(l./sum(P,2))*P; Ystochasticity

1 05 P oo g 0.4 %
05 02
= 5 x v
2 0 ¥ % g 0 o 9o o v2 2 0 w7
£ S o0 © o3
K @ 0.2
05 xx x x x x 2 o @
4 05 900 04 px
-1 0 1 0 5 10 04 02 0 02 04 06
real( \) state v2
eigenvalues eigenvectors simplex structure

[Frank, R&blitz (2024). Spectral clustering of Markov chain transition matrices with complex eigenvalues. doi:
10.1016/j.cam.2024.115791]
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Nearly uncoupled Markov chains with transition states

The simplex structure reveals the existence of transition states.

P(9,:)=0.1; P(:,9)=0.01;
P=P+eps*rand(9,9);
P=diag(1l./sum(P,2))*P

Y%make state 9 a transition state

0.6 06
05 0.4 oo o
o S X x x x X x x X x 04
2 go2
g © * 2 o B
s S 0 o o o 02
2 k=
0.5 x x x x © ,fee@oco P 4
0 0w 0
o v3
1 0.4
0 5 10 0 5 10 05 4 05
E = 0 index state v2
1 04
® 2 5 T x X x x x A
05 0.2 02
= 5 o g oo
o o *
5 o . x % g oo o o Of*
E 302
° x v 0.2
05 04 0w
o o0 o v3
-1 06 o 04 By
-1 0 1 0 5 10 06 04 02 0 02 04
E = 01 real( \) state v2
eigenvalues eigenvectors simplex structure
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Robust Perron Cluster Analysis (PCCA+)

Transformation of invariant subspace X to membership vectors x:
Q@ x=XA (Aregular, PX = XA) (invariance)
Q Y. xu(i)=1 Vie{l,...,N} (partition of unity)
Q@ w()>0 Vie{l,...,N}, Je{l,...,nc} (positivity)

In the general case (nearly uncoupled Markov chain with transition states), this
problem has no unique solution A.
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Robust Perron Cluster Analysis (PCCA+)

Transformation of invariant subspace X to membership vectors x:
Q@ x=XA (Aregular, PX = XA) (invariance)
Q Y. xu(i)=1 Vie{l,...,N} (partition of unity)
Q@ w()>0 Vie{l,...,N}, Je{l,...,nc} (positivity)

In the general case (nearly uncoupled Markov chain with transition states), this
problem has no unique solution A.

Algorithmic idea of PCCA+:

o find a suitable initial guess via the inner simplex algorithm
[M. Weber (2003). Clustering by using a simplex structure.]

@ optimize A to maximize crispness:
1. T .
ne — trace(DZ"x ' Dx) — min

(D = diag(x "), D = diag(w), X" DX = Id)
[S. Réblitz, M. Weber (2013). Fuzzy spectral clustering by PCCA+. doi: 10.1007/s11634-013-0134-6]
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Markov State Models

Motivation: Time-scale preserving coarse graining
F— (%)

P = (D7 Dx) " (DT DPTX) = A" ARA l l

=S stochastic

B (%)
Analogously:

M, = (Dc_leDx)_1 (D7'xTDMx) = A"AyA,  PI = exp(7 - M)

=S rate matrix

@ coarse-grained rate matrix that preserves the dominant eigenvalues and hence
the time scale of the slow processes
@ propagation of the projected density vector commutes with the projection of

the
p XP = X
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Toggle switch

o8
o6
04
105
02
ol
00
00
y 20
10 200
100
0o
o
10
° 0 a0
°© ©° o o o o
250 20
100

250 7

0 0

o s w0 10 20 20 a0 0 s w0 10 20 20 a0
200

w x1(x) x2(x)
% statistical weights: w = x "7 =[0.5,0.5]"

0.9974 0.0026
0.0026 0.9974

Fe e pC(T:5000)=<
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Phenotype transitions in macrophage polarization

o
100 o 20 40 60 80 100

[Frank et al. (2022). Macrophage phenotype transitions in a stochastic gene-regulatory network model. DOI:
10.1016/].jtbi.2023.111634]
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Continuous-time Boolean models

escape rate €
10

log(abs(eigenvalues))
|

-10 -1
- o1
-12 - 1e05
2 3 a 5
index
0 0 0 0 0 0 0 0
e —(Au+e) 0 0 0 Au 0 0
Bd 0 —Bd 0 0 0 0 0
K — 0 Bd 0 —Bd 0 0 0 0
0 0 0 0 —Bu 0 Bu 0
0 0 0 0 0 —Bu 0 Bu
0 0 Ad 0 0 0 —Ad 0
0 0 0 Ad 0 0 0 —Ad
10 10 10 10
Zos Zos Zos Zos
'g 0.4 'g 04 'g 04 'g 04
Qo2 Qo2 Qo2 Qo2
oo oo oo Eoo
07000001 010011 100 101110111 0000001 010011 100 101 110111 0000001020011 100101 110 111 0000001020011 100101 110 111
state state state state

[Yousefian et al. (2024). DOI: 10.1007/978-3-031-71671-3_16]
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Mammalian cell cycle model (Fauré

N EN o

log(abs(eigenvalues))

fast/slow ratio
1.0
—o— 10.0
—e— 100.0
—e— 1000.0

crispness

7
index

8

9

10 11 12

o
o

IS4
o

o
S

o
N

fast/slow ratio
1.0
—e— 100
—e— 100.0
—e— 1000.0

2 3 4 5 6 7 8 9
number of clusters

10 11 12

[Yousefian et al. (2024). DOI: 10.1007/978-3-031-71671-3_16]
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Piecewise-deterministic Markov processes (PDMP)

Coarse-grained model describing only the protein population while fully accounting
for the effects of discrete and fluctuating mRNA population:

(a) . (b (e)
Protein— i j rotn H LX) ::;
rBy . A in=1
MRNA —> 7
H, n(NP]T /
DNA i X

[Lin et al. 2016, DOI: 10.1103/PhysRevE.93.022409; Ventre et al. 2021, DOI: 10.1007/s00285-021-01684-1]

F ]
Master equation: P - :

9 [pl(x, r)] _ [m(xa t)} i
9% Lot ) = [0 =g
S \
i [=7 = 0x(vb—70%) H(x) |
L { ’ CHO) otk et bl
HE i2 i
2g
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Drawback

@ the size of M increases exponentially with the number of species

@ even if M is sparse, bookkeeping of its entries requires enumeration of all
reachable states
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Drawback

@ the size of M increases exponentially with the number of species

@ even if M is sparse, bookkeeping of its entries requires enumeration of all
reachable states

We need some discretization strategy!
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M*Ck(X) = /\/<C,(<(X)7 )\k ~0

Given a partition of unity {¢;(x)}"_;, the metastable functions Cy(x) can be
approximated by

N
Cu(x) = G (x) =Y xwthi(x).
i=1
The condition 3", xi = 1 is sufficient to ensure that {C¥(x)} is a partition of
unity if {¢;(x)}Y, is one.
= the vectors xx = (X1k,---,Xnk) | can be interpreted as membership vectors

Inner products with test functions {¢;(x)}"; — discrete eigenvalue problem

QXK = MSxk

with

Qj = (91, M) = (Mdi, i) and - Sjj = (i(x), ¥5(x))-
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Algorithmic approach

Choose {1;(x)}"_, to be a Voronoi tesselation (meshless!) of NP:

Qj = (¢, M™1)y) = ZZ% Xy (x + vp) = i (x)]i(x)

xeND r=1
= requires the detection of all states x at the boundary of 1); from where the
support of v; can be left within one reaction step

= very difficult (impossible) on unstructured Voronoi tesselations in high
dimensions

Alternatives:

o use of overlapping (e.g. radial) basis function: How to combine SSA with
importance sampling?

@ switch to transition probabilities
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From transition rates to transition probabilities

By the Hille-Yosida theorem, M is the infinitesimal generator of a strongly
continuous semigroup 7(7) and the CME admits a unique continuous solution in
the form

plx, t 4+ 7) = TOp(x, 1)
Galerkin discretization of 7(7) in terms of Voronoi cell {t;(x)}"; and test
functions ¢;(x) = ¥;(x)r(x) = mi(x):
Pxk = Axk
with
<¢i7 (T(T))*¢j>ﬂ' _ ZXGQ,‘ Zyeﬁj ﬂ-(X) T(T)(Xv y)
(i, bi)n 7

If we have sampled points {xx}K_; according to the partial stationary density
mi(x), then P can be approximated by

L
P ~ X Z Z T (xe, y).

k=1 yer

()
Pfj

. Qj=1,...,N
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Markov State Model building

@ Horizontal sampling

Susanna Réblitz (CBU/UIB) Metastability in Biological Systems



Markov State Model building

@ Horizontal sampling

@ Convergence analysis

traces of multiple chains

o
%o
o 1000 00 e o000
fevation number
. trace of Rivonet
i
o oo 2n00 oo 0
toraton number
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Markov State Model building

© Horizontal sampling @ Hierarchical refinement

@ Convergence analysis

traces of multiple chains
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Markov State Model building

@ Horizontal sampling @ Hierarchical refinement

@ Convergence analysis @ Vertical sampling

traces of multiple chains

3 | I | =
L i Y b
7 i = e s
——— -
200 1 s
B -
i ©
o - -

toraton number
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Markov State Model building

Model Selection:
Start — 1. Macrophage —{ Voronoi tessellation — Hoizontal Sampling Colrlvell'ge.nce
2. Toggle Switch gabist
if
B Hierarchical Clusterin No
Markov State Phenotype refinement E
Models <+— identification by <—I_
(MsM)s
PCCA+ Vertical Sampling H Yes }~7

[M. Yousefian, A.-S. Frank, M. Weber, S. Roblitz (2024). Efficient construction of Markov state models for
stochastic gene regulatory networks by domain decomposition. bioarXiv. doi: 10.1101/2023.11.21.568127]
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Toggle Switch: Results
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Toggle Switch: Results
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Uncertainty quantification

The rows of the transition probability matrix P are statistically independent. J

o for each cell, repeat the vertical sampling multiple times by randomly picking
a fixed number of points from the horizontal sampling

o this results in multiple candidates for each row P(i,:)

o the distribution of probability vectors P(i,:) follows the Dirichlet
distribution Dir(«)

@ estimate a by maximum-likelihood estimation

@ sample transition probability matrices P and compute multiple MSMs to
quantify the uncertainty
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Toggle switch: Uncertainty quantification

Increasing the number of vertical sampling points reduces the uncertainty:
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Toggle Switch: Results

Decreasing the number of Voronoi cells does not deteriorate the discretization

€error:
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Conclusion

o fluctuations in gene expression do not just average away but can instead lead
to easily detectable differences between otherwise identical cells

@ Markov state modelling, developed for molecular conformation dynamics, can
be generalized to other multi-stable stochastic dynamical systems, including
non-reversible GRNs

o for small model systems with finite state space, PCCA+ can directly be
applied to the transfer operator or its generator

@ more complex model systems require discretization
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Conclusion
o fluctuations in gene expression do not just average away but can instead lead
to easily detectable differences between otherwise identical cells
@ Markov state modelling, developed for molecular conformation dynamics, can
be generalized to other multi-stable stochastic dynamical systems, including
non-reversible GRNs
o for small model systems with finite state space, PCCA+ can directly be
applied to the transfer operator or its generator
@ more complex model systems require discretization
Future work
o test other discretization methods for the CME (e.g. radial basis function)
— importance sampling if stationary distribution is unknow?
o discretization strategies for operators other than the CME
— how to decompose the Boolean state space?
o software development (parallelization — higher dimensions, GUI, SBML)
@ avoid discretization by "learning” the eigenfunctions using an artificial neural
network (ISOKANN)
[R. J. Rabben et al. (2020). ISOKANN: Invariant subspaces of Koopman operators learned by a neural
network. doi: 10.1063/5.0015132]
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