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Lines of research
Line A
Nonimaging freeform optics

▶ Luminaires, street lights, …
▶ Compute optical surfaces that

convert given source into
desired target distribution

▶ Freeform surfaces
▶ Fully nonlinear PDE of

Monge-Ampère type

Line B
Imaging optics

▶ Cameras, telescopes, …
▶ Make a very precise image

of an object, minimizing
aberrations

▶ Description with Lie
transformations

Line C
Improved direct methods

▶ Ray tracing: iterative
procedure to compute final
design. Slow convergence

▶ Advanced numerical schemes
for Hamiltonian systems and
Liouville’s equation

https://martijna.win.tue.nl
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William Rowan Hamilton
Sir William Rowan Hamilton (1805–1865)

Irish mathematician, astronomer and physicist

Work
▶ Geometrical optics
▶ Classical mechanics
▶ Quaternions i2 = j2 = k2 = ijk = −1

https://martijna.win.tue.nl


6 | Martijn Anthonissen | Hamiltonian optics, Lie algebra and Liouville’s equation

Mass-spring system

▶ Compressed
spring

−A 0 A q

m

▶ Equilibrium
position

−A 0 A q

m

▶ Extended
spring

−A 0 A q

m

▶ Position of mass relative to
equilibrium position: q(t)

▶ Momentum: p(t) = mv(t) = mq̇(t)
▶ Hamiltonian:

H(q, p) =
p2

2m
+ 1

2kq
2

▶ Hamilton’s equations:

q̇ =
∂H
∂p

ṗ = −
∂H
∂q

▶ H is conserved:

Ḣ =
∂H
∂q

q̇+
∂H
∂p

ṗ = 0

https://martijna.win.tue.nl
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Simulation mass-spring system
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This slide has an animation. It is available online at https://youtu.be/CE9GI80qQ0E

https://martijna.win.tue.nl
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Optical fiber

▶ Gradient-index material
Refractive index (−1 ≤ q ≤ 1)

n(q) =
√

n20(1− q2) + q2

Here: n0 > 1
Note: 1 ≤ n(q) ≤ n0

▶ Use z as evolution parameter

▶ Position: q(z)

▶ Optical momentum: p(z) = n
dq
ds

with s arclength

pz

p

p

∥p∥ =
√

p2 + p2z = n

https://martijna.win.tue.nl
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Hamiltonian system

m

▶ Position of the mass: q(t)
▶ Momentum: p(t)
▶ Hamiltonian:

H(q, p) =
p2

2m
+ 1

2kq
2

▶ Hamilton’s equations:

q̇ =
∂H
∂p

ṗ = −
∂H
∂q

▶ Position of the ray: q(z)
▶ Optical momentum: p(z)
▶ Hamiltonian:

H(q, p) = −
√

(n(q))2 − p2 = −pz

▶ Hamilton’s equations:

q̇ =
∂H
∂p

ṗ = −
∂H
∂q

https://martijna.win.tue.nl
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Simulation optical fiber

This slide has an animation. It is available online at https://youtu.be/exlVlEk8Ypk

https://martijna.win.tue.nl
https://youtu.be/exlVlEk8Ypk
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Imaging optics

▶ Consider imaging optical system

Object plane Image plane

z

Optical system

(
qobject
pobject

) (
qimage
pimage

)

▶ Each ray is defined by position q(z)
and optical momentum p(z)

▶ Hamiltonian optics:

q̇ =
∂H
∂p

ṗ = −
∂H
∂q

H = −
√

n2 − p2

▶ Optical map:(
qimage

pimage

)
= M

(
qobject
pobject

)
Ideal system:

M = Mlinear =

(
a b
c d

)
▶ In practice M is nonlinear

Goal: Mathematical description of
deviations from linearity

▶ Deviations are called aberrations in optics

https://martijna.win.tue.nl
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Aberrations
▶ Consider Taylor series expansion of optical map in phase-space coordinates (q, p) about (0, 0)
▶ First-order term: Gaussian optics, paraxial optics
▶ Higher-order terms: aberrations

Reducing aberrations is important for image quality
▶ Rotationally symmetric system: Odd-term aberrations only

Third-order aberrations — image of regular 5× 5 grid of point sources

11 | Antonio Barion | Lie Algebraic Methods for Imaging

Lie algebraic aberrations

f4 = A|p|4 + B(p · q)|p|2 + C(p · q)2 + D|p|2|q|2 + E(p · q)|q|2 + F|q|4

! spherical aberration:

exp(A[|p|4, · ])
(
q
p

)
≈

(
q− 4A|p|2p

p

)

Top-right image taken from Wikipedia

Spherical aberration
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Lie algebraic aberrations

f4 = A|p|4 + B(p · q)|p|2 + C(p · q)2 + D|p|2|q|2 + E(p · q)|q|2 + F|q|4

! coma:

exp(B[|p|2(p·q), · ])
(
q
p

)
≈

(
q− 2B(p · q)p− B|p|2q

p+ B|p|2p

)

Top-right image taken from Wikipedia

Coma
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Lie algebraic aberrations

f4 = A|p|4 + B(p · q)|p|2 + C(p · q)2 + D|p|2|q|2 + E(p · q)|q|2 + F|q|4

! astigmatism:

exp(C[(p·q)2, · ])
(
q
p

)
≈

(
q− 2C(p · q)p
p+ 2C(p · q)q

)

Top-right image taken from Wikipedia

Astigmatism
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Lie algebraic aberrations

f4 = A|p|4 + B(p · q)|p|2 + C(p · q)2 + D|p|2|q|2 + E(p · q)|q|2 + F|q|4

! Petzval curvature:

exp(D[|p|2|q|2, · ])
(
q
p

)
≈

(
q− 2D|q|2p
p+ 2D|p|2q

)

Top-right image taken from Wikipedia

Field curvature

15 | Antonio Barion | Lie Algebraic Methods for Imaging

Lie algebraic aberrations

f4 = A|p|4 + B(p · q)|p|2 + C(p · q)2 + D|p|2|q|2 + E(p · q)|q|2 + F|q|4

! distortion:

exp(E[(p·q)|q|2, · ])
(
q
p

)
≈

(
q− E|q|2q

p+ 2E(p · q)q+ E|q|2p

)

Top-right image taken from Wikipedia

Distortion

https://martijna.win.tue.nl
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Analytical expressions for aberrations

▶ Goal: Design optical systems with minimal aberrations
▶ Needed: Analytical expressions for aberrations
▶ Break down in steps: P—R—P—R—P P: propagation

R: refraction

z

(
qobject
pobject

) (
qimage
pimage

)

▶ Each step is symplectic map: No light rays lost or created
Volume conservation in phase space

▶ Symplectic maps can be written as concatenation of Lie transformations

https://martijna.win.tue.nl
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Lie algebraic tools

▶ Let f, g, h be smooth functions on phase space
Define Poisson bracket [f, g]

[f, g] =
∂f
∂q

· ∂g
∂p

−
∂f
∂p

· ∂g
∂q

▶ Bi-linear

[αf+ βg, h] = α[f, h] + β[g, h]

[f, αg+ βh] = α[f, g] + β[f, h]

▶ Anti-commutative

[f, g] = −[g, f]

▶ Jacobi identity

[f, [g, h]] + [g, [h, f]] + [h, [f, g]] = 0

▶ Vector space of functions with Poisson bracket
is Lie algebra

▶ Define Lie operator [f, ·]

[f, ·]g = [f, g]

▶ Define Lie transformation exp([f, ·])

exp([f, ·]) =
∞∑
k=0

[f, ·]k

k!

[f, ·]0 = I

[f, ·]k = [f, [f, ·]k−1] for k = 1, 2, . . .

▶ Lie transformation is symplectic

https://martijna.win.tue.nl
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Lie formulation of Hamiltonian optics

▶ Poisson bracket

[f, g] =
∂f
∂q

· ∂g
∂p

−
∂f
∂p

· ∂g
∂q

▶ Note:

[H, q] =
∂H
∂q

· ∂q
∂p

−
∂H
∂p

· ∂q
∂q

= −
∂H
∂p

[H, p] =
∂H
∂q

· ∂p
∂p

−
∂H
∂p

· ∂p
∂q

=
∂H
∂q

▶ Recall Hamilton’s equations:

q̇ =
∂H
∂p

ṗ = −
∂H
∂q

▶ Rewrite as

q̇ = −[H, ·]q ṗ = −[H, ·]p
▶ It follows that

q(k) = (−[H, ·])kq
▶ Taylor series

q(z) =
∞∑
k=0

qk(0)
k!

zk

▶ Conclusion:

q(z) = M(q(0))

M = exp(−z[H, ·])

https://martijna.win.tue.nl
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Propagation as Lie transformation

▶ Hamiltonian for light propagation in medium
with constant refractive index n

H(q, p) = −
√

n2 − p2

▶ Taylor expansion:

H(q, p) = −n

√
1−

(p
n

)2
= −n+

p2

2n
+

p4

8n3
+ · · ·

▶ Lie transformation

M = exp(−z[H, ·])

= exp(−z[−n, ·]) exp
([

−z
p2

2n
, ·
])

exp
([

−z
p4

8n3
, ·
])

· · ·

= exp(−z[H2, ·]) exp(−z[H4, ·]) · · ·

Barion, A., Anthonissen, M.J.H., ten Thije
Boonkkamp, J.H.M., IJzerman, W.L. (2022)
Alternative computation of the Seidel aberration
coefficients using the Lie algebraic method
Journal of the Optical Society of America A,
Optics, Image Science and Vision, 39(9), 1603-1615
https://doi.org/10.1364/JOSAA.465900

https://martijna.win.tue.nl
https://doi.org/10.1364/JOSAA.465900
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Representing symplectic maps as Lie transformations

▶ Dragt-Finn factorization
Let M be analytic symplectic map
Assume M(0) = 0
Then:

M = exp([f2, ·]) exp([f3, ·]) exp([f4, ·]) · · ·

with fm homogeneous polynomial of degree m:

fm(λq, λp) = λmfm(q, p) for all λ ∈ R

▶ Approximate M by

M ≈ Mr = exp([f2, ·]) exp([f3, ·]) · · · exp([fr, ·])

Note: Mr is symplectic

▶ If g is homogeneous polynomial of degree m then

[f2, g] =
∂f2
∂q

· ∂g
∂p

−
∂f2
∂p

· ∂g
∂q

has degree m too
Same way: [f2, ·]kg has degree m

exp([f2, ·])g has degree m
exp([f2, ·]) is linear operator

▶ More general:
exp([fm, ·]) describes aberrations of order m− 1

https://martijna.win.tue.nl
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Analytical expressions for aberrations
▶ Consider imaging optical system

z

(
qobject
pobject

) (
qimage
pimage

)

▶ Break down in steps: P—R—P—R—P
P: propagation
R: refraction

▶ Write each step as truncated Lie transformation
Can be done for propagation, reflection, refraction

▶ Use the properties of Lie transformations to
concatenate and rearrange them

▶ Use analytical expressions to design optical systems
with minimal aberrations

▶ Spot diagram off-axis object: Lie approach
vs OpticStudio (OS)

Barion, A., Anthonissen, M.J.H., ten Thije
Boonkkamp, J.H.M., IJzerman, W.L. (2023)
Computing aberration coefficients for plane-symmetric
reflective systems: A Lie algebraic approach
Journal of the Optical Society of America A, Optics,
Image Science and Vision, 40(6), 1215-1224
https://doi.org/10.1364/JOSAA.487343

https://martijna.win.tue.nl
https://doi.org/10.1364/JOSAA.487343
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Improved direct methods based on solving Liouville’s equation

▶ Direct method: given source and optical system,
compute light distribution at target

▶ Standard: Monte Carlo ray tracing
Robust but slow convergence (order 1/

√
Nrays)

▶ Alternative: compute evolution of energy density
in phase space by solving Liouville’s equation
Fast and more accurate

▶ q < 0: Water, refractive index n1 = 1.4
q > 0: Air, n2 = 1

▶ Define ray by position q(z) and direction p(z)
p(0) = 0 → q(z) constant
p(0) > pcrit → ray is reflected
p(0) > pcrit → ray is reflected
0 < p(0) < pcrit → ray is refracted

https://martijna.win.tue.nl
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Phase space

This slide has an animation. It is available online at https://youtu.be/BRDN8DSwTNQ

https://martijna.win.tue.nl
https://youtu.be/BRDN8DSwTNQ
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Liouville’s equation
▶ Basic luminance ρ = ρ(z, q, p): luminous flux

per unit area and unit solid angle
▶ Along a ray:

ρ(z+ ∆z, q(z+ ∆z), p(z+ ∆z)) = ρ(z, q, p)

Differential form
∂ρ

∂z
+

∂ρ

∂q
q̇+

∂ρ

∂p
ṗ = 0

▶ Use Hamilton’s equations

q̇ =
∂H
∂p

ṗ = −
∂H
∂q

to get

∂ρ

∂z
+

∂ρ

∂q
∂H
∂p

−
∂ρ

∂p
∂H
∂q

= 0

▶ Liouville’s equation

∂ρ

∂z
+∇ · (ρu) = 0

with ∇ = (∂/∂q, ∂/∂p)T,

u =


∂H
∂p

−
∂H
∂q


▶ Using H = −

√
n2 − p2, we find

u =
1√

n2 − p2

(
p
0

)
if n is constant. Hence:

∂ρ

∂z
+ u

∂ρ

∂q
= 0

https://martijna.win.tue.nl
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Space discretization

▶ 2D optical system: 2D phase space
3D 4D

▶ Space discretization (q and p):
Discontinuous Galerkin spectral
element method (DGSEM)

▶ Straight-sided quadrilaterals   27 Page 8 of 35 Journal of Scientific Computing            (2021) 89:27 

Fig. 1 Mapping from reference square χ to a quadrilateral Ωk

where J = ∂q
∂ξ

∂ p
∂η − ∂q

∂η
∂ p
∂ξ denotes the Jacobian determinant, ∇ξ =

⎩
∂
∂ξ ,

∂
∂η

)T
and f̃ is an

auxiliary flux defined by the product of the adjoint Jacobian matrix and the flux f , i.e.,

f̃ :=
(

∂ p
∂η − ∂q

∂η

− ∂ p
∂ξ

∂q
∂ξ

)

f . (26)

Applying the transformation (25) to Liouville’s Eq. (20a), we obtain

∂ρ

∂z
+ 1

J
∇ξ · f̃ = 0, (27)

where ρ = ρ(z, ξ, η).
Theweak formulation of Liouville’s equation is obtained by first multiplying the PDE (27)

by the Jacobian determinant J and by a smooth test function φ, and subsequently integrating
over the reference domain χ . This results in

∫

χ
φJ

∂ρ

∂z
dAξ +

∫

χ
φ∇ξ · f̃ dAξ = 0. (28)

The second term is rewritten by applying the product rule and Gauss’s theorem, so that
∫

χ
φ∇ξ · f̃ dAξ =

∫

χ

(
∇ξ ·

(
φ f̃
)
−
(
∇ξφ

)
· f̃
)
dAξ

=
∮

∂χ
φ f̃ · n̂ d( −

∫

χ

(
∇ξφ

)
· f̃ dAξ ,

where n̂ is the outward unit normal on ∂χ and the orientation of the closed curve ∂χ is
counter-clockwise. Using this, we obtain the weak formulation of Liouville’s equation on
the reference domain

∫

χ
φJ

∂ρ

∂z
dAξ +

∮

∂χ
φ f̃ · n̂ d( −

∫

χ

(
∇ξφ

)
· f̃ dAξ = 0. (29)

Note that for strong solutions we require the flux to be differentiable, hence, h(z, q, p)
should be twice differentiable. However, the DGSEM uses the weak form of the solution and
only requires the flux to be continuous, therefore, h(z, q, p) being once continuously differ-
entiable is sufficient. For typical optical interfaces this is not sufficient since the refractive
index field is discontinuous and, therefore, h(z, q, p) and also the flux are discontinuous.
In particular, for these interfaces we require a special treatment of the fluxes which we will
discuss in Sect. 4.

123

▶ Expand solution in reference domain (ξ, η) ∈ [−1, 1]2

ρ(z, ξ, η) ≈
N∑

i=0

N∑
j=0

ρij(z)Li(ξ)Lj(η)

Li, Lj: Lagrange polynomials on Gauss-Legendre nodes
▶ Accuracy controlled by number of elements K and

polynomial order N
▶ Evolution of ρij(z) found from weak formulation of

Liouville’s equation

https://martijna.win.tue.nl
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Optical interfaces

▶ At optical interfaces

ρ(z−, q(z−), p(z−)) = ρ(z+, q(z+), p(z+))

z and q continuous
p discontinuous

▶ Compute p(z+) from law of reflection or Snell’s law

p(z+) = S(p(z−))

▶ Align mesh with optical interface
▶ Local energy balances to ensure energy conservation

▶ Reflection
Reflector

Normal

Incident ray

Reflected ray

▶ Refraction

Normal

Incident ray

Refracted ray

Air Glass

https://martijna.win.tue.nl
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Time discretization
▶ Evolution parameter: z

Arbitrary derivative (ADER) discretization
▶ Idea: use PDE to replace z-derivatives

with spatial derivatives
▶ We have

∂ρ

∂z
+ u

∂ρ

∂q
= 0

Taylor series:

ρ(z+ ∆z, q, p) ≈
M∑

k=0

1
k!
∂kρ

∂zk
(z, q, p)(∆z)k

Replace z- with q-derivatives

ρ(z+ ∆z, q, p) ≈
M∑

k=0

Ck(∆z, q, p)
∂kρ

∂qk
(z, q, p)

Cauchy-Kovalewski procedure

▶ ADER-DG leads to explicit scheme
▶ Arbitrarily high order of accuracy

in space (q and p) and time (z)
▶ CFL condition on ∆z causes problems near

optical interfaces: sub-cell interface
method

van Gestel, R.A.M., Anthonissen, M.J.H., ten Thije
Boonkkamp, J.H.M., IJzerman, W.L. (2023)
An ADER discontinuous Galerkin method on moving
meshes for Liouville’s equation of geometrical optics
Journal of Computational Physics, 488, 112208
https://doi.org/10.1016/j.jcp.2023.112208

https://martijna.win.tue.nl
https://doi.org/10.1016/j.jcp.2023.112208
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Hybrid scheme
▶ Away from optical interfaces: light rays are straight lines if n is constant
▶ Can be solved more efficiently using semi-Lagrangian discontinuous Galerkin (SLDG) scheme
▶ Hybrid scheme: ADER-DG close to optical interface, SLDG elsewhere
▶ Divide computational domain in regions

Intermediate element to couple ADER-DG and SLDG regions
Journal of Computational Physics 498 (2024) 112655

4

R.A.M. van Gestel, M.J.H. Anthonissen, J.H.M. ten Thije Boonkkamp et al.
𝑉0 𝑉1

𝑀𝑎

𝑀𝑎+1

𝑀𝑎+2

𝑒𝑎
𝑇!9∕2 𝑒𝑎

𝑇!7∕2 𝑒𝑎
𝑇!5∕2 𝑒𝑎

𝑇!3∕2 𝑒𝑎
𝑇!1∕2 𝑒𝑎

𝑇+1∕2 𝑒𝑎
𝑇+3∕2 𝑒𝑎

𝑇+5∕2 𝑒𝑎
𝑇+7∕2 𝑒𝑎

𝑇+9∕2

Fig. 1. Sketch of the 𝛼𝑀-grid showing the usage of local time stepping. Grey indicates ADER-DG elements with lighter shade representing elements in 𝑉0 and darker 
shade elements in 𝑉1 , red indicates SLDG elements, blue indicates ADER-DG elements that couple to an SLDG element, and the brown-black dashed line indicates the 
optical interface. The optical interface coincides with edges of elements that touch the optical interface. (For interpretation of the colours in the figure(s), the reader 
is referred to the web version of this article.)

leads to a hybrid scheme where some elements are of ADER-DG type and some of SLDG type. Additionally, the SLDG elements are 
not restricted by a CFL condition unlike the ADER-DG elements and, consequently, we take larger steps with SLDG elements than 
with the ADER-DG elements. This results in hanging nodes along the 𝑀-axis.

An example of a 𝛼𝑀-grid in the vicinity of an optical interface can be seen in Fig. 1. Here, we distinguish three types of elements 
which are the SLDG elements in red, the ADER-DG elements in grey and the ADER-DG elements in blue that are adjacent to an SLDG 
element. The mesh is aligned with the optical interface by letting the grey ADER-DG elements adjacent to the optical interface move. 
That is, the optical interface coincides with edges of elements that touch the optical interface. The blue ADER-DG elements are added 
specifically to allow an efficient transition region from SLDG elements to grey ADER-DG elements. These blue ADER-DG elements 
together with adjacent SLDG elements form a local uniform spatial grid such that the SLDG elements are updated in an efficient 
manner. This will be made more clear in Section 2.3.

In the figure, one can also see the effect of local time stepping. The SLDG elements take one direct step to the next level, whereas 
the blue ADER-DG elements require multiple steps to reach the same level. The grey ADER-DG elements take steps that do not match 
with their blue neighbours, which leads to hanging nodes along the 𝑀-axis. In the pure ADER-DG solver the movement of the optical 
interface affects the mesh spacing of elements locally, which for shrinking elements leads to a reduction in the stepsize. Owing to 
the global time stepping this leads to a stepsize reduction for all elements. In the novel hybrid SLDG and ADER-DG solver developed 
here, we employ ADER-DG elements close to the optical interface and SLDG elements away from the optical interface. Hence, the 
stepsize reduction caused by shrinking elements only has a local impact due to the local time stepping employed.

The hybrid SLDG and ADER-DG solver combines two completely different DG schemes with local time stepping. The solver is 
detailed by first presenting the ADER-DG and SLDG schemes separately followed by a description of how different types of elements 
are coupled when using local time stepping. More precisely, first the ADER-DG discretisation on a moving mesh and the SLDG 
discretisation are discussed in Sections 2.1 and 2.2, respectively. The entire scheme should be energy-preserving. Therefore, to 
couple both elements we first detail the local conservation properties of both schemes in Section 2.2.1, stating that the change in the 
integral of 𝐼 over an element is directly related to the flux across the boundary of the element. This result is then used to describe a 
conservative coupling with local time stepping between ADER-DG and SLDG elements in Section 2.3. Furthermore, in Section 2.3.2
we describe the local time stepping algorithm and the coupling of ADER-DG elements. Finally, in Section 2.4 we briefly summarise 
the procedures from our earlier work [1] which are needed in the solvers.

2.1. ADER-DG on a moving mesh

Liouville’s equation has to be solved on a moving phase space domain. The phase space domain is covered with rectangular 
elements. We formulate Liouville’s equation on a moving mesh using an Arbitrary-Lagrangian-Eulerian (ALE) formulation of Li-
ouville’s equation. To that end, we consider the 𝑀-dependent mapping from the reference unit square 𝑔 = [0, 1]2 to an element 
Ω(𝑀) = [𝑒0(𝑀), 𝑒1(𝑀)] × [𝑥0, 𝑥1], that reads

!(𝑏,") =
⌈
𝛼(𝑏, 𝑍)
,(𝑅)

⌉
=
⌈
𝑒0(𝑏) + 𝑍Δ𝛼(𝑏)
𝑥0 + 𝑅Δ,

⌉
, (5)

with 𝑀 = 𝑏 , Δ𝛼(𝑏) =𝑒1(𝑏) !𝑒0(𝑏), Δ, = 𝑥1 !𝑥0 and " = (𝑍, 𝑅) ∈ 𝑔 . Liouville’s equation is transformed to the reference domain using 
this mapping. First one introduces 𝐼∗(𝑏, ") = 𝐼(𝑏, !(𝑏, ")) for which one can derive a PDE on the reference domain. The details of the 
derivation can be found in, e.g., [15,1]. The result is that one finds the following PDE on the reference domain

. (𝐼∗ )
.𝑏

+(" ⋅
(
𝐼∗ ( 𝜑#! 𝜑$)

)
= 0, (6)

SLDG intermediate ADER-DG ADER-DG intermediate SLDG
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Fig. 6. Meniscus lens with a couple of light rays. The refractive index of the lens is 𝑉1 = 1.5 and for the background medium 𝑉0 = 1.

3.1. Meniscus lens

As a first example, we consider the meniscus lens shown in Fig. 6. The front and back surfaces are two-dimensional cross sections 
of spherical surfaces, i.e., circles. The circles satisfy

𝑀2 + (𝑎! 𝑎c)2 =𝑒2. (64)
For the left circle (segment) we take 𝑎c = 2.42 and 𝑒 = 1.12, whereas for the right circle we take 𝑎c = 5.52 and 𝑒 = 3.6. For this 
example, the 𝑀-domain is given by the interval [!1.2, 1.2] for 𝑎 ≤ 𝑎2 = 5.52 !

⌈
3.62 ! 1 ≈ 2.06 and [!1, 1] for 𝑎 > 𝑎2. Here, 𝑎 = 𝑎2

is the plane that intersects the right circle at 𝑀 = ±1. One can imagine the meniscus lens being fixed onto some physical system 
such that at 𝑎 = 𝑎2 the light striking at 𝑀 < !1 and 𝑀 > 1 is fully absorbed. To numerically solve this problem we apply the sub-cell 
interface method only for one single step at 𝑎 = 𝑎c !𝑒 for each circle, and for the remaining curved part of the lens we apply the 
moving mesh method to align the mesh with the optical interface. In the moving mesh method we prescribe the mesh velocity at the 
optical interface by writing (64) as 𝑀 =𝑇(𝑎), such that the mesh velocity is given by d𝑇d𝑎 at the interface. Only elements adjacent to 
an optical interface are moving, while elements away from an optical interface are static.

For this example the refractive index field is constant between 𝑎 = 0 and 𝑎 = 𝑎1 = 1.3 (front of the first circle), and between 𝑎 = 𝑎2
and 𝑎 = 4 (at the end). In these regions the light rays are straight lines and, therefore, the SLDG scheme can be easily applied over 
the entire phase space mesh to take one big step. Hence, we step directly from 𝑎 = 0 to 𝑎 = 𝑎1 and from 𝑎 = 𝑎2 to 𝑎 = 4 with the SLDG 
scheme. In the region with optical interfaces, we employ both ADER-DG and SLDG elements with local time stepping.

To show the effects of the lens we compute a numerical solution. At 𝑎 = 0 we start with a Gaussian distribution, given by

𝛼0(𝑀,𝐼) = exp
⌉
! 𝑀2

2𝑔2𝑀

)
exp

⌉
! 𝐼2

2𝑔2𝐼

)
, (65)

where we take 𝑔𝑀 = 0.5 and 𝑔𝐼 = 0.08. We limit the maximum momentum since the velocity !, cf. (4b), blows up as |𝐼| approaches 𝑉. 
The maximum momentum is taken to be 0.9𝑉(𝑎, 𝑀). Furthermore, we choose mesh spacings Δ𝑀max = 0.16, Δ𝑀SL = 0.08 and Δ𝐼 = 0.1, 
and use 𝑥 = 7. Initially at 𝑎 = 0 the phase space mesh has 540 elements and at the end, at 𝑎 = 4, the mesh contains 450 elements. The 
initial condition and the numerical solution are shown in Fig. 7 computed with both the hybrid SLDG and ADER-DG scheme and the 
pure ADER-DG scheme. From the figure, we observe that the initial condition has been compressed in the 𝑀-direction and expanded 
in the 𝐼-direction. Moreover, one can see values below 0 on the target distribution which is due to a cut-off of the initial distribution. 
The cut-off generates a discontinuity in the distribution, which appears as an oscillation resulting in undershoot in the numerical 
solution. Finally, note that the numerical solutions between both schemes are in good agreement as they are indistinguishable by 
eye.

At each common integration level in the hybrid scheme, which are the 𝑎-levels for SLDG elements, the total luminous flux, 
including the fluxes leaving the system through physical boundaries except for the optical interface, was computed. This total 
luminous flux should remain constant if the scheme is energy-preserving. The maximum absolute relative deviation was 1.55 ⋅ 10!15, 
hence, the scheme is energy-preserving up to machine precision. Consequently, the local time stepping procedure explained in 
Section 2.3 is indeed energy conservative.

The 𝑀𝑎-mesh of the hybrid SLDG and ADER-DG scheme in a part of the region with optical interfaces is shown in Fig. 8. Here, we 
use the same colour coding of elements in 𝑀𝑎-space as before, i.e., red denotes SLDG elements, blue denotes ADER-DG elements that 
couple to an SLDG element and the brown curve represents the meniscus lens. For the blue and grey ADER-DG elements we omit 
the sub-steps. Moreover, the grey elements of the mesh are combined into blocks because the mesh can change at each sub-step. 
The figure on the right is generated with a mesh where the mesh size parameters have been halved compared to the coarse mesh 
values Δ𝑀max = 0.16 and Δ𝑀SL = 0.08. Furthermore, one can see that the size of the grey region shrinks upon halving the mesh size 
parameters. An overview of the 𝑀𝑎-mesh for the entire meniscus lens is shown in Fig. 9. There, the gridlines have been omitted, i.e., 
the common 𝑎-levels and 𝑀-intervals are not shown.

▶ Light rays travel from left to right
Refracted at both spherical surfaces

▶ Initial condition (z = 0)

ρ(0, q, p) = exp

(
−q2

2σ2
q

)
exp

(
−p2

2σ2
p

)
with σq = 0.5, σp = 0.08

▶ Mesh: ∆qmax = 0.16, ∆p = 0.1
Polynomial order: N = 7
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Fig. 6. Meniscus lens with a couple of light rays. The refractive index of the lens is 𝑉1 = 1.5 and for the background medium 𝑉0 = 1.

3.1. Meniscus lens

As a first example, we consider the meniscus lens shown in Fig. 6. The front and back surfaces are two-dimensional cross sections 
of spherical surfaces, i.e., circles. The circles satisfy

𝑀2 + (𝑎! 𝑎c)2 =𝑒2. (64)
For the left circle (segment) we take 𝑎c = 2.42 and 𝑒 = 1.12, whereas for the right circle we take 𝑎c = 5.52 and 𝑒 = 3.6. For this 
example, the 𝑀-domain is given by the interval [!1.2, 1.2] for 𝑎 ≤ 𝑎2 = 5.52 !

⌈
3.62 ! 1 ≈ 2.06 and [!1, 1] for 𝑎 > 𝑎2. Here, 𝑎 = 𝑎2

is the plane that intersects the right circle at 𝑀 = ±1. One can imagine the meniscus lens being fixed onto some physical system 
such that at 𝑎 = 𝑎2 the light striking at 𝑀 < !1 and 𝑀 > 1 is fully absorbed. To numerically solve this problem we apply the sub-cell 
interface method only for one single step at 𝑎 = 𝑎c !𝑒 for each circle, and for the remaining curved part of the lens we apply the 
moving mesh method to align the mesh with the optical interface. In the moving mesh method we prescribe the mesh velocity at the 
optical interface by writing (64) as 𝑀 =𝑇(𝑎), such that the mesh velocity is given by d𝑇d𝑎 at the interface. Only elements adjacent to 
an optical interface are moving, while elements away from an optical interface are static.

For this example the refractive index field is constant between 𝑎 = 0 and 𝑎 = 𝑎1 = 1.3 (front of the first circle), and between 𝑎 = 𝑎2
and 𝑎 = 4 (at the end). In these regions the light rays are straight lines and, therefore, the SLDG scheme can be easily applied over 
the entire phase space mesh to take one big step. Hence, we step directly from 𝑎 = 0 to 𝑎 = 𝑎1 and from 𝑎 = 𝑎2 to 𝑎 = 4 with the SLDG 
scheme. In the region with optical interfaces, we employ both ADER-DG and SLDG elements with local time stepping.

To show the effects of the lens we compute a numerical solution. At 𝑎 = 0 we start with a Gaussian distribution, given by

𝛼0(𝑀,𝐼) = exp
⌉
! 𝑀2

2𝑔2𝑀

)
exp

⌉
! 𝐼2

2𝑔2𝐼

)
, (65)

where we take 𝑔𝑀 = 0.5 and 𝑔𝐼 = 0.08. We limit the maximum momentum since the velocity !, cf. (4b), blows up as |𝐼| approaches 𝑉. 
The maximum momentum is taken to be 0.9𝑉(𝑎, 𝑀). Furthermore, we choose mesh spacings Δ𝑀max = 0.16, Δ𝑀SL = 0.08 and Δ𝐼 = 0.1, 
and use 𝑥 = 7. Initially at 𝑎 = 0 the phase space mesh has 540 elements and at the end, at 𝑎 = 4, the mesh contains 450 elements. The 
initial condition and the numerical solution are shown in Fig. 7 computed with both the hybrid SLDG and ADER-DG scheme and the 
pure ADER-DG scheme. From the figure, we observe that the initial condition has been compressed in the 𝑀-direction and expanded 
in the 𝐼-direction. Moreover, one can see values below 0 on the target distribution which is due to a cut-off of the initial distribution. 
The cut-off generates a discontinuity in the distribution, which appears as an oscillation resulting in undershoot in the numerical 
solution. Finally, note that the numerical solutions between both schemes are in good agreement as they are indistinguishable by 
eye.

At each common integration level in the hybrid scheme, which are the 𝑎-levels for SLDG elements, the total luminous flux, 
including the fluxes leaving the system through physical boundaries except for the optical interface, was computed. This total 
luminous flux should remain constant if the scheme is energy-preserving. The maximum absolute relative deviation was 1.55 ⋅ 10!15, 
hence, the scheme is energy-preserving up to machine precision. Consequently, the local time stepping procedure explained in 
Section 2.3 is indeed energy conservative.

The 𝑀𝑎-mesh of the hybrid SLDG and ADER-DG scheme in a part of the region with optical interfaces is shown in Fig. 8. Here, we 
use the same colour coding of elements in 𝑀𝑎-space as before, i.e., red denotes SLDG elements, blue denotes ADER-DG elements that 
couple to an SLDG element and the brown curve represents the meniscus lens. For the blue and grey ADER-DG elements we omit 
the sub-steps. Moreover, the grey elements of the mesh are combined into blocks because the mesh can change at each sub-step. 
The figure on the right is generated with a mesh where the mesh size parameters have been halved compared to the coarse mesh 
values Δ𝑀max = 0.16 and Δ𝑀SL = 0.08. Furthermore, one can see that the size of the grey region shrinks upon halving the mesh size 
parameters. An overview of the 𝑀𝑎-mesh for the entire meniscus lens is shown in Fig. 9. There, the gridlines have been omitted, i.e., 
the common 𝑎-levels and 𝑀-intervals are not shown.
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Fig. 7. Distributions of 𝑉 for the meniscus lens with Gaussian initial condition computed with the 𝑀 = 7 variants of the hybrid SLDG and ADER-DG scheme (left 
column) and the pure ADER-DG scheme (right column).

Next, we perform a convergence study for the meniscus lens. The initial condition we use reads

𝑉0(𝑎,𝑒) = 𝑇𝛼,𝐼
⌈
𝑎
𝑔𝑎

⌉
𝑇𝛼,𝐼

⌈
𝑒
𝑔𝑒

⌉
, (66)

with parameters 𝑔𝑎 = 0.5 and 𝑔𝑒 = 0.25. Here, 𝑇𝛼,𝐼, with both 𝛼 and 𝐼 positive integers, is the function defined by

𝑇𝛼,𝐼(𝑥) =
{

cos𝛼+1
(
𝑏
2 𝑥

𝐼
)

if |𝑥| < 1,
0 otherwise,

(67)

which is a 𝑍𝛼0 -function, meaning its first 𝛼 derivatives are continuous and it has compact support. We choose 𝛼 = 10 and 𝐼 = 2. With 
the chosen initial condition, the exact solution at , = 4 can be obtained by tracing light rays backwards through the circle segments 
of the lens. The convergence is studied on a sequence of meshes that have mesh size parameters chosen as

!𝑎𝑅,max = 2−𝑅!𝑎0,max, !𝑎𝑅,SL = 2−𝑅!𝑎0,SL and !𝑒𝑅 = 2−𝑅!𝑒0, (68)
where 𝑅 denotes the refinement level and we choose !𝑎0,max = 0.2, !𝑎0,SL = 0.1 and !𝑒0 = 0.1. The convergence results for the .2
and .∞ norms are computed for both the pure ADER-DG and the hybrid SLDG and ADER-DG schemes and are listed in Table 1, 
where the convergence rate is measured as log2(𝜑𝑅−1∕𝜑𝑅) with 𝜑𝑅 the error for refinement level 𝑅. For both schemes the listed errors 
are comparable and the computed orders of convergence are in good agreement with the expected 𝑀 + 1 order of convergence.

In Table 1 the last two columns denote the CPU time 𝜆CPU for the hybrid scheme and the speed-up of the hybrid scheme relative 
to the pure ADER-DG scheme. From the speed-up column we see that the hybrid SLDG and ADER-DG scheme is significantly faster 
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Fig. 7. Distributions of 𝑉 for the meniscus lens with Gaussian initial condition computed with the 𝑀 = 7 variants of the hybrid SLDG and ADER-DG scheme (left 
column) and the pure ADER-DG scheme (right column).

Next, we perform a convergence study for the meniscus lens. The initial condition we use reads

𝑉0(𝑎,𝑒) = 𝑇𝛼,𝐼
⌈
𝑎
𝑔𝑎

⌉
𝑇𝛼,𝐼

⌈
𝑒
𝑔𝑒

⌉
, (66)

with parameters 𝑔𝑎 = 0.5 and 𝑔𝑒 = 0.25. Here, 𝑇𝛼,𝐼, with both 𝛼 and 𝐼 positive integers, is the function defined by

𝑇𝛼,𝐼(𝑥) =
{

cos𝛼+1
(
𝑏
2 𝑥

𝐼
)

if |𝑥| < 1,
0 otherwise,

(67)

which is a 𝑍𝛼0 -function, meaning its first 𝛼 derivatives are continuous and it has compact support. We choose 𝛼 = 10 and 𝐼 = 2. With 
the chosen initial condition, the exact solution at , = 4 can be obtained by tracing light rays backwards through the circle segments 
of the lens. The convergence is studied on a sequence of meshes that have mesh size parameters chosen as

!𝑎𝑅,max = 2−𝑅!𝑎0,max, !𝑎𝑅,SL = 2−𝑅!𝑎0,SL and !𝑒𝑅 = 2−𝑅!𝑒0, (68)
where 𝑅 denotes the refinement level and we choose !𝑎0,max = 0.2, !𝑎0,SL = 0.1 and !𝑒0 = 0.1. The convergence results for the .2
and .∞ norms are computed for both the pure ADER-DG and the hybrid SLDG and ADER-DG schemes and are listed in Table 1, 
where the convergence rate is measured as log2(𝜑𝑅−1∕𝜑𝑅) with 𝜑𝑅 the error for refinement level 𝑅. For both schemes the listed errors 
are comparable and the computed orders of convergence are in good agreement with the expected 𝑀 + 1 order of convergence.

In Table 1 the last two columns denote the CPU time 𝜆CPU for the hybrid scheme and the speed-up of the hybrid scheme relative 
to the pure ADER-DG scheme. From the speed-up column we see that the hybrid SLDG and ADER-DG scheme is significantly faster 
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Fig. 11. A DTIRC and a couple of light rays. The gray colour represents a refractive index n1 = 1.5 and the white colour the background medium with 
n0 = 1.

Table 2
Parameters for the DTIRC.

Parameter Value

zc 1.405407
R 1.305407
a1 !0.423579
b0 !0.194090
b1 !0.875464
b2 0.191880
Ztarget 2.648668

4.2. Dielectric TIR concentrator

As a second example we consider the dielectric TIR concentrator (DTIRC). The geometry that we consider is shown in 
Fig. 11. The optical system concentrates light that is emitted within a certain acceptance angle, from z = 0 towards the 
target in the (dielectric) medium with n1 = 1.5. The rays shown in Fig. 11 are first refracted at a spherical surface, followed 
by reflection at one of the side walls. These side walls are designed such that the light rays satisfy the condition for total 
internal reflection. Details about the design process of such a system can be found in [28,37]. The spherical surface of the 
device is given by (67), whereas the top side wall satisfies q = Q top(z) with q > 0 and the bottom side wall is given by 
q = !Q top(z). Here Q top(z) reads

Q top(z) = a0 + a1z + b0

√
1 + b1z + b2z2, (74)

and the target is placed at z = Ztarget. The parameters for the DTIRC are listed in Table 2. The parameter a0 is fixed by 
requiring that the spherical surface connects to the top side wall at q = 1, yielding the value a0 = 1.3519991422999297.

As initial condition we use

ρ0(q, p) = ϕm,k

(
q
λq

)
ϕm,k

(
p
λp

)
, (75)

with parameters m = 10, k = 4, λq = 0.8 and λp = sin
(
20 π

180

)
. Furthermore, we limit the maximum momentum to 

sin
(
85 π

180

)
n(z, q). Then, with mesh spacings %qmax = 0.1, %p = 0.1, and taking N = 6, we compute with the ALE-ADER-DG 

scheme the numerical solutions. The resulting distributions are shown in Fig. 12, where the initial condition and the nu-
merical solutions at z = 1

2 Ztarget and z = Ztarget are shown. Only in the solution at z = Ztarget one can see that some of the 
light has been reflected. Furthermore, the light remains contained within the dielectric medium n1 as expected.

As was done in the meniscus lens example, we will compare quasi-Monte Carlo ray tracing and the ALE-ADER-DG scheme 
for computing the illuminance. For this example, we modify the quasi-Monte Carlo ray tracing grid to ensure no bin cuts 
the side walls given by q = ±Q top(Ztarget) ≈ ±0.248562. Specifically, we modify the grid to be piecewise uniform, such that 
the grid spacing is uniform on the q-intervals [!1.2, !Q top(Ztarget)], [!Q top(Ztarget), Q top(Ztarget)] and [Q top(Ztarget), 1.2]. 
In quasi-Monte Carlo ray tracing we compute exact intersections with the spherical surface, whereas for intersections with 
the side wall we employ a Newton’s method that resorts to bisection when necessary.

The resulting illuminance at z = Ztarget for both methods is shown in Fig. 13, where for QMC we use B = 400 bins and 
NRT = 8 · 106 rays and for the ALE-ADER-DG scheme we integrate the solution shown in Fig. 12. From the figure we observe 
that the solutions for both methods are almost indistinguishable by eye.

20

▶ Light rays travel from left to right
Refracted at left surface
Total internal reflection (TIR) at top or bottom

▶ ADER-DG scheme with initial condition (z = 0)

ρ(0, q, p) = ϕm,k(q/λq)ϕm,k(p/λp)

with ϕm,k(x) = cosm+1
(
π
2 x

k
)
, m = 10, k = 2

▶ Mesh: ∆qmax = 0.1, ∆p = 0.1
Polynomial order: N = 6
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Fig. 12. Distributions of ρ for the DTIRC computed with the N = 6 ALE-ADER-DG scheme.

Fig. 13. Illuminance at z = Ztarget for the DTIRC computed with quasi-Monte Carlo ray tracing (QMC) on B = 400 bins and the N = 6 ALE-ADER-DG (DG) 
scheme.
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Fig. 12. Distributions of ρ for the DTIRC computed with the N = 6 ALE-ADER-DG scheme.

Fig. 13. Illuminance at z = Ztarget for the DTIRC computed with quasi-Monte Carlo ray tracing (QMC) on B = 400 bins and the N = 6 ALE-ADER-DG (DG) 
scheme.
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Initial condition Half way At target

Animation at https://youtu.be/NdsmRIT2auE
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Fig. 13. The 𝑉𝑀-mesh for the DTIRC that is used in the hybrid SLDG and ADER-DG scheme. Mesh size parameters for coarse mesh are !𝑉max = 0.2 and !𝑉SL = 0.1, 
whereas for the finer mesh these are !𝑉max = 0.1 and !𝑉SL = 0.05.

Fig. 14. Illuminance at 𝑀 = 𝑎target for the DTIRC computed with quasi-Monte Carlo ray tracing (QMC) on 𝑒 = 400 bins and the 𝑇 = 3 hybrid SLDG and ADER-DG 
(hDG) scheme.

with 𝛼𝐼,𝑔 defined in (67) and parameters 𝐼 = 10, 𝑔 = 4, 𝑥𝑉 = 0.8 and 𝑥𝑏 = sin
⌈
20 𝑍

180

⌉
. The maximum momentum is limited to 

sin
⌈
85 𝑍

180

⌉
,(𝑀, 𝑉). The hybrid SLDG and ADER-DG scheme and the pure ADER-DG scheme are used to compute numerical solutions, 

with parameters 𝑇 = 3, !𝑉max = 0.1, !𝑉SL = 0.05 and !𝑏 ≈ 0.052. The resulting distributions at 𝑀 = 0, 𝑀 = 𝑎1 and 𝑀 = 𝑎target are 
shown in Fig. 12. At 𝑀 =𝑎1 all initial light has been refracted into the dielectric medium and at 𝑀 =𝑎target one can see that a part 
of the distribution has reflected at the side walls resulting in the bottom and top patches. Light is also fully contained within the 
dielectric medium. Finally, note that the numerical solutions between both schemes are in good agreement.

The 𝑉𝑀-mesh for the hybrid SLDG and ADER-DG scheme is shown in the right panel of Fig. 13 for a fine mesh, that corresponds 
to the chosen mesh size parameters. In the left panel of Fig. 13 we consider a coarse mesh, where the mesh size parameters have 
been doubled compared to the fine mesh. The gridlines in the 𝑉𝑀-mesh are not shown in Fig. 13. The initial step (not shown in the 
figure) from 𝑀 = 0 to 𝑀 = 𝑀c −𝑅 = 0.1 consists of a single step with the SLDG scheme. Note that for the coarse mesh close to 𝑀 ≈𝑎1
we entirely use ADER-DG elements in the background medium ,0. The reason for this is that there is not sufficient space to fit twice 
the mesh spacing !𝑉SL and also allow enough space for grey ADER-DG elements for the purpose of merging elements.

Next, QMC ray tracing and the DG solvers are compared for computing the illuminance. In QMC ray tracing we cannot use 
a uniform grid on 𝑉 ∈ [−1.2, 1.2] as this would cause the two bins, which cut the side wall, to have two refractive indices. 
Hence, we modify the grid to be piecewise uniform, with uniform grid distributions on the 𝑉-intervals [−1.2, − .top(𝑎target)], 
[−.top(𝑎target), .top(𝑎target)] and [.top(𝑎target), 1.2]. In QMC ray tracing the intersections with the circle segment are exactly 
computed, whereas for the intersection with the side walls we employ a Newton method that resorts to bisection when necessary.

Illuminance at target

E(q) =
∫
ρ(ztarget, q, p) dp
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Fig. 15. Comparison between quasi-Monte Carlo (QMC) ray tracing, the pure ADER-DG scheme (ADG) and the hybrid SLDG and ADER-DG scheme (hDG) for the 
dielectric TIR concentrator.

In Fig. 14 we show the illuminance computed from the basic luminance profile in the last panel of Fig. 12, alongside a QMC ray 
tracing solution for which we used 𝑉 = 400 bins and traced 𝑀RT = 8 ⋅ 106 rays. The illuminance profiles of both methods are almost 
indistinguishable by eye, showing the good agreement in the profile between the two methods.

Next, we will compare the performance of the DG schemes with QMC ray tracing by computing the error in the illuminance profile. 
Once more, the illuminance is averaged for the DG solution and for the error we take the 𝑎!-norm between a numerical solution 
and a reference solution. As a reference solution we use the illuminance computed with the hybrid SLDG and ADER-DG scheme 
on a very fine grid with parameters 𝑀 = 7, Δ𝑒max = 1.25 ⋅ 10−2, Δ𝑒SL = 6.25 ⋅ 10−3 and Δ𝑇 ≈ 6.5 ⋅ 10−3. The comparison between 
the DG schemes and QMC ray tracing is shown in Fig. 15. The DG schemes compute numerical solutions on a sequence of meshes 
for which the mesh size parameters satisfy (68) with 𝛼 = 0, 1, 2, 3. The mesh size parameters for 𝛼 = 0 are given by Δ𝑒0,max = 0.2, 
Δ𝑒0,SL = 0.1 and Δ𝑇0 = 0.1. For QMC ray tracing the first data point corresponds to 𝑀RT = 5 ⋅ 105 and each subsequent dot represents 
a quadrupling in the number of rays, and consequently the last data point corresponds to 𝑀RT = 2.048 ⋅ 109 rays. From the figure one 
can observe that both the pure ADER-DG and the hybrid scheme can reach higher accuracy in less computation time than QMC ray 
tracing. Once more, we see that the hybrid SLDG and ADER-DG scheme converges faster to high accuracies than the pure ADER-DG 
scheme, and much faster than QMC ray tracing.

4. Conclusions

A novel hybrid scheme, combining ADER-DG elements on a moving mesh, SLDG elements and local time stepping, has been 
presented. The scheme yields improved performance over the pure ADER-DG scheme by employing the very efficient SLDG elements 
when possible. The SLDG scheme allows large steps to be taken in regions without optical interfaces. Local time stepping severely 
diminishes the effect of stepsize reduction, which is caused by small elements or a large mesh velocity. These building blocks led to 
an improved solver for Liouville’s equation for piecewise constant refractive index fields.

Numerical experiments indicate the increased performance of the hybrid scheme over the pure ADER-DG scheme, whilst exhibit-
ing the expected 𝑀 + 1 order of convergence for sufficiently smooth solutions. In the meniscus lens example we saw that the hybrid 
scheme is faster by a factor of roughly 1.6 to 10 for computation times up to 4 minutes. The increased performance also allows faster 
convergence to high accuracies compared to the pure ADER-DG scheme. Moreover, in the shown examples the hybrid SLDG and 
ADER-DG scheme outperforms QMC ray tracing by reaching higher accuracies in equal computation time.

Local time stepping has been used to allow efficient computation in the presence of small elements or large mesh velocities. 
Another use would be to introduce local stepsizes that depend on the momentum values an element describes. This can be beneficial 
as the velocity field given by (4b) rapidly increases for large absolute momentum values approaching 𝐼. On the other hand, this 
would severely complicate the scheme near the optical interface because phase space is in contact with each other at completely 
different momentum values due to the law of specular reflection and Snell’s law of refraction. Moreover, the optical system restricts 
the stepsize that can be taken for SLDG elements by the condition that characteristics are not allowed to cross optical interfaces 
which is momentum dependent.

The pure ADER-DG scheme allows for a straightforward parallelisation strategy on distributed systems since the computational 
cost of each element away from any optical interface is similar and each element only communicates with direct neighbours. In the 
hybrid SLDG and ADER-DG scheme the usage of different discretisation schemes and local time stepping makes designing an efficient 
parallel solver more intricate. However, note that the SLDG scheme only requires information of two neighbouring elements to update 
an element, even for large steps. Furthermore, the velocity field is aligned with the 𝑒-axis, therefore, slicing the SLDG part of the mesh 
along the 𝑇-axis leads to independent slices. That is, those slices do not communicate and can thus be distributed for efficient parallel 
computation. The ADER-DG regions are only affected by an SLDG region near coupling elements. The communication between these 

▶ QMC: quasi-Monte Carlo ray tracing
▶ ADG: ADER-DG
▶ hDG: hybrid scheme (ADER-DG and SLDG)
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Conclusions

▶ Model light propagation using Hamiltonian optics
▶ Nonlinearities in optical map: aberrations

Reducing aberrations is important for image quality
▶ Approximate propagation, reflection and refraction

by truncated Lie transformormations
▶ Concatenating and rearranging Lie transformations

gives analytical expressions for aberrations
▶ Liouville’s equation is alternative to ray tracing
▶ Advanced ADER-DG scheme to solve Liouville’s equation
▶ Hybrid scheme: ADER-DG close to optical interface, SLDG elsewhere

Outperforms ray tracing
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