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Our aim
We denote by Rm,n the set of rational functions p/q with
polynomals p of degree ≤ m and q of degree ≤ n, q ̸= 0.
In particular Rm,0 is the set of polynomials of degree ≤ m.

For a compact set E ⊂ C, give classes of functions f where we
know more about

ηm,n(f ,E) = inf
r∈Rm,n

∥f − r∥E , ∥g∥E = max
z∈E

|g(z)|,

e.g., bounds, asymptotic behavior, construction of (near)
optimal rational functions, etc.

Why? Applications in numerical linear algebra, see talk of
Stefan Guettel.
Examples
Hint of theory for polynomial and rational approximation



Alternation: six examples
Here E is a compact real interval and f : E 7→ R continuous.
In this case we have existence and uniqueness of a best
rational approximant, characterized by

Chebyshev alternation theorem: Let r ∈ Rm,n with defect d the
largest integer such that r ∈ Rm−d ,n−d .
Then r is optimal for ηm,n(f ,E) iff there exists an alternant x0 < x1 <
... < xm+n+1−d of points in E such that f (xj) − r(xj) is of constant
modulus ∥f − r∥E and alternating sign for j = 0,1, ...,m + n − d + 1.

... and computable by Remez algorithm chebfun/minimax



Example 1: E = [−1,1], f (z) = |z|
ηm,m(f ,E) (dotted) versus η2m,0(f ,E) (dashed)

Sublinear convergence like exp(−
√

mc0).



Example 2: E = [−1,1], f (z) = exp(z)

Entire function
Fast superlinear convergence like exp(−m(c1 + log(m)).



Example 3: E = (−∞,0], f (z) = exp(z)

Entire function
Fast linear convergence like 9.81−m.



Example 4: E = [−1,1], f (z) = tan(z)

Meromorphic function
Fast superlinear convergence.



Example 5: E = [−0.9,0.9], f (z) = 1/
√

1 − z2

Algebraic function
Linear convergence like exp(−c2m).



Example 6: E = [−0.9,0.9],
f (z) = z/

√
((z − 1)2 + 9)((z + 1)2 + 9)

Algebraic function
Linear convergence like exp(−c3m).



Near best polynomial approximation via interpolation
Let ωm(z) =

∏m
j=0(z − zj) with z0, ..., zm ∈ E interpolation

points, then we have the polynomial interpolant

Πm(f )(z) =
m∑

j=0

f (zj)ℓj(z), ℓj(z) =
ωm(z)

(z − zj)ω
′
m(zj)

,

and
Πm(f −q) = Πm(f )−q for all polynomials q of degree ≤ m. Thus

ηm,0(f ,E) ≤ ∥f − Πm(f )∥E ≤ (1 + Λm) ηm,0(f ,E)

with the Lebesgue constant Λm = ∥ |ℓ0|+ · · ·+ |ℓm| ∥E .

Λm = O(log(m)) for E = D and (m + 1)th roots of unity, and for
E = [−1,1] and Chebyshev points zj = cos(πj/m),

Λm ≤ m + 1 for Fekete points of E (difficult to compute),

Λm “small” (??) for Leja points of E (easy to compute).
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Geometric rate for polynomial approximation
We want to show that lim supm→∞ ηm,0(f ,E)1/m = 1/R < 1 iff f is
analytic in some neighborhood of E depending on R.

The Riemann map φ of a simply connected compact set E is the
analytic bijction from C \ E onto C \ D, normalized at ∞ such that
φ(∞) = ∞, and φ′(∞) > 0. We denote ψ = φ−1 the inverse map.

The level set ER for R > 1 is defined by C \ER = {z ̸∈ E : |φ(z)| > R}



Geometric rate for polynomial approximation
The Riemann map φ of a simply connected compact set E is the
analytic bijction from C \ E onto C \ D, normalized at ∞ such that
φ(∞) = ∞, and φ′(∞) > 0. We denote ψ = φ−1 the inverse map.

The level set ER for R > 1 is defined by C \ER = {z ̸∈ E : |φ(z)| > R}

Theorem 1
lim supm→∞ ηm,0(f ,E)1/m = 1/R < 1 iff f is analytic in Int(ER) but not in
any larger level set.

Theorem 2
If f is mermorphic in ER , with at most n poles, then
lim supm→∞ ηm,n(f ,E)1/m ≤ 1/R.



Proof of Theorem 1
Let 1 < r < r̃ < R. Suppose that f is analytic in a neighborhood of Er̃ .
Then

ηm,0(f ,E)1/m ≤ ∥f − Πm(f )∥1/m
E ≤ max

z∈Er

∣∣∣ 1
2πi

∫
∂Er̃

ωm(z)
ωm(x)

f (x)dx
z − x

∣∣∣1/m

and lim supm ηm,0(f ,E)1/m ≤ r/r̃ follows by showing that, for Fekete
points,

lim
m→∞

max
z∈∂Er ,x∈∂Er̃

∣∣∣ωm(z)
ωm(x)

∣∣∣1/m
= r/r̃ .

Conversely, let ηm,0(f ,E) ≤ c/(r̃)m with extremal polynomial pm, then

∥pm+1 − pm∥E ≤ ∥f − pm+1∥E + ∥f − pm∥E ≤ 2c/(r̃)m,

and from the maximum principle applied to
(qm+1(z)− qm(z))/φ(z)m+1

∥pm+1 − pm∥Er ≤ rm+1∥pm+1 − pm∥Er ≤ 2cr(r/r̃)m.

Hence the series p0 +
∑∞

m=0(pm+1 − pm) converges uniformly in Er ,
and thus its limit f is analytic in Int(Er ).



Faber polynomials and Faber operator
Finding good approximants for E = D is easy (e.g.,
interpolation at roots of unity). Can it help to construct good
approximants for other classes of E? Here convex E .
Define the Faber polynomial Fm(z) = φ(z)m +O(1/z)z→∞ and
the Faber map (bijection from Rm,0 onto Rm,0) by

P(w) =
m∑

j=0

ajw j : F(P)(z) = 2a0F0(z) +
m∑

j=1

ajFj(z).

The residuum theorem shows for z ∈ Int(E) that

1
2πi

∫
|w |=1

ψ′(w)

ψ(w)− z
w j dw

w
=

{
Fj(z) for j ≥ 0,
0 for j < 0,

and hence

∥F(P)∥E ≤ 2 ∥P∥D), F(P)(z) =
1
π

∫ 2π

0
P(eit)Re

( eitψ′(eit)

ψ(eit)− z

)
dt .



Faber polynomials and Faber operator (2)
In particular ∥Fm∥E ≤ 2, and we may extend the Faber operator
and our inequality to functions P being analytic in a
neighborhood of D, and F(P) being analytic in a neighborhood
of E.
In particular for some w0 ̸∈ D:

F(
1

w − w0
)(z) =

ψ′(w0)

z − ψ(w0)
,

showing that F(Rm,n) = Rm,n provided that m ≥ n − 1.
Moreover,

Theorem 3
If E is a convex set and f = F(F ) with F analytic in a neighborhood
of D then for m ≥ n − 1

ηm,n(f ,E) ≤ 2ηm,n(F ,D).



What are rational interpolants? [BGM96]

Definition 3.1
r = p/q is called rational interpolant of type [m|n] of f at
interpolation points z0, ..., zm+n if p ∈ Rm,0,q ∈ Rn,0 \ {0}, and
fq − p vanishes at z0, ..., zm+n counting multiplicity.
Example: if z0 = ... = zm+n then r is called a Padé approximant
of f at z0, here f (z)q(z)− p(z) = O((z − z0)

m+n+1)z→z0 .
Existence: write p,q in some polynomial basis and solve a
homogeneous system with m + n + 1 equations and m + n + 2
unknowns.
Uniqueness: if p1/q1 and p2/q2 are rational interpolants then
p1q2 − p2q1 = (p1 − fq1)q2 − (p2 − fq2)q1 is a polynomial of
degree ≤ m + n which vanishes at m + n + 1 points.

Caveat: There might be zj called unattainable interpolation
points with f (zj) ̸= r(zj) (after canceling).
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What about near-optimal rational interpolants?
In what follows F ⊂ C closed, and E ⊂ C \ F compact.

Given f being analytic in C \ F we might get good candidates for
ηm,n(f ,E) by choosing well distributed interpolation points in E .
However, we have little control about the poles: ideally they should be
in F simulating the singularities of f .

It happens that a small number of poles of such rational interpolants
can be in E , so-called spurious poles having a small residual. This
does not allow to have uniform convergence in E , but maybe it is
sufficient to drop small neighborhoods around these spurious poles?
Not for all functions f !!!

Even worse, finite precision arithmetic tends to produce also spurious
poles, and a numerical analysis for rational functions is lacking.



What to do next (second hour)

1 Energy, capacity, Green function, lemniscates (in order to
describe convergence in capacity)

2 Convergence theorems (in capacity)
Pommerenke/Gonchar/Stahl

3 Special case of Markov functions
4 Rational approximation with fixed poles, leads to balayage

problem
5 Rational approximation with optimal fixed poles, leads to

Zolotarev problem. Bagby points.
We will not speak about constrained energy problems and
approximation on discrete sets (though interesting for
applications).



Energy and capacity
We denote by M(E) the set of positive probability measures
supported in E .
For µn ∈ M(E) we say that µn → µ (weak star convergence) if

∀f ∈ C(E) : lim
n→∞

∫
fdµn =

∫
fdµ.

For µ, ν ∈ M(E) we define the potential and mutual energy

Uµ(z) =
∫

log(
1

|z − x |
)dµ(x), I(µ, ν) =

∫
Uν(x)dµ(x)

and the energy I(µ) = I(µ, µ) (electrostatics in the plane).

Theorem 4
There is a unique ωE ∈ M(E) called equilibrium measure minimizing
M(E) ∋ µ 7→ I(µ). ωE is the unique measure with potential q.e. constant
on E. This constant equals I(ωE) =: log(1/ cap(E)).

Proof uses compactness of M(E), and the facts that µ 7→ I(µ) is
lower semi-continuous and strictly convex.



Capacity : some examples
If E is simply connected then link with Riemann map

log(|φ(z)|) = log(
1

cap(E)
)− UωE (z).

For a disk E = {|z| ≤ r} we have φ(z) = z/r and cap(E) = r , ωE

normalized arc length of ∂E , UωE (z) = log( 1
max(r ,|z| ).

For a real interval E = [a,b] we know φ and hence
cap(E) = (b − a)/4, dωE/dx = 1

π
√

(x−a)(b−x)
on E .

For level sets cap(ER) = R cap(E).
For a lemniscate E = {z ∈ C : |(z − z1)|...|z − zk | ≤ r k} we
know the Green function and thus cap(E) = r .



Examples of convergence in capacity

Theorem 5 (Pommerenke, 1973, [BGM96])
Let f be analytic at 0 and meromorphic in C, and denote by rm its Padé
approximant at 0 of type [m − 1|m]. Then for any compact E

lim sup
m→∞

(∥f − rm∥E\Em)
1/m = 0

with exceptional sets Em satisfying cap(Em) → 0 for m → ∞.

Theorem 6 (Stahl, 1997, [S97,BGM96])
Let f be an algebraic function with a finite number of branch points ̸= 0,
and let F be a union of arcs (cuts) connecting branch points such that f is
single-valued (and analytic) in C \ F. Denote by rm its Padé approximant
at 0 of type [m − 1|m]. Then for any compact E ⊂ C \ F

lim sup
m→∞

(∥f − rm∥E\Em)
1/m < 1

with exceptional sets Em satisfying cap(Em) → 0. Similar Theorems are
valid for other families of interpolation points, with a different rate.



Why logarithic potential theory?
Given two monic polynomials of degree m

Pm(z) =
m∏

j=1

(z − aj,m), Qm(z) =
m∏

j=1

(z − bj,m),

we have that with the counting measures µm := 1
m
∑m

j=1 δaj,m ,
νm := 1

m
∑m

j=1 δbj,m that

log(|Pm(z)|1/m) = −Uµm(z), log(|Pm(z)
Qm(z)

|1/m) = −Uµm(z)+Uνm(z),

having limits −Uµ(z) and −Uµ(z) + Uν(z) (for z far enough
from the supports) provided that µm → µ and νm → ν for
m → ∞.



Condenser with two plates
Let E ,F be as before (F ⊂ C closed, E ⊂ C \ F compact).

Theorem 7 (two conductors)
There is a unique ωE,F ∈ M(E), ωF ,E ∈ M(F ) called equilibrium
measure minimizing

M(E)×M(F ) ∋ (µ, ν) 7→ I(µ− ν) = I(µ) + I(ν)− 2I(µ, ν),

uniquely characterized by the property that Uµ−ν equals constants c1 and
c2 on E and F, respectively, with c1 − c2 =: log(1/ cap(E ,F )).

Theorem 8 (One isolator, balayage)
Given ν ∈ M(F ) there is a unique ων ∈ M(E) minimizing

M(E) ∋ µ 7→ I(µ− ν) = I(µ) + I(ν)− 2I(µ, ν),

uniquely characterized by the property that Uµ−ν equals the constant cν
on E. If E simply connected, cν − Uων−ν(z) =

∫
log | 1−φ(x)φ(z)

φ(z)−φ(x) |dν(x).



The main theorem

Theorem 9 (Gonchar 1984, Parfenov 1986, [Go84,Pa86])
For f analytic in C \ F and E ⊂ C \ F compact

lim sup ηm−1,m(f ,E)1/m ≤ exp(−2/ cap(E ,F )).

1 idea of simple proof for pre-assigned poles following Walsh
(without factor 2)

2 discretizing extremal measures, Zolotarev problem
3 much sharper bounds for Markov functions.



Pre-assigned poles following Walsh
Define the polynomials

qm of degree m with roots pre-assigned poles bj,m in F , counting
measure νm

ωm of degree m with roots pre-assigned interpolation points
aj,m ∈ E , counting measure µm

pm ∈ Rm−1,0 interpolating fqm in roots of ωm.

Then by Cauchy formula for analytic (fqm − pm)/ωm and z ∈ E

f (z)− pm(z)
qm(z)

=
1

2πi

∫
∂F

ωm(z)
qm(z)

qm(x)
ωm(x)

f (x)
x − z

dx

lim sup
m→∞

∥f − pm

qm
∥1/m

E ≤ lim sup
m→∞

exp
(

max
z∈∂E,x∈∂F

−Uµm−νm(x) + Uµm−νm(z)
)
.

Gives exp(−1/ cap(E ,F )) if µm → ωE,F and νm → ωF ,E .
Other limits if νm → ν, µm → ων .



Discretize equilibrium measure (1)
Consider the Zolotarev problem

Zm(E ,F ) = inf
R∈Rm,m

∥R∥E∥1/R∥F ,

then
lim

m→∞
Zm(E ,F )1/m = exp(−1/ cap(E ,F )),

and thus the counting measures of zeros/poles of extremal
functions µm → ωE ,F and νm → ωF ,E .

Caveat: some of the roots/poles might be outside E and F ,
respectively.



Discretize equilibrium measure (2)
Minimze the discrete energy (regularized counterpart of
I(µn − νn))

1
n2

m∑
j,k=1,j ̸=k

(
log

1
|aj,m − ak,m|

+log
1

|bj,m − bk,m|

)
− 2

n2

m∑
j,k=1

log
1

|aj,m − bk,m|

over a1,m, ...,am,m ∈ E and b1,m, ...,bm,m ∈ F .

Minimizer gives weighted Fekete points, with counting
measures µm → ωE ,F and νm → ωF ,E .



Special case of Markov functions
Cauchy transform of some positive measure µ

f [µ](z) =
∫

dµ(x)
z − x

, supp(µ) ⊂ F

with F ⊂ R a closed interval.
Examples for supp(µ) = (−∞,0] with γ ∈ (−1,0)

f [µ](z) =
1√
z
, f [µ](z) =

log(z)
z − 1

, f [µ](z) = zγ .

Example for supp(µ) = F = [a,b] :

f [ωF ](z) =
1√

(z − a)(z − b)
,

dωF

dx
(x) =

1
π
√

(x − a)(b − x)
.

Other elementary functions can be written as a rational function
times a Markov function.



Sharp upper bounds for Markov functions
E ,F two disjont real intervals, ρ = exp(−1/ cap(E ,F )),

Theorem 10 (Zolotarev 1877, [Akh90, Zol77])
For the particular Markov function f = f [ωF ]

min
r∈Rm−1,m

∥ f − r
f

∥E = Z2m(E ,F ) ∈ [
4ρ2m

(1 + ρ4m)2 ,4ρ
2m].

Theorem 11 (Beckermann 2024, [BBL22])
For any Markov function f [µ] with supp(µ) ⊂ F

max
supp(µ)⊂F

min
r∈Rm−1,m

∥ f [µ] − r
f |µ]

∥E =
2Z2m(E ,F )

1 + Z2m(E ,F )2 ≤ 8ρ2m.



What we should bring home

1 We have seen various results of mth root asymptotics for
best polynomial and rational approximation.

2 Natural tool is logarithmic potential theory.
3 The rate of best polynomial approximation on E is

determined by the singularity “closest” to E (in terms of
level sets)

4 The rate of best rational approximation on E is determined
by the a condenser with plate E and second plate the set
F of singularities.

5 Best rational appoximants are not always interpolants,
problems with spourious poles.

6 Very sharp bounds for the special case of Markov
functions.
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