How well do rational functions approach more complicated functions?

Bernhard Beckermann

Laboratoire Painlevé, Université de Lille, France

Woudschoten conference, September 25-27, 2024 Dutch-Flemish Scientfic Computing Society

Supported in part by EXPOWER (H2020 MSC 101008231), MOMENTUM (FWO), and Labex CEMPI (ANR-11-LABX-0007-01).

KORK EXTERNED ARA

Our aim

We denote by R*m*,*ⁿ* the set of rational functions *p*/*q* with polynomals p of degree $\leq m$ and q of degree $\leq n$, $q \neq 0$. In particular $\mathcal{R}_{m,0}$ is the set of polynomials of degree $\leq m$.

For a compact set *E* ⊂ C, give classes of functions *f* where we know more about

$$
\eta_{m,n}(f,E) = \inf_{r \in \mathcal{R}_{m,n}} ||f - r||_E, \quad ||g||_E = \max_{z \in E} |g(z)|,
$$

e.g., bounds, asymptotic behavior, construction of (near) optimal rational functions, etc.

■ Why? Applications in numerical linear algebra, see talk of Stefan Guettel.

■ Examples

 \blacksquare Hint of theory for polynomial and rational approximation

KORK EXTERNED ARA

Alternation: six examples

Here *E* is a compact real interval and $f : E \mapsto \mathbb{R}$ continuous. In this case we have existence and uniqueness of a best rational approximant, characterized by

Chebyshev alternation theorem: Let $r \in \mathcal{R}_{m,n}$ with defect *d* the largest integer such that $r \in \mathcal{R}_{m-d,n-d}$. Then *r* is optimal for $\eta_{m,n}(f, E)$ iff there exists an alternant $x_0 < x_1 <$... < $x_{m+n+1-d}$ of points in *E* such that $f(x_i) - f(x_i)$ is of constant modulus $||f - r||_E$ and alternating sign for $j = 0, 1, ..., m + n - d + 1$.

... and computable by Remez algorithm chebfun/minimax

KERKER E DAG

Example 1: $E = [-1, 1], f(z) = |z|$ $\eta_{m,m}(f, E)$ (dotted) versus $\eta_{2m,0}(f, E)$ (dashed)

Sublinear convergence like $\exp(-\frac{1}{2}$ √ *mc*0).

Example 2: $E = [-1, 1], f(z) = \exp(z)$

Entire function Fast superlinear convergence like $exp(-m(c_1 + log(m)))$.

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶

 2990

÷

Example 3: $E = (-\infty, 0]$, $f(z) = \exp(z)$

 2990

 \equiv

∢ ロ ▶ ∢ 何 ▶ ∢ ヨ ▶

Entire function Fast linear convergence like 9.81−*m*.

Example 4: $E = [-1, 1], f(z) = \tan(z)$

 299

÷

K ロト K 何 ト K ヨ ト K ヨ ト

Meromorphic function Fast superlinear convergence.

Example 5: $E = [-0.9, 0.9]$, $f(z) = 1/2$ √ $1 - z^2$

A The

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$

 $2Q$

Algebraic function Linear convergence like exp(−*c*2*m*).

イロメ イタメ イモメノモメ

 Ω

Algebraic function Linear convergence like exp(−*c*3*m*).

Near best polynomial approximation via interpolation

Let $\omega_m(z) = \prod_{j=0}^m (z - z_j)$ with $z_0, ..., z_m \in E$ interpolation points, then we have the polynomial interpolant

$$
\Pi_m(f)(z)=\sum_{j=0}^m f(z_j)\ell_j(z), \quad \ell_j(z)=\frac{\omega_m(z)}{(z-z_j)\omega_m'(z_j)},
$$

and

 $\Pi_m(f-q) = \Pi_m(f) - q$ for all polynomials *q* of degree $\leq m$. Thus $\eta_{m,0}(f, E) \leq ||f - \Pi_m(f)||_E \leq (1 + \Lambda_m) \eta_{m,0}(f, E)$ with the Lebesgue constant $\Lambda_m = || \ell_0 | + \cdots + |\ell_m | ||_F$.

KOD KOD KED KED E VOOR

Near best polynomial approximation via interpolation

Let $\omega_m(z) = \prod_{j=0}^m (z - z_j)$ with $z_0, ..., z_m \in E$ interpolation points, then we have the polynomial interpolant

$$
\Pi_m(f)(z)=\sum_{j=0}^m f(z_j)\ell_j(z), \quad \ell_j(z)=\frac{\omega_m(z)}{(z-z_j)\omega_m'(z_j)},
$$

and

 $\Pi_m(f-q) = \Pi_m(f) - q$ for all polynomials *q* of degree $\leq m$. Thus

$$
\eta_{m,0}(f,E) \leq \|f-\Pi_m(f)\|_E \leq (1+\Lambda_m)\,\eta_{m,0}(f,E)
$$

with the Lebesgue constant $\Lambda_m = || \ell_0 | + \cdots + |\ell_m | ||_E$.

 \blacksquare $\Lambda_m = \mathcal{O}(\log(m))$ for $E = \mathbb{D}$ and $(m+1)$ th roots of unity, and for $E = [-1, 1]$ and Chebyshev points $z_i = \cos(\pi i/m)$,

 \blacksquare $\Lambda_m \leq m+1$ for Fekete points of *E* (difficult to compute),

n A_{[m](#page-8-0)} "small" (??) for Leja [p](#page-9-0)oints of *E* **(easy [to](#page-9-0) [co](#page-11-0)mp[ut](#page-11-0)[e\).](#page-0-0)**
■ A_m "small" (??) for Leja points of *E* (easy to compute).

Geometric rate for polynomial approximation

We want to show that lim $\sup_{m\to\infty}\eta_{m,0}(f,E)^{1/m}=1/R< 1$ iff f is analytic in some neighborhood of *E* depending on *R*.

The Riemann map φ of a simply connected compact set E is the analytic bijction from $\overline{\mathbb{C}} \setminus E$ onto $\overline{\mathbb{C}} \setminus \mathbb{D}$, normalized at ∞ such that $\varphi(\infty)=\infty$, and $\varphi'(\infty)>0.$ We denote $\psi=\varphi^{-1}$ the inverse map.

The level set E_R for $R > 1$ is defined by $\overline{C} \setminus E_R = \{z \notin E : |\varphi(z)| > R\}$

KORK EXTERNED ARA

Geometric rate for polynomial approximation

The Riemann map φ of a simply connected compact set *E* is the analytic bijction from $\overline{\mathbb{C}} \setminus E$ onto $\overline{\mathbb{C}} \setminus \mathbb{D}$, normalized at ∞ such that $\varphi(\infty)=\infty$, and $\varphi'(\infty)>$ 0. We denote $\psi=\varphi^{-1}$ the inverse map.

The level set E_R for $R > 1$ is defined by $\overline{\mathbb{C}} \setminus E_R = \{z \notin E : |\varphi(z)| > R\}$

Theorem 1 $\limsup_{m\to\infty}\eta_{m,0}(f,E)^{1/m}=1/R< 1$ *iff* f *is analytic in Int* (E_R) *but not in any larger level set.* Theorem 2 *If f is mermorphic in ER, with at most n poles, then* $\limsup_{m\to\infty}\eta_{m,n}(f,E)^{1/m}\leq 1/R.$

KOD KOD KED KED E VOOR

Proof of Theorem 1

Let 1 $<$ *r* $<$ \widetilde{r} $<$ R . Suppose that *f* is analytic in a neighborhood of $E_{\widetilde{r}}$.
Then Then

$$
\eta_{m,0}(f,E)^{1/m} \leq \|f-\Pi_m(f)\|_E^{1/m} \leq \max_{z\in E_r} \left|\frac{1}{2\pi i}\int_{\partial E_r} \frac{\omega_m(z)}{\omega_m(x)} \frac{f(x)dx}{z-x}\right|^{1/m}
$$

and lim sup_m $\eta_{m,0}(f, E)^{1/m} \le r/\widetilde{r}$ follows by showing that, for Fekete
points points,

$$
\lim_{m\to\infty}\max_{z\in\partial E_r,x\in\partial E_{\tilde{r}}} \left|\frac{\omega_m(z)}{\omega_m(x)}\right|^{1/m}=r/\tilde{r}.
$$

Conversely, let $\eta_{m,0}(f, E) \leq c/(\widetilde{r})^m$ with extremal polynomial ρ_m , then

$$
||p_{m+1}-p_m||_E\leq ||f-p_{m+1}||_E+||f-p_m||_E\leq 2c/(\widetilde{r})^m,
$$

and from the maximum principle applied to $(q_{m+1}(z)-q_m(z))/\varphi(z)^{m+1}$

$$
\|\rho_{m+1}-\rho_m\|_{E_r}\leq r^{m+1}\|\rho_{m+1}-\rho_m\|_{E_r}\leq 2cr(r/\widetilde{r})^m.
$$

Hence the series $p_0 + \sum_{m=0}^\infty (p_{m+1} - p_m)$ converges uniformly in $E_r,$ and thus its limit *f* is analytic in Int(*Er*).**KORK ERKEY EL POLO**

Faber polynomials and Faber operator

Finding good approximants for $E = \mathbb{D}$ is easy (e.g., interpolation at roots of unity). Can it help to construct good approximants for other classes of *E*? Here convex *E*. Define the Faber polynomial $F_m(z) = \varphi(z)^m + \mathcal{O}(1/z)_{z \to \infty}$ and the Faber map (bijection from $\mathcal{R}_{m,0}$ onto $\mathcal{R}_{m,0}$) by

$$
P(w) = \sum_{j=0}^{m} a_j w^j: \qquad \mathcal{F}(P)(z) = 2a_0 F_0(z) + \sum_{j=1}^{m} a_j F_j(z).
$$

The residuum theorem shows for $z \in Int(E)$ that

$$
\frac{1}{2\pi i}\int_{|w|=1}\frac{\psi'(w)}{\psi(w)-z}w^j\,\frac{dw}{w}=\left\{\begin{array}{ll}F_j(z) & \text{for }j\geq 0,\\ 0 & \text{for }j< 0,\end{array}\right.
$$

and hence

$$
\|\mathcal{F}(P)\|_E \leq 2\,\|P\|_{\mathbb{D}},\quad \mathcal{F}(P)(z) = \frac{1}{\pi}\int_0^{2\pi}P(e^{it})\text{Re}\Big(\frac{e^{it}\psi'(e^{it})}{\psi(e^u)-z}\Big)\,dt.
$$

Faber polynomials and Faber operator (2)

In particular ∥*Fm*∥*^E* ≤ 2, and we may extend the Faber operator and our inequality to functions *P* being analytic in a neighborhood of D , and $\mathcal{F}(P)$ being analytic in a neighborhood of E.

In particular for some $w_0 \notin \mathbb{D}$:

$$
\mathcal{F}(\frac{1}{w-w_0})(z)=\frac{\psi'(w_0)}{z-\psi(w_0)},
$$

showing that $\mathcal{F}(\mathcal{R}_{m,n}) = \mathcal{R}_{m,n}$ provided that $m \geq n-1$. Moreover,

Theorem 3

If E is a convex set and $f = \mathcal{F}(F)$ with F analytic in a neighborhood *of* D *then for m* $> n - 1$

$$
\eta_{m,n}(f,E)\leq 2\eta_{m,n}(F,\mathbb{D}).
$$

What are rational interpolants? **IBGM961**

Definition 3.1

r = *p*/*q is called rational interpolant of type* [*m*|*n*] *of f at interpolation points* $z_0, ..., z_{m+n}$ *if* $p \in \mathcal{R}_{m,0}, q \in \mathcal{R}_{n,0} \setminus \{0\}$, and *fq* − *p vanishes at z*0, ..., *zm*+*ⁿ counting multiplicity.*

Example: if $z_0 = ... = z_{m+n}$ then *r* is called a Padé approximant of *f* at *z*₀, here $f(z)q(z) - p(z) = \mathcal{O}((z - z_0)^{m+n+1})_{z \to z_0}$. **Existence:** write *p*, *q* in some polynomial basis and solve a homogeneous system with $m + n + 1$ equations and $m + n + 2$ unknowns.

Uniqueness: if p_1/q_1 and p_2/q_2 are rational interpolants then $p_1q_2 - p_2q_1 = (p_1 - fq_1)q_2 - (p_2 - fq_2)q_1$ is a polynomial of degree $\leq m + n$ which vanishes at $m + n + 1$ points.

KORK ERKEY EL POLO

What are rational interpolants? **IBGM961**

Definition 3.1

r = *p*/*q is called rational interpolant of type* [*m*|*n*] *of f at interpolation points* $z_0, ..., z_{m+n}$ *if* $p \in \mathcal{R}_{m,0}, q \in \mathcal{R}_{n,0} \setminus \{0\}$ *, and fq* − *p vanishes at z*0, ..., *zm*+*ⁿ counting multiplicity.*

Example: if $z_0 = ... = z_{m+n}$ then *r* is called a Padé approximant of *f* at *z*₀, here $f(z)q(z) - p(z) = \mathcal{O}((z - z_0)^{m+n+1})_{z \to z_0}$. **Existence:** write *p*, *q* in some polynomial basis and solve a homogeneous system with $m + n + 1$ equations and $m + n + 2$ unknowns.

Uniqueness: if p_1/q_1 and p_2/q_2 are rational interpolants then $p_1q_2 - p_2q_1 = (p_1 - fq_1)q_2 - (p_2 - fq_2)q_1$ is a polynomial of degree $\leq m + n$ which vanishes at $m + n + 1$ points.

Caveat: There might be *z^j* called **unattainable interpolation points** with $f(z_j) \neq r(z_j)$ (after canceling).

What about near-optimal rational interpolants?

In what follows $F \subset \overline{\mathbb{C}}$ closed, and $E \subset \mathbb{C} \setminus F$ compact.

Given *f* being analytic in $\overline{\mathbb{C}} \setminus F$ we might get good candidates for η_{mn} _{*n*}(*f*, *E*) by choosing well distributed interpolation points in *E*. However, we have little control about the poles: ideally they should be in *F* simulating the singularities of *f*.

It happens that a small number of poles of such rational interpolants can be in *E*, so-called **spurious poles** having a small residual. This does not allow to have uniform convergence in *E*, but maybe it is sufficient to drop small neighborhoods around these spurious poles? Not for all functions *f* !!!

Even worse, finite precision arithmetic tends to produce also spurious poles, and a numerical analysis for rational functions is lacking.

What to do next (second hour)

- **1** Energy, capacity, Green function, lemniscates (in order to describe convergence in capacity)
- 2 Convergence theorems (in capacity) Pommerenke/Gonchar/Stahl
- **3** Special case of Markov functions
- 4 Rational approximation with fixed poles, leads to balayage problem
- 5 Rational approximation with optimal fixed poles, leads to Zolotarev problem. Bagby points.

KORK EXTERNED ARA

We will not speak about constrained energy problems and approximation on discrete sets (though interesting for applications).

Energy and capacity

We denote by $M(E)$ the set of positive probability measures supported in *E*.

For $\mu_n \in \mathcal{M}(E)$ we say that $\mu_n \to \mu$ (weak star convergence) if

$$
\forall f \in \mathcal{C}(\mathcal{E}) : \quad \lim_{n \to \infty} \int f d\mu_n = \int f d\mu.
$$

For $\mu, \nu \in \mathcal{M}(E)$ we define the potential and mutual energy

$$
U^{\mu}(z) = \int \log(\frac{1}{|z-x|}) d\mu(x), \quad I(\mu,\nu) = \int U^{\nu}(x) d\mu(x)
$$

and the energy $I(\mu) = I(\mu, \mu)$ (electrostatics in the plane).

Theorem 4

There is a unique $\omega_E \in M(E)$ *called* **equilibrium measure** *minimizing* $M(E) \ni \mu \mapsto I(\mu)$ *.* ω_F *is the unique measure with potential q.e. constant on E. This constant equals* $I(\omega_E) =$ *:* $log(1/cap(E))$ *.*

Proof uses compactness of $\mathcal{M}(E)$, and the facts that $\mu \mapsto I(\mu)$ is lower semi-continuous and strictly convex..
◆ ロ ▶ ◆ @ ▶ ◆ 경 ▶ → 경 ▶ │ 경 │ ◇ 9,9,0°

Capacity : some examples

If *E* is simply connected then link with Riemann map

$$
\log(|\varphi(z)|) = \log(\frac{1}{\text{cap}(E)}) - U^{\omega_E}(z).
$$

- For a disk $E = \{|z| \le r\}$ we have $\varphi(z) = \frac{z}{r}$ and $cap(E) = r$, ω_F normalized arc length of ∂E , $U^{\omega_{E}}(z) = \log(\frac{1}{\max(r,|z|})$.
- **F** For a real interval $E = [a, b]$ we know φ and hence $\mathsf{cap}(E) = (b-a)/4,\, d\omega_E/dx = \frac{1}{\pi\sqrt{(\mathsf{x}-\mathsf{x})^2}}$ π √ (*x*−*a*)(*b*−*x*) on *E*.
- For level sets cap(E_R) = R cap(E).
- For a lemniscate $E = \{z \in \mathbb{C} : |(z z_1)|...|z z_k| \leq r^k\}$ we know the Green function and thus $cap(E) = r$.

KORK EXTERNED ARA

Examples of convergence in capacity

Theorem 5 (Pommerenke, 1973, [BGM96])

Let f be analytic at 0 *and meromorphic in* C*, and denote by r^m its Pade´ approximant at* 0 *of type* [*m* − 1|*m*]*. Then for any compact E*

$$
\limsup_{m\to\infty}(\|f-r_m\|_{E\setminus E_m})^{1/m}=0
$$

with exceptional sets E_m *satisfying* cap(E_m) \rightarrow 0 *for* $m \rightarrow \infty$ *.*

Theorem 6 (Stahl, 1997, [S97,BGM96])

Let f be an algebraic function with a finite number of branch points $\neq 0$, *and let F be a union of arcs (cuts) connecting branch points such that f is single-valued (and analytic) in* C \ *F. Denote by r^m its Pade approximant ´ at* 0 *of type* $[m - 1|m]$ *. Then for any compact* $E \subset \mathbb{C} \setminus F$

$$
\limsup_{m\to\infty}(\|f-r_m\|_{E\setminus E_m})^{1/m}<1
$$

with exceptional sets E^m satisfying cap(*Em*) → 0*. Similar Theorems are valid for other families of interpolation points, wit[h a](#page-21-0) [dif](#page-23-0)[f](#page-21-0)[ere](#page-22-0)[n](#page-23-0)[t r](#page-0-0)[at](#page-32-0)[e.](#page-0-0)*

Why logarithic potential theory?

Given two monic polynomials of degree *m*

$$
P_m(z)=\prod_{j=1}^m(z-a_{j,m}),\ Q_m(z)=\prod_{j=1}^m(z-b_{j,m}),
$$

we have that with the counting measures $\mu_m := \frac{1}{m} \sum_{j=1}^m \delta_{a_{j,m}},$ $\nu_m := \frac{1}{m} \sum_{j=1}^m \delta_{b_{j,m}}$ that

$$
\log(|P_m(z)|^{1/m})=-U^{\mu_m}(z), \ \log(|\frac{P_m(z)}{Q_m(z)}|^{1/m})=-U^{\mu_m}(z)+U^{\nu_m}(z),
$$

having limits $-U^{\mu}(z)$ and $-U^{\mu}(z)+U^{\nu}(z)$ (for *z* far enough from the supports) provided that $\mu_m \to \mu$ and $\nu_m \to \nu$ for $m \rightarrow \infty$.

KORKAR KERKER E VOOR

Condenser with two plates

Let *E*, *F* be as before ($F \subset \overline{\mathbb{C}}$ closed, $E \subset \overline{\mathbb{C}} \setminus F$ compact).

Theorem 7 (two conductors)

There is a unique $\omega_{E,F} \in \mathcal{M}(E)$, $\omega_{F,E} \in \mathcal{M}(F)$ *called* equilibrium **measure** *minimizing*

 $\mathcal{M}(E) \times \mathcal{M}(F) \ni (\mu, \nu) \mapsto I(\mu - \nu) = I(\mu) + I(\nu) - 2I(\mu, \nu),$

uniquely characterized by the property that U^µ−^ν *equals constants c*¹ *and c*₂ *on E* and *F*, *respectively, with* $c_1 - c_2 =$: $\log(1/\text{cap}(E, F))$ *.*

Theorem 8 (One isolator, balayage)

Given $\nu \in \mathcal{M}(F)$ *there is a unique* $\omega_{\nu} \in \mathcal{M}(E)$ *minimizing*

$$
\mathcal{M}(E) \ni \mu \mapsto I(\mu - \nu) = I(\mu) + I(\nu) - 2I(\mu, \nu),
$$

uniquely characterized by the property that U^{µ−ν} equals the constant c_ν on E. If E simply connected, $c_{\nu} - U^{\omega_{\nu} - \nu}(z) = \int \log \left| \frac{1 - \varphi(x) \varphi(z)}{\varphi(z) - \varphi(x)} \right|$ $\frac{f(x)-f(x)\varphi(z)}{f(x)-f(x)}$ *dv*(*x*).

The main theorem

Theorem 9 (Gonchar 1984, Parfenov 1986, [Go84,Pa86]) *For f analytic in* $\mathbb{C} \setminus F$ *and* $E \subset \mathbb{C} \setminus F$ *compact*

 $\limsup \eta_{m-1,m}(f, E)^{1/m} \leq \exp(-2/\exp(E, F)).$

1 idea of simple proof for pre-assigned poles following Walsh (without factor 2)

KEL KALEYKEN E YAN

- 2 discretizing extremal measures, Zolotarev problem
- **3** much sharper bounds for Markov functions.

Pre-assigned poles following Walsh

Define the polynomials

- *q*_{*m*} of degree *m* with roots pre-assigned poles b_i _{*m*} in *F*, counting measure ν*^m*
- \blacksquare ω_m of degree *m* with roots pre-assigned interpolation points $a_{i,m} \in E$, counting measure μ_m
- **■** $p_m \in \mathcal{R}_{m-1,0}$ interpolating *fq_m* in roots of ω_m .

Then by Cauchy formula for analytic ($f q_m - p_m$)/ ω_m and $z \in E$

$$
f(z) - \frac{p_m(z)}{q_m(z)} = \frac{1}{2\pi i} \int_{\partial F} \frac{\omega_m(z)}{q_m(z)} \frac{q_m(x)}{\omega_m(x)} \frac{f(x)}{x - z} dx
$$

\n
$$
\limsup_{m \to \infty} ||f - \frac{p_m}{q_m}||_E^{1/m} \leq \limsup_{m \to \infty} \exp \Big(\max_{z \in \partial F, x \in \partial F} -U^{\mu_m - \nu_m}(x) + U^{\mu_m - \nu_m}(z) \Big).
$$

KORKAR KERKER E VOOR

Gives $\exp(-1/\exp(E, F))$ if $\mu_m \to \omega_{E,F}$ and $\nu_m \to \omega_{F,E}$. Other limits if $\nu_m \to \nu$, $\mu_m \to \omega_{\nu}$.

Discretize equilibrium measure (1)

Consider the **Zolotarev problem**

$$
Z_m(E, F) = \inf_{R \in \mathcal{R}_{m,m}} \|R\|_E \|1/R\|_F,
$$

then

$$
\lim_{m\to\infty}Z_m(E,F)^{1/m}=\exp(-1/\operatorname{cap}(E,F)),
$$

and thus the counting measures of zeros/poles of extremal functions $\mu_m \to \omega_{E,F}$ and $\nu_m \to \omega_{F,E}$.

Caveat: some of the roots/poles might be outside *E* and *F*, respectively.

KORKARA KERKER DAGA

Discretize equilibrium measure (2)

Minimze the **discrete energy** (regularized counterpart of $I(\mu_n - \nu_n)$

$$
\frac{1}{n^2} \sum_{j,k=1,j\neq k}^m \Bigl(\log \frac{1}{|a_{j,m}-a_{k,m}|} + \log \frac{1}{|b_{j,m}-b_{k,m}|} \Bigr) - \frac{2}{n^2} \sum_{j,k=1}^m \log \frac{1}{|a_{j,m}-b_{k,m}|}
$$

KORKAR KERKER E VOOR

over $a_{1,m},..., a_{m,m} \in E$ and $b_{1,m},..., b_{m,m} \in F$.

Minimizer gives **weighted Fekete points**, with counting measures $\mu_m \rightarrow \omega_{E,F}$ and $\nu_m \rightarrow \omega_{F,F}$.

Special case of Markov functions

Cauchy transform of some positive measure μ

$$
f^{[\mu]}(z)=\int\frac{d\mu(x)}{z-x},\quad \text{supp}(\mu)\subset \digamma
$$

with $F \subset \mathbb{R}$ a closed interval.

Examples for supp $(\mu) = (-\infty, 0]$ with $\gamma \in (-1, 0)$

$$
f^{[\mu]}(z) = \frac{1}{\sqrt{z}}, \quad f^{[\mu]}(z) = \frac{\log(z)}{z-1}, \quad f^{[\mu]}(z) = z^{\gamma}.
$$

Example for supp $(\mu) = F = [a, b]$:

$$
f^{[\omega_F]}(z)=\frac{1}{\sqrt{(z-a)(z-b)}}, \quad \frac{d\omega_F}{dx}(x)=\frac{1}{\pi\sqrt{(x-a)(b-x)}}.
$$

Other elementary functions can be written as a rational function times a Markov function.K ロ X x 4 D X X 원 X X 원 X 원 X 2 D X Q Q

Sharp upper bounds for Markov functions

E, *F* two disjont real intervals, $\rho = \exp(-1/\exp(E, F))$,

Theorem 10 (Zolotarev 1877, [Akh90, Zol77]) *For the particular Markov function* $f = f^{[\omega_F]}$

$$
\min_{r \in \mathcal{R}_{m-1,m}} \|\frac{f-r}{f}\|_E = Z_{2m}(E,F) \in [\frac{4\rho^{2m}}{(1+\rho^{4m})^2}, 4\rho^{2m}].
$$

Theorem 11 (Beckermann 2024, [BBL22]) *For any Markov function f* [µ] *with* supp $(\mu) \subset F$

$$
\max_{\text{supp}(\mu)\subset F} \min_{r\in\mathcal{R}_{m-1,m}} \|\frac{f^{[\mu]}-r}{f^{[\mu]}}\|_E = \frac{2Z_{2m}(E,F)}{1+Z_{2m}(E,F)^2}\leq 8\rho^{2m}.
$$

What we should bring home

- 1 We have seen various results of *m*th root asymptotics for best polynomial and rational approximation.
- 2 Natural tool is logarithmic potential theory.
- 3 The rate of best polynomial approximation on *E* is determined by the singularity "closest" to *E* (in terms of level sets)
- 4 The rate of best rational approximation on *E* is determined by the a condenser with plate *E* and second plate the set *F* of singularities.

KORK ERKEY EL POLO

- 5 Best rational appoximants are not always interpolants, problems with spourious poles.
- 6 Very sharp bounds for the special case of Markov functions.

References

- F A.L. Levin, E.B. Saff, Potential Theoretic Tools in Polynomial and Rational Approximation, in Harmonic Analysis and Rational Approximation, Vol. 327 (Fournier, Grimm, Leblond, Partington, Eds.), Springer, 2006, pp. 71-94. [Download](http://www.math.vanderbilt.edu/saffeb/texts/204.pdf) 量 E.B. Saff, V. Totik, Logarithmic Potentials with External Fields, Springer-Verlag, Heidelberg (1997).
- 譶 N. I. Akhieser, Transl. Math. Monogr. 79, AMS (1990).
	- G.A. Baker, P. Graves-Morris, Cambridge University Press (1996).
	- B. Beckermann, J. Bisch and R. Luce, Numerical Algorithms **91** (2022), 109-144.

K ロ X x 4 D X X 원 X X 원 X 원 X 2 D X Q Q

D. Braess, Springer-Verlag, Berlin (1986).

螶 譶 畐 螶 螶 F E.

- A. A. Gonchar, Math. USSR Sb., **34** (1984), 117-127.
- O.G. Parfenov, Math. USSR Sb., **59** (1986), 497-514.
- H. Stahl and V. Totik, Cambridge Univ. Press, Cambridge (1992).
- H. Stahl, JAT **91** (1997), 139-204.
- E. I. Zolotarev, Zap. Imp. Akad. Nauk, **30** (1877), 1-59.