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The central dogma of molecular biology

[ Dhorspool at en.wikipedia, CC BY-SA 3.0, via Wikimedia Commons]

genes encode proteins and proteins
dictate cell function

potential control points for
self-regulation by adjusting the
amount and type of proteins
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Stochastic gene expression

Cell 135, October 17, 2008 ©2008 Elsevier Inc. 217

Noisy Bugs
The first attempts to characterize stochastic gene expres-
sion were born from experiments in synthetic biology in which 
experimenters found that noisy behavior in gene expression 
was interfering with the operation of engineered genetic cir-
cuits. One example is the “repressilator,” a synthetic network of 
repressors that was capable of producing oscillations in gene 
expression (Elowitz and Leibler, 2000). The authors found that 
the oscillations were subject to marked fluctuations in their 
period and magnitude and conjectured that stochastic effects 
in gene expression were causing these effects. In another 
study explicitly aimed at controlling fluctuations, Becskei and 
Serrano (2000) showed that engineering a circuit with nega-
tive feedback could reduce cell-to-cell variability in expression. 
Although these experiments showed that noise in gene expres-
sion was important and could even be controlled, the molecu-
lar basis for the observed variability remained unclear.

The first experiments to explore the causes of stochastic gene 
expression were the landmark studies of Elowitz et al. (2002) and 
Ozbudak et al. (2002). Elowitz et al. introduced the concepts of 
extrinsic and intrinsic noise in gene expression (analyzed math-
ematically by Swain et al., 2002). In their experiments, Elowitz et 
al. quantified the variability in the expression from a promoter in 
E. coli by introducing two copies of the same promoter into the 
genome of E. coli, one driving the expression of cyan fluorescent 
protein (CFP) and the other driving the expression of yellow fluo-
rescent protein (YFP) (Figures 1A and 1B). In this setup, extrinsic 
fluctuations are those that affect the expression of both copies 
of the gene equally in a given cell, such as variations in the num-
bers of RNA polymerases or ribosomes. Intrinsic fluctuations 
are those due to the randomness inherent to transcription and 
translation; being random, they should affect each copy of the 
gene independently, adding uncorrelated variations in levels of 
CFP and YFP levels (Figure 1C). They found that both sources 

of noise can be significant depending on 
the promoter. Later time-lapse measure-
ments showed that in bacteria, the time 
scale for intrinsic fluctuations is less than 
9 min, whereas extrinsic fluctuations 
exert their effects on time scales of about 
40 min, or roughly the length of the cell 
cycle (Rosenfeld et al., 2005).

Ozbudak et al. (2002) observed that 
variability in the expression of a gene 
expressing GFP driven by an inducible 
promoter in B. subtilis depended on the 
underlying biochemical rates of tran-

scription and translation. In these experiments, transcription 
rates were controlled by varying the level of induction, and the 
translation rate was altered by introduction of mutations into 
the ribosomal binding site. This verified a stochastic theory 
of intrinsic noise they had developed predicting how noise 
in gene expression would change as these parameters were 
altered (Thattai and van Oudenaarden, 2001) (Figures 2A and 
2B). In particular, the theory predicted that noise (measured 
by the standard deviation in protein expression level divided 
by the mean) would depend inversely on the rate of transcrip-
tion but would not depend on the rate of translation. This is 
because proteins are produced in translational “bursts” from 
individual transcripts; the concept of bursts in gene expres-
sion continues to play an important role in current research, 
especially in higher eukaryotes.

Recently, a set of exciting single-molecule experiments have 
observed translational bursts in individual living bacteria. To 
count the number of proteins per cell, Cai et al. (2006) used two 
methods: one involving microfluidics, in which they quantified 
the number of beta-galactosidase enzymes in a cell by moni-
toring its enzymatic activity, and one involving direct visualiza-
tion of single YFP molecules tethered to the cellular membrane 
(Yu et al., 2006). Both studies showed that proteins were syn-
thesized in rapid, burst-like fashion.

Another study (Golding et al., 2005) used the MS2-GFP 
method (Bertrand et al., 1998; Beach et al., 1999), which 
allows one to monitor the transcription of individual mRNA 
molecules in real time. This is accomplished by introduction 
of a repeated sequence motif into the 3′ untranslated region 
of the mRNA, to which a fusion of the MS2 coat protein and 
GFP binds, thus rendering the mRNA molecule fluorescent. 
According to the model presented in Figure 3A, one would 
expect that mRNA molecules are produced at a steady rate 

Figure 1. Intrinsic and Extrinsic Contribu-
tions to Noise in Gene Expression
(A) A fluorescence image of individual E. coli dis-
playing marked cell-to-cell variability in the ex-
pression of two identically regulated fluorescent 
proteins.
(B) Schematic depiction of the temporal behav-
iors of extrinsic noise (upper) and intrinsic noise 
(lower).
(C) Expected cell-to-cell variations when fluctua-
tions are intrinsic, extrinsic or both.
(A) and (B) are adapted from Elowitz et al., 2002.

Fluorescence imaging of individual E. coli [Raj et al. 2008. DOI 10.1016/j.cell.2008.09.050]

Imaging technologies reveal marked variability in protein expression due to
extrinsic and intrinsic noise.
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Stochastic modelling

Cells are inherintly noisy biochemical reactors.

Extrinsic noise:

different cell cycle stages

spatial variation in environmental
signals across a population of cells

cell-to-cell differences in energy
budget (particularly ATP levels)

random partitioning of molecules at
cell division

...

→ model parameters and initial values
are random variables

Extrinsic noise can affect levels and types
of intrinsic noise:

random collisions between reactants
due to low copy-number effects
(including discrete birth and death
events) and diffusive dynamics

→ chemical reactions are modelled as a
Markov jump process (CME)
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Modelling stochastic gene expression

Gene expression can be modeled as a systems of coupled stochastic reactions.

k
R kP

γ
R

γ
P

mRNAs (R) proteins (P)gene
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Stochastic chemical kinetics

General reaction scheme (D species, R reactions):

D∑
i=1

mirxi
αr (x)

GGGGGGGGGA

D∑
i=1

nirxi , r = 1, . . . ,R

x = (x1, . . . , xD) ∈ ND : state of the system (molecule numbers of species)

mir , nir ∈ N: stoichiometric coefficients

αr (x) : ND → R≥0: reaction propensity, r = 1, . . . ,R

x
αr (x)

GGGGGGGGGAx + νr (x), νr =


n1r −m1r

n2r −m2r

...
nNr −mNr

 ∈ ZD

The probability of reaction r taking place in the infinitesimal time interval
[t, t + dt) is given by αr (x(t))dt.
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The chemical master equation (CME)

Assumption: dt is so small that at most one reaction can take place over
[t, t + dt).

p(x , t + dt) =

(
1−

R∑
r=1

αr (x)dt

)
p(x , t) +

R∑
r=1

αr (x − νr )dtp(x − νr , t)

p(x , t + dt)− p(x , t)

dt
=

R∑
r=1

(αr (x − νr )p(x − νr , t)− αr (x)p(x , t))

dp(x , t)

dt
=

R∑
r=1

(αr (x − νr )p(x − νr , t)− αr (x)p(x , t))

linear ODE system with one ODE for each possible state
⇒ compute single realizations rather than entire distribution
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The stochastic simulation algorithm (SSA)

P0(τ |x , t): probability that no reaction takes place in the time interval [t, t + τ),
given X (t) = x

Assumption: what happens over [t, t + τ) is independent of what happens over
[t + τ, t + τ + dτ) (Markov property)

P0(τ + dτ |x , t)︸ ︷︷ ︸
no reaction over[t,t+τ+dτ)

= P0(τ |x , t)︸ ︷︷ ︸
no reaction over[t,t+τ)

·

1−
R∑
j=1

αj(x)dτ


︸ ︷︷ ︸

no reaction over[t+τ,t+τ+dτ)

P0(τ + dτ |x , t)− P0(τ |x , t)
dτ

= −αsum(x)P0(τ |x , t), αsum(x) :=
R∑
j=1

αj(x)

dτ → 0: linear scalar ODE with P0(0|x , t) = 1 and solution

P0(τ |x , t) = exp(−αsum(x)τ)
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Stochastic simulation algorithm (SSA)

Key quantity for SSA:
p(τ, j |x , t)dτ : probability that the next reaction will (a) be reaction j and (b)
occur in the time interval [t + τ, t + τ + dτ) given X (t) = x

p(τ, j |x , t)dτ = P0(τ |x , t)︸ ︷︷ ︸
no reaction over[t,t+τ)

· αj(x)dτ︸ ︷︷ ︸
reaction j took place over[t+τ,t+τ+dτ)

p(τ, j |x , t) = αj(x)

αsum(x)︸ ︷︷ ︸
next reaction index

·αsum(x) exp(−αsum(x)τ)︸ ︷︷ ︸
time until next reaction

→ independent sampling of reaction index (chance of picking reaction j is
proportional to αj(x)) and reaction time (exponentially distributed) via uniform
(0, 1) sample
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Stochastic Simulation Algorithm

Sample trajectories of that process can be generated by the Stochastic Simulation
Algorithm (SSA) [D. T. Gillespie (1976). https://doi.org/10.1016/0021-9991(76)90041-3]

1 Set t = 0 and assign the initial number of molecules X (0).
2 Draw two uniform random numbers u1 and u2 in (0, 1).
3 Compute the total reaction intensity αsum(X (t)). Generate the time to the

next reaction τ by setting

τ := − log u1/αsum(X (t)).

Determine the next reaction j by the requirement that

j−1∑
s=1

αs(X (t)) < αsum(X (t))u2 ≤
j∑

s=1

αs(X (t)).

4 Update t := t + τ and X (t + τ) := X (t) + νj .
5 Repeat from 1. until some final time T is reached.
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Simulating stochastic gene expression

Noise in prokaryotic gene expression depends on the rates of transcription and
translation. [Ozbudak et al. (2002). Regulation of noise in the expression of a single gene. DOI: 10.1038/ng869]

high transcription, low translation
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bursts of protein creation of average size b = kP/γR occurring at average rate kR

Code: stoch-gene-expression.py
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Transcriptional regulation

Gene expression is more complicated in eukaryotic cells!
[ Raj et al. (2006). Stochastic mRNA Synthesis in Mammalian Cells. DOI: 10.1371/journal.pbio.0040309]
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transcripts are modified in the nucleus
before they are exported to the cytoplasm
for translation (transcriptional regulation)

A stochastic model of gene activation and
inactivation can explain transcriptional
bursting

mRNA expression can be buffered at the
protein level by slow protein degradation
rates

Code:
stoch-gene-expresssion-RNA-bursts.py

Susanna Röblitz (CBU/UiB) Metastability in Biological Systems
Woudschoten Conference, September 25, 2024

14 / 48



Transcriptional regulation

δP

Pµ

proteins (P)gene

δ

µ

inactive (I)

active (A)

mRNAs (M)

γ λ

inducer

+/−

rate of switching between active and inactive transcription state can depend
upon an external inducer (a molecule that regulates gene expression by
disabling repressors or binding to activators)

a protein can modulate the expression of its own gene (auto-regulation)
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Bistability

Simple model of auto-activation reveals bistability
[ Hermsen et al. (2011). Speed, Sensitivity, and Bistability in Auto-activating Signaling Circuits. DOI: 10.1371/journal.pcbi.1002265]
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c ′(t) = g(rc)b/V − βc

g(rc) = α
(rc/K )H + 1/f

(rc/K )H + 1

c: TF concentration
r : fraction of activated transcription factors (TF)
b: burst size (each mRNA transcribed from the promoter
is instantly translated b times)
V : volume of the cell
β: degradation rate constant of the TF
α: maximal transcription rate at full activation
K : dissociation constant of the modified TF binding to
its operator
f : maximal fold change of the promoter (> α/β for
bimodality)

H: Hill coefficient

Code: stoch-gene-expression-1D-bistable.py
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Multistability

A network consisting of two mutually inhibiting genes displays multistability.
[Strasser et al. (2012). Stability and multiattractor dynamics of a toggle switch based on a two-stage model of stochastic gene expression. doi:

10.1016/j.bpj.2011.11.4000]

two genes share the same promoter, is discussed within
a probabilistic framework. A comparison of simple switch
circuitries is given in Warren and ten Wolde (15). Contrary
to deterministic models, transitions between the two macro-
scopic regimes where one of the two genes dominates are
possible due to the inherently noisy gene transcription
(16,17), even without cooperative binding of transcription
factors (18). More recent contributions focused on analytic
descriptions (19,20), the switching time between macro-
scopic regimes for different regulatory realizations
(16,21,22) or parameter regimes (17), boundaries for the
switching time (23), or delay effects (24). Notably, all of
these approaches are based on a one-stage model of gene
expression, where DNA is directly processed into functional
proteins. However, it has been shown that the characteristics
of protein noise strongly depend on the underlying expres-
sion model (25,26).

In this contribution, we abstract the regulatory details of
the prominent myeloid Pu.1-Gata-1 mutual inhibition.
Contrary to common belief, which advocates the lumping
of the two stages of expression, we show that the inclusion
of both mRNA and protein leads to an interesting change in
system dynamics. The probabilistic two-stage description
exhibits complex multiattractor dynamics without autoacti-
vation and cooperativity. Remarkably, a 2006 study reported
low numbers of mRNAs in single murine blood cells:
Warren et al. (27) found ~10 transcripts per cell of the
murine PU.1 gene in common myeloid progenitors. Based
on these findings we study a probabilistic description of
a toggle switch with low mRNA numbers, high protein
abundance, and (in accordance with the known role of
Pu.1) monomeric transcription factor binding. We deliber-
ately choose the simplest toggle switch model and neglect
autoactivation due to our ignorance of the logic of activation
and inhibition at the promoter. However, our results can
easily be extended and are discussed for the case of dimeric
regulation and exclusive autoactivation.

RESULTS

A toggle switch based on a two-stage model
of gene expression

We describe the mutual inhibition of two genes, further
on called A and B, using a two-stage model of gene expres-
sion (25,26) with mutual inhibition being realized as
DNA-protein binding (see Fig. 1). This kind of switch
has been implemented in vivo by Gardner et al. (28).
The model can be represented as a set of biochemical reac-
tions for A and B, respectively, and a set of reaction rates
a, b, etc.:

DNAA/
aA

DNAA þmRNAA;

DNAB/
aB

DNAB þmRNAB;
(1)

mRNAA/
gA

[;

mRNAB/
gB

[;
(2)

mRNAA/
bA

mRNAA þ ProteinA;

mRNAB/
bB

mRNAB þ ProteinB;
(3)

ProteinA/
dA

[;

ProteinB/
dB

[;
(4)

ProteinA þ DNAB/
tþ
A
DNAbound

B ;

ProteinB þ DNAA/
tþ
B
DNAbound

A ;

(5)

DNAbound
B /

t�
A
ProteinA þ DNAB;

DNAbound
A /

t�
B
ProteinB þ DNAA:

(6)

Reactions 1 and 2 correspond to mRNA transcription from
an unbound promoter and mRNA degradation, respectively.
Reactions 3 and 4 resemble protein translation and degrada-
tion. Reactions 5 and 6 describe the binding and unbinding
of a protein to the antagonistic gene and thereby the transi-
tion from an active to an inactive promoter and vice versa.
Bound DNA lacks the ability to be transcribed. We empha-
size that here tþ and t� are rates rather than times. Note that
we assume monomeric transcription factor binding as the
simplest of regulatory interaction (which has recently been

FIGURE 1 Scheme of the two-stage switch. (Open) Species associated

with gene A; (shaded) species associated with gene B. (Solid arrows)

Synthesis and binding. (Jagged arrows) Degradation. mRNAA is tran-

scribed from DNAA with rate aA. It decays with rate gA and is translated

into ProteinA with rate bA. ProteinA decays with rate dA and can bind

(unbind) DNAB with rate tþAðt�AÞ. Protein-bound DNA leads to transcrip-

tional arrest. The topology is symmetric with respect to the genes A and

B, thus, the same reactions exist for B.

Biophysical Journal 102(1) 19–29

20 Strasser et al.

Code: stoch-gene-expression-2D-multistable.py
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Rare events

Semi-mechanistic model of the genetic toggle switch [Gardner et al., Nature 403 (2000)]

reaction mechanism propensity

r1 ⋆ → A α1 = c1/(c2 + Bβ)
r2 A → ⋆ α2 = c3A
r3 ⋆ → B α3 = c4/(c5 + Aγ)
r4 B → ⋆ α4 = c6B
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only 5 transitions between {(A,B) : A > B} and {(A,B) : A < B} within 5 · 106
time steps ⇒ poor statistics: 3:2 (theoretically 1:1)
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Gene-regulatory networks

Waddington’s epigenetic landscape
[Han et al. (2022). https://doi.org/10.1253/circj.CJ-21-0703]

probabilistic framework results in
complex multi-attractor
dynamics

attractors can be identified with
committed and primed states in cell
differentiation (cellular
phenotypes)

since the dynamics can switch
between different attractors, we call
it metastable instead of multistable

How can we characterize the dynamics of these expression patterns?
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Detour: Molecular conformation dynamics
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Identification of molecular conformations through the dominant eigenfunctions of
the transfer operator T τ f (q) =

∫
Rd f (ΠqΦ

−τ (q, p))η(p) dp
[Schütte, Fischer, Huisinga, Deuflhard (1999). https://doi.org/10.1006/jcph.1999.6231]

Molecular Dynamics (MD)

continuous state space

self-adjoint transfer operator
(reversible dynamics)

Boltzmann distribution (importance
sampling!)

Gene-regulatory networks (GRN)

discrete state space

transfer operator not self-adjoint

unknown stationary distribution
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Metastability

∂tp(x , t) =
R∑

r=1

[αr (x − νr )p(x − νr , t)− αr (x)p(x , t)] =: Mp(x , t),

Adjoint operator: M∗q =
∑R

r=1 αr (x)[q(x + νr )− q(x)]

Conservation of mass: ∑
x∈ND

Mp(x , t) = 0

Idea

For a metastable set Ω ∈ ND , i.e. an area where a trajectory stays for a long
time before it switches to another metastable set, this conservation of mass
should still hold approximately: ∑

x∈Ω

Mp(x , t) ≈ 0
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From sets to functions

Definition

We call a set of functions {Ck : ND → [0, 1]} with
∑

k Ck(x) = 1IND ∀ x ∈ ND a
metastable function partitioning if for any probability distribution p(x , t) and
all functions Ck(x):

∑
x∈ND

Ck(x)Mp(x , t) ≈ 0

This definition can be restated in terms of the adjoint M∗ as

M∗Ck(x) ≈ 0

Eigenvalue problem

Metastable functions can be identified as right eigenfunctions of the adjoint
operator M∗ for eigenvalues close to zero:

M∗Ck(x) = λkCk(x), λk ≈ 0
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Finite state space

Finite-dimensional subspace Ω ⊂ ND : the CME operator can be written as
reaction rate matrix

Mij =


−
∑R

r=1 αr (xi ), for i = j

αr (xi ), for all j such that xj = xi + νr

0, otherwise

In matrix notation, the CME reads

ṗ⊤ = p⊤M

where p = [p(x1), p(x2), . . .]
⊤.

If M is neither decomposable nor of splitting type, M has a unique stationary
distribution π = [π(x1), π(x2), . . .]

⊤ satisfying

π⊤M = 0.

Discrete eigenvalue problem:

MX = XΛ, Λ = diag(λ1, . . . , λnC ), λ1 = 0, λ2,...,nc < 0
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From eigenvectors to membership vectors

Aim: Transform the invariant subspace X to membership vectors χ,

χ = XA (A regular) s.th.

1
∑nc

J=1 χJ(i) = 1 ∀i ∈ {1, . . . ,N} (partition of unity)
2 χJ(i) ≥ 0 ∀i ∈ {1, . . . ,N}, J ∈ {1, . . . , nC} (positivity)

How can we find this transformation A?

The transition probability matrix P(τ) := exp(τ ·M) has the same eigenvectors!

The transition probability matrices of metastable Markov jump processes (and
their eigenvectors) have (upon reordering of states) a characteristic structure:

11

nCnC
P

P

P PP tttc

0

high transition probabilities between
the states of a metastable set
(blocks)

small transition probabilities to
states outside a metastable set

transition states
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Decoupled Markov chains

The dominant eigenvectors are constant on the blocks!

Example:

P =



0 0.5 0.5 0 0 0 0 0 0
0.5 0 0.5 0 0 0 0 0 0
0.5 0.5 0 0 0 0 0 0 0
0 0 0 0 0.5 0.5 0 0 0
0 0 0 0.5 0 0.5 0 0 0
0 0 0 0.5 0.5 0 0 0 0
0 0 0 0 0 0 0 0.5 0.5
0 0 0 0 0 0 0.5 0 0.5
0 0 0 0 0 0 0.5 0.5 0
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Nearly decoupled Markov chains

This structure is very robust upon perturbations!

eps=1e-1;

P=P+eps*rand(9,9);

P=0.5*(P+P’); %reversibility

P=diag(1./sum(P,2))*P; %stochasticity
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[P. Deuflhard, M. Weber (2005). Robust Perron cluster analysis in conformation dynamics. doi:

10.1016/j.laa.2004.10.026]
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Nearly decoupled Markov chains

The structure is also present in non-reversible Markov chains if separating real
and complex parts of the eigenvectors.

eps=1e-1;

P=P+eps*rand(9,9);

P=diag(1./sum(P,2))*P; %stochasticity

-1 0 1

real( )

-1

-0.5

0

0.5

1

im
a
g
(

)

0 5 10

state

-0.5

0

0.5

e
ig

e
n
v
e
c
to

r

v1

v2

v3

-0.4 -0.2 0 0.2 0.4 0.6

v2

-0.4

-0.2

0

0.2

0.4

v
3

eigenvalues eigenvectors simplex structure

[Frank, Röblitz (2024). Spectral clustering of Markov chain transition matrices with complex eigenvalues. doi:

10.1016/j.cam.2024.115791]
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Nearly uncoupled Markov chains with transition states

The simplex structure reveals the existence of transition states.

P(9,:)=0.1; P(:,9)=0.01; %make state 9 a transition state

P=P+eps*rand(9,9);

P=diag(1./sum(P,2))*P
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Robust Perron Cluster Analysis (PCCA+)

Transformation of invariant subspace X to membership vectors χ:

1 χ = XA (A regular,PX = XΛ) (invariance)

2
∑nc

J=1 χJ(i) = 1 ∀i ∈ {1, . . . ,N} (partition of unity)

3 χJ(i) ≥ 0 ∀i ∈ {1, . . . ,N}, J ∈ {1, . . . , nC} (positivity)

In the general case (nearly uncoupled Markov chain with transition states), this
problem has no unique solution A.

Algorithmic idea of PCCA+:

find a suitable initial guess via the inner simplex algorithm
[M. Weber (2003). Clustering by using a simplex structure.]

optimize A to maximize crispness:

nc − trace(D−1
c χTDχ) → min

(Dc = diag(χTπ), D = diag(π), XTDX = Id)

[S. Röblitz, M. Weber (2013). Fuzzy spectral clustering by PCCA+. doi: 10.1007/s11634-013-0134-6]
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Markov State Models

Motivation: Time-scale preserving coarse graining

Pτ
c :=

(
D−1

c χTDχ
)︸ ︷︷ ︸

=:S

−1 (
D−1

c χTDPτχ
)︸ ︷︷ ︸

stochastic

= A−1ΛPA

P
τ( )

k
P

τ

P
τ

c( )
k

P
τ

c

Analogously:

Mc :=
(
D−1

c χTDχ
)︸ ︷︷ ︸

=:S

−1 (
D−1

c χTDMχ
)︸ ︷︷ ︸

rate matrix

= A−1ΛMA, Pτ
c = exp(τ ·Mc)

coarse-grained rate matrix that preserves the dominant eigenvalues and hence
the time scale of the slow processes

propagation of the projected density vector commutes with the projection of
the propagated density

pTχPτ
c = pTPτχ
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Toggle switch
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statistical weights: w = χTπ = [0.5, 0.5]T

Pc(τ = 5000) =

(
0.9974 0.0026
0.0026 0.9974

)
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Phenotype transitions in macrophage polarization

Discrete transition path theory (TPT) for Markov jump processes [Metzner et al. 2009]:

[Frank et al. (2022). Macrophage phenotype transitions in a stochastic gene-regulatory network model. DOI:
10.1016/j.jtbi.2023.111634]
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Continuous-time Boolean models

111 001 000 110

101

011

100

010

K =



0 0 0 0 0 0 0 0
ε −(Au + ε) 0 0 0 Au 0 0
Bd 0 −Bd 0 0 0 0 0
0 Bd 0 −Bd 0 0 0 0
0 0 0 0 −Bu 0 Bu 0
0 0 0 0 0 −Bu 0 Bu
0 0 Ad 0 0 0 −Ad 0
0 0 0 Ad 0 0 0 −Ad


.

[Yousefian et al. (2024). DOI: 10.1007/978-3-031-71671-3 16]
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Mammalian cell cycle model (Fauré et al. 2006)

Cdc20
CycA

CycB

CycD

CycE

E2F

Rb

UbcH10

cdh1

p27

[Yousefian et al. (2024). DOI: 10.1007/978-3-031-71671-3 16]
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Piecewise-deterministic Markov processes (PDMP)

Coarse-grained model describing only the protein population while fully accounting
for the effects of discrete and fluctuating mRNA population:

[Lin et al. 2016, DOI: 10.1103/PhysRevE.93.022409; Ventre et al. 2021, DOI: 10.1007/s00285-021-01684-1]

Master equation:

∂

∂t

[
p1(x , t)
p0(x , t)

]
= L†

[
p1(x , t)
p0(x , t)

]

L† =

[
−γ − ∂x(γb − γ0x) H(x)

γ −H(x) + γ0∂xx

]
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Drawback

the size of M increases exponentially with the number of species

even if M is sparse, bookkeeping of its entries requires enumeration of all
reachable states

We need some discretization strategy!
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Discretization

M∗Ck(x) = λkCk(x), λk ≈ 0

Given a partition of unity {ψi (x)}Ni=1, the metastable functions Ck(x) can be
approximated by

Ck(x) ≈ CN
k (x) =

N∑
i=1

χikψi (x).

The condition
∑

k χik = 1 is sufficient to ensure that {CN
k (x)} is a partition of

unity if {ψi (x)}Ni=1 is one.

⇒ the vectors χk = (χ1k , . . . , χNk)
T can be interpreted as membership vectors

Inner products with test functions {ϕj(x)}Ni=1 → discrete eigenvalue problem

Qχk = λkSχk

with
Qij ≡ ⟨ϕi ,M∗ψj⟩ = ⟨Mϕi , ψj⟩ and Sij ≡ ⟨ϕi (x), ψj(x)⟩.
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Algorithmic approach

Choose {ψi (x)}Ni=1 to be a Voronoi tesselation (meshless!) of ND :

Qij ≡ ⟨ϕi ,M∗ψj⟩ =
∑
x∈ND

R∑
r=1

αr (x)[ψj(x + νr )− ψj(x)]ϕi (x)

⇒ requires the detection of all states x at the boundary of ψj from where the
support of ψj can be left within one reaction step

⇒ very difficult (impossible) on unstructured Voronoi tesselations in high
dimensions

Alternatives:

use of overlapping (e.g. radial) basis function: How to combine SSA with
importance sampling?

switch to transition probabilities
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From transition rates to transition probabilities

By the Hille-Yosida theorem, M is the infinitesimal generator of a strongly
continuous semigroup T (τ) and the CME admits a unique continuous solution in
the form

p(x , t + τ) = T (τ)p(x , t).

Galerkin discretization of T (τ) in terms of Voronoi cell {ψi (x)}Ni=1 and test
functions ϕi (x) = ψi (x)π(x) ≡ πi (x):

Pχk = λkχk

with

P
(τ)
ij ≡ ⟨ϕi , (T (τ))∗ϕj⟩π

⟨ϕi , ϕi ⟩π
=

∑
x∈Ωi

∑
y∈Ωj

π(x)T (τ)(x , y)

wi
, i , j = 1, . . . ,N

If we have sampled points {xk}Kk=1 according to the partial stationary density
πi (x), then Pij can be approximated by

Pij ≈
1

K

K∑
k=1

∑
y∈Ωj

T (τ)(xk , y).
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Markov State Model building

1 Horizontal sampling

2 Convergence analysis

3 Hierarchical refinement

4 Vertical sampling
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Markov State Model building

[M. Yousefian, A.-S. Frank, M. Weber, S. Röblitz (2024). Efficient construction of Markov state models for

stochastic gene regulatory networks by domain decomposition. bioarXiv. doi: 10.1101/2023.11.21.568127]
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Toggle Switch: Results
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Susanna Röblitz (CBU/UiB) Metastability in Biological Systems
Woudschoten Conference, September 25, 2024

42 / 48



Toggle Switch: Results

0 100 200 300

A

0

50

100

150

200

250

300

B

0 100 200 300

A

0

50

100

150

200

250

300

B

0

0.2

0.4

0.6

0.8

1

0 100 200 300

A

0

50

100

150

200

250

300

B

0

0.2

0.4

0.6

0.8

1

0 100 200 300

A

0

50

100

150

200

250

300

B

0 100 200 300

A

50

100

150

200

250

300

B

2

4

6

8

10

10
-4

Error estimation/Uncertainty quantification?
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Uncertainty quantification

The rows of the transition probability matrix P are statistically independent.

for each cell, repeat the vertical sampling multiple times by randomly picking
a fixed number of points from the horizontal sampling

this results in multiple candidates for each row P(i , :)

the distribution of probability vectors P(i , :) follows the Dirichlet
distribution Dir(α)

estimate α by maximum-likelihood estimation

sample transition probability matrices P and compute multiple MSMs to
quantify the uncertainty
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Toggle switch: Uncertainty quantification

Increasing the number of vertical sampling points reduces the uncertainty:
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Toggle Switch: Results

Decreasing the number of Voronoi cells does not deteriorate the discretization
error:
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Summary

Conclusion
fluctuations in gene expression do not just average away but can instead lead
to easily detectable differences between otherwise identical cells
Markov state modelling, developed for molecular conformation dynamics, can
be generalized to other multi-stable stochastic dynamical systems, including
non-reversible GRNs
for small model systems with finite state space, PCCA+ can directly be
applied to the transfer operator or its generator
more complex model systems require discretization

Future work
test other discretization methods for the CME (e.g. radial basis function)
→ importance sampling if stationary distribution is unknow?
discretization strategies for operators other than the CME
→ how to decompose the Boolean state space?
software development (parallelization → higher dimensions, GUI, SBML)
avoid discretization by ”learning” the eigenfunctions using an artificial neural
network (ISOKANN)
[R. J. Rabben et al. (2020). ISOKANN: Invariant subspaces of Koopman operators learned by a neural

network. doi: 10.1063/5.0015132]
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