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Can we turn a frog into a prince?
Target

Source

Mirror

Light distribution
target

Light distribution
source

▶ “In the original Grimm version of the story, the
frog’s spell was broken when the princess threw the
frog against the wall, at which he transformed back
into a prince, while in modern versions the
transformation is triggered by the princess kissing
the frog.”

https://en.wikipedia.org/wiki/The_Frog_Prince

▶ Can we do it with light?

Romijn, L. B. (2021)
Generated Jacobian Equations in Freeform Optical Design:
Mathematical Theory and Numerics
PhD thesis, Eindhoven University of Technology

https://martijna.win.tue.nl
https://en.wikipedia.org/wiki/The_Frog_Prince
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Outline

Computational illumination optics at TU/e

Nonimaging freeform optics

One mathematical framework for basic systems

Iterative least-squares solver for 3D systems

Numerical results

Beyond the basic systems

Conclusions and future work

https://martijna.win.tue.nl
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Lines of research
Line A
Nonimaging freeform optics

▶ Luminaires, street lights, …
▶ Compute optical surfaces that
convert given source into
desired target distribution

▶ Freeform surfaces
▶ Fully nonlinear PDE of
Monge-Ampère type

Line B
Imaging optics

▶ Cameras, telescopes, …
▶ Make a very precise image
of an object, minimizing
aberrations

▶ Description with Lie
transformations

Line C
Improved direct methods

▶ Ray tracing: iterative
procedure to compute final
design. Slow convergence

▶ Advanced numerical schemes
for Hamiltonian systems and
Liouville’s equation

https://martijna.win.tue.nl
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Academic cooperation and industrial embedding

https://martijna.win.tue.nl
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Nonimaging freeform optics
Design of optical systems for illumination purposes

Optical system

Light
source

Desired light
distribution

Industry standard: ray tracing
▶ Easy to implement
▶ Slow convergence
▶ Manual adjustments

Inverse methods
▶ Directly compute required optical system
▶ Need solving PDE of Monge-Ampère type
▶ Avoid iterations and manual optimization

https://martijna.win.tue.nl
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Sixteen basic systems SMA GMA GJE

Reflector systems
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Basic freeform reflector systems SMA GMA GJE

Parallel
source

Point
source

Parallel target Point target Near-field target Far-field target

Lens systems
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Basic freeform lens systems SMA GMA GJE

Parallel
source

Point
source

Parallel target Point target Near-field target Far-field target

https://martijna.win.tue.nl
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Sixteen basic systems SMA GMA GJE

Reflector systems
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Basic freeform reflector systems SMA GMA GJE

Parallel
source

Point
source

Parallel target Point target Near-field target Far-field target
4 All figures without captions

4

Lens systems
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Basic freeform lens systems SMA GMA GJE

Parallel
source

Point
source

Parallel target Point target Near-field target Far-field target

4 All figures without captions

4

https://martijna.win.tue.nl
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Parallel-to-parallel reflector 2D SMA

x

z

S

T ▶ Source: parallel beam with light distribution f(x), x ∈ S
▶ Target: parallel beam with light distribution g(y), y ∈ T
▶ Goal: Find the two freeform reflector surfaces

▶ For the figure we used

xS yT

y = m(x)

https://martijna.win.tue.nl
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Mathematical model SMA

▶ Path of a ray

z = 0
x

z = L y

z

z = u(x)

S

z = L − w(y)

T

P

A

B

Q
• Leaves source S at P = (x, 0)
• Hits first reflector at A = (x, u(x))
• Hits second reflector at B = (y, L − w(y))
• Arrives at target T at Q = (y, L)

▶ Optical path length

V = u(x) + d(A, B) + w(y)

where d(A, B)2 = (y− x)2 + (L− w(y) − u(x))2

▶ Eliminate d(A, B) and rewrite as

u(x) + w(y) = 1
2 (V− L) + L−

(y− x)2

2(V− L)

=: c(x, y)

c(x, y) is called cost function
Here: c is quadratic function

https://martijna.win.tue.nl
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Optimal transport formulation

▶ Cost function relation

u(x) + w(y) = c(x, y)

Many solution pairs (u(x),w(y))

▶ Special choice: c-convex pair

u(x) = max
y∈T

(c(x, y) − w(y))

w(y) = max
x∈S

(c(x, y) − u(x))

▶ Necessary condition:

∂c
∂x

(x, y) − u ′(x) = 0

▶ For the current optical system, we have

c(x, y) = 1
2 (V− L) + L−

(y− x)2

2(V− L)
so

y = m(x) = x+ (V− L)u ′(x)

This is called the optical mapping y = m(x)

https://martijna.win.tue.nl
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Energy conservation SMA

-2 -1 0 1 2 3 4 5
x

0

1

2

3

4
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z

m ′(x) = +
f(x)

g(m(x))

-2 -1 0 1 2 3 4 5
x

0

1

2

3

4

5

z

m ′(x) = −
f(x)

g(m(x))

▶ Source light distribution: f = f(x), x ∈ S
Target light distribution: g = g(y), y ∈ T
In the figure: S = (−1, 1), T = (3, 4)

▶ Energy conservation:∫ x

−1
f(ξ) dξ = ±

∫m(x)

m(−1)
g(y) dy = ±

∫ x

−1
g(m(ξ))m ′(ξ) dξ

▶ Differentiate to x:

m ′(x) = ± f(x)
g(m(x))

Solve ODE for m
▶ Differentiate u(x) + w(y) = c(x, y) to x, substitute y = m(x):

u ′(x) =
∂c
∂x

(x,m(x))

Solve ODE for u
▶ Second reflector: w(m(x)) = c(x,m(x)) − u(x)

https://martijna.win.tue.nl
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Parallel-to-parallel reflector, 2D and 3D SMA

2D

▶ Optical mapping:

y = m(x) = x+ (V− L)u ′(x) = ϕ ′(x)
▶ Optimal transport formulation:

u(x) + w(y) = c(x, y)

c(x, y) = 1
2 (V− L) + L−

(y− x)2

2(V− L)
▶ Energy conservation:

m ′(x) = ϕ ′′(x) = ± f(x)
g(m(x))

3D: x =

(
x1
x2

)
y =

(
y1
y2

)
m =

(
m1

m2

)
▶ Optical mapping:

y = m(x) = x+ (V− L)∇u(x) = ∇ϕ(x)
▶ Optimal transport formulation:

u(x) + w(y) = c(x, y)

c(x, y) = 1
2 (V− L) + L−

∥y− x∥2

2(V− L)
▶ Energy conservation:

det(Dm(x)) =
∂2ϕ

∂x21

∂2ϕ

∂x22
−

(
∂2ϕ

∂x1 ∂x2

)2

= ± f(x)
g(m(x))

Standard Monge-Ampère equation
Second-order nonlinear PDE

https://martijna.win.tue.nl
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Parallel-to-point reflector 2D GMA

z

S

T

▶ Source: parallel beam with light distribution f(x)
▶ Target: point with light distribution g(y)
▶ Goal: Find the two freeform reflector surfaces

https://martijna.win.tue.nl
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Mathematical model GMA

▶ Path of a ray

z = −L
x

z = 0

z

z = u(x)

S

r = −w(y)t

P

A

B

t

T
• Leaves source S at P = (x,−L)
• Hits first reflector at A = (x,−L + u(x))
• Hits second reflector at B = (−w(y)t1,−w(y)t2)
• Arrives at target T = (0, 0)

▶ Optical path length: V = u(x) + d(A, B) + w(y)
▶ Geometric relation (β := V− L)(

−
u
β

−
x2

2β2 +
V+ L
2β

)
·
(
β

w
(1+ y2) − 2y2

)
=

(
1+

xy
β

)2

▶ Take logarithms: u1(x) + u2(y) = c(x, y)
Cost function is non-quadratic
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Numerical method GMA

-6 -4 -2 0 2
x
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z
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-1

0

z

▶ Energy conservation:

m ′(x) = ± f(x)
g(m(x))

1+ (m(x))2

2

Solve ODE for m
▶ Differentiate u1(x) + u2(y) = c(x, y) to x, substitute y = m(x):

u ′
1(x) =

∂c
∂x

(x,m(x))

Solve ODE for u1
From u1 compute u

▶ Second reflector:

u2(m(x)) = c(x,m(x)) − u1(x)

From u2 compute w

https://martijna.win.tue.nl
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Parallel-to-point reflector, 2D and 3D GMA

2D

▶ Energy conservation:

m ′(x) = ± f(x)
g(m(x))

1+ (m(x))2

2
▶ Optimal transport formulation:

u1(x) + u2(y) = c(x, y)

c(x, y) = log

((
1+

xy
β

)2
)

3D: x =

(
x1
x2

)
y =

(
y1
y2

)
m =

(
m1

m2

)
▶ Energy conservation:

det(Dm(x)) = ± f(x)
g(m(x))

(
1+ ∥m(x)∥2

)2
4

▶ Optimal transport formulation:

u1(x) + u2(y) = c(x, y)

c(x, y) = log

((
1+

x · y
β

)2
)

▶ Differentiate, substitute y = m(x), differentiate

Dxyc(x,m(x))︸ ︷︷ ︸
C

Dm(x) = D2u1(x) − Dxxc(x,m(x))︸ ︷︷ ︸
P

▶ Generalized Monge-Ampère equation

det(Dm(x)) =
det(P)
det(C)

= ± f(x)
g(m(x))

(
1+ ∥m(x)∥2

)2
4

https://martijna.win.tue.nl
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Parallel-to-near-field lens GJE

x

z

S

T

▶ Source: parallel beam with light distribution f(x)
▶ Target: near-field with light distribution g(y)
▶ Goal: Find the single freeform lens surface

https://martijna.win.tue.nl
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Mathematical model GJE

▶ Path of a ray
• Leaves source S at P = (x, 0)
• Hits freeform lens surface at A = (x, u(x))
• Arrives at target T at Q = (y, L)

▶ Optical path length:

V(y) = n · u(x) + d(A,Q)

= n · u(x) +
√

(y− x)2 + (L− u(x))2

Cannot be formulated as optimal transport problem

z = 0 x

z = L y

z = u(x)

S

Tz

P

A

Q

https://martijna.win.tue.nl
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Numerical method GJE

-2 -1 0 1 2
x

0

1

2

3

4

5
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z

-2 -1 0 1 2
x
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▶ Energy conservation:

m ′(x) = ± f(x)
g(m(x))

Solve ODE for m
▶ Geometric relation:

V(y) = n · u(x) +
√
(y− x)2 + (L− u(x))2

differentiate to x, substitute y = m(x), solve for u ′(x):

u ′(x) =
m(x) − x

n ·
√

(m(x) − x)2 + (L− u(x))2 + u(x) − L

Solve ODE for u

https://martijna.win.tue.nl
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Parallel-to-near-field lens, 2D and 3D GJE

2D
▶ Energy conservation:

m ′(x) = ± f(x)
g(m(x))

▶ Geometric relation:

V(y) = n ·u(x)+
√

(y− x)2 + (L− u(x))2

3D
▶ Energy conservation:

det(Dm(x)) = ± f(x)
g(m(x))

▶ Geometric relation:

V(y) = n · u(x) +
√

∥y− x∥2 + (L− u(x))2

=: H(x, y, u(x))
▶ Differentiate to x: ∇x

(
H (x, y, u(x))

)
= 0

▶ Let H̃(x, y) := H(x, y, u(x)), substitute y = m(x),
differentiate to x:

DxxH̃(x,m(x)) + DxyH̃(x,m(x))︸ ︷︷ ︸
C

(Dm)(x) = O

▶ Generated Jacobian equation

det
(
DxxH̃(x,m(x))

)
= ± det(C)

f(x)
g(m(x))

https://martijna.win.tue.nl
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Unified mathematical framework SMA GMA GJE

4 | Martijn Anthonissen | Mathematical models for basic optical systems

Basic freeform reflector systems SMA GMA GJE

Parallel
source

Point
source

Parallel target Point target Near-field target Far-field target

5 | Martijn Anthonissen | Mathematical models for basic optical systems

Basic freeform lens systems SMA GMA GJE

Parallel
source

Point
source

Parallel target Point target Near-field target Far-field target

Anthonissen, M.J.H., Romijn, L.B., ten Thije Boonkkamp, J.H.M.,
IJzerman, W.L. (2021). Unified mathematical framework for a class
of fundamental freeform optical systems, Optics Express, 29(20),
31650-31664, https://doi.org/10.1364/OE.438920

▶ Energy conservation

det(Dm) = F(x,m(x))

▶ Matrix equation optical map

P = CDm

▶ Model 1: Standard Monge-Ampère (SMA)
Optimal transport formulation, c(x, y) quadratic

C = I P = D2u

▶ Model 2: Generalized Monge-Ampère (GMA)
Optimal transport formulation, c(x, y) non-quadratic

C = Dxyc P = D2u1 − Dxxc

▶ Model 3: Generated Jacobian equation (GJE)
No optimal transport formulation

C = DxyH̃ P = −DxxH̃

https://martijna.win.tue.nl
https://doi.org/10.1364/OE.438920


24 | Martijn Anthonissen | Freeform design | Least-squares solver

Iterative least-squares solver for 3D systems SMA GMA GJE

▶ Find mapping m : S → T such that

det(Dm) = F(x,m(x))

m(∂S) = ∂T

▶ Break down in substeps
We compute P, b, m such that

P = CDm

det(P) = det(C) F(x,m(x))

b(x) = m(x) x ∈ ∂S

b maps ∂S to ∂T
▶ Find surface from ∇xc(x,m(x)) = ∇u1(x)

▶ Iterative procedure:
1. Choose an initial guess m0

Let n = 0
2. Let JI(m, P) = 1

2

∫∫
S
∥CDm − P∥2 dx

Pn+1 = argmin
P

JI(m
n
, P)

Constrained minimization problem

3. Let JB(m, b) = 1
2

∫
∂S
∥m − b∥2 ds

bn+1 = argmin
b

JB(m
n
, b)

Projection on boundary ∂T
4. Let J(m, P, b) = α JI(m, P) + (1 − α) JB(m, b)

mn+1 = argmin
m

J(m, Pn+1
, bn+1)

Elliptic PDEs for m1 and m2 — FVM
5. Let n := n + 1, go to Step 2

https://martijna.win.tue.nl
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Laser beam shaping (parallel-to-parallel lens 3D)

Lens

Source Target

Source distribution:
Gaussian profile
Source emits parallel light rays

Optical system:
one lens with two
freeform surfaces

Goal
Find the two freeform surfaces

Desired target distribution:
circular top hat profile
Output beam: parallel light rays

https://martijna.win.tue.nl
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Laser beam shaping

Lens

z

x1

x2

y1

y2

Source
z = 0

Target
z = L

▶ Light rays travel from left to right
▶ Source plane: z = 0

Cartesian coordinates x =

(
x1
x2

)
Source S emits parallel light rays
Light distribution: f(x), x ∈ S

▶ Target plane: z = L

Cartesian coordinates y =
(
y1
y2

)
Light distribution: g(y), y ∈ T

▶ First lens surface: z = u(x), x ∈ S
Second lens surface: L− z = w(y), y ∈ T

https://martijna.win.tue.nl
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Numerical results for the laser beam shaping problem

Yadav, N.K., ten Thije Boonkkamp, J.H.M., IJzerman, W.L. (2019)
Computation of double freeform optical surfaces
using a Monge–Ampère solver: Application to beam shaping
Optics Communications, 439, 251-259
https://doi.org/10.1016/j.optcom.2019.01.069

Desired target distribution

Achieved

https://martijna.win.tue.nl
https://doi.org/10.1016/j.optcom.2019.01.069


28 | Martijn Anthonissen | Freeform design | Numerical results

Alternative optical systems

https://martijna.win.tue.nl
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Point-to-parallel reflector system 3D

Van Roosmalen, A. H., Anthonissen, M. J. H., IJzerman, W. L., ten Thije Boonkkamp, J. H. M. (2021)
Design of a freeform two-reflector system to collimate and shape a point source distribution
Optics Express, 29(16), 25605-25625
https://doi.org/10.1364/OE.425289

https://martijna.win.tue.nl
https://doi.org/10.1364/OE.425289
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Parallel-to-near-field reflector 3D

Surface Mapping Ray trace

Romijn, L.B., Anthonissen, M.J.H., ten Thije Boonkkamp, J.H.M., IJzerman, W.L. (2021)
An iterative least-squares method for generated Jacobian equations in freeform optical design
SIAM Journal on Scientific Computing, 43(2), B298-B322
https://doi.org/10.1137/20M1338940

https://martijna.win.tue.nl
https://doi.org/10.1137/20M1338940
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Beyond the basic systems: double freeform lens

Point-to-far-field lens requires
only one freeform surface

-2 -1 0 1 2
x

0

1

2

3

4

5

6

7

z

Top surface: freeform
Bottom surface: spherical

Idea: Use two freeform surfaces to distribute refractive power
over lens surfaces

Point source with Lambertian light distribution
Far-field target with distribution derived from Vermeer’s Girl with
a pearl earring

https://martijna.win.tue.nl
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Beyond the basic systems: double freeform lens

▶ Parameter β ∈ [0, 1]
▶ β = 1
Bottom surface spherical
Does not alter light rays

▶ β smaller
Bottom surface gets
more details

Romijn, L. B., ten Thije Boonkkamp, J. H. M., Anthonissen, M. J. H., IJzerman, W. L. (2021). Generating-function approach for double freeform lens design,
Journal of the Optical Society of America A, Optics, Image Science and Vision, 38(3), 356-368. https://doi.org/10.1364/JOSAA.411883

https://martijna.win.tue.nl
https://doi.org/10.1364/JOSAA.411883
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Two-target reflector system

▶ Source:

▶ Target 1:

▶ Target 2:

Braam, P.A., Numerical Inverse Method for a
Freeform Two-Target Reflector System
In preparation

https://martijna.win.tue.nl
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Concave, convex and saddle surfaces

2D

m ′(x) = ± f(x)
g(m(x))

1+ (m(x))2

2

-6 -4 -2 0 2
x
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-1

0

z

-6 -4 -2 0 2
x

-8
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-4

-3

-2

-1

0
z

3D

det(Dm(x)) = ± f(x)
g(m(x))

(
1+ ∥m(x)∥2

)2
4

m : mountain v : valley

https://martijna.win.tue.nl
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Lens arrays

Concave elements only

Not smooth at interfaces

Convex elements only

Not smooth at interfaces

Concave, convex and saddle

Smooth everywhere

https://martijna.win.tue.nl
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Conclusions and future work OPTIC

AWAVE

Math & CS

OTP
▶ Mathematical models for freeform
optical design

▶ One framework for basic systems
▶ Least-squares solver directly
computes freeform optical surfaces

▶ Include Fresnel reflection and scattering
▶ Design lens arrays with smooth surfaces
▶ Use machine learning to speed up
or replace the least-squares solver

▶ Model finite sources
▶ Model GRIN optics

Reflectance on a freeform lens
for street illumination

Luneburg lens

Friday morning—Lecture 2: Hamiltonian optics, Lie algebra and Liouville’s equation
More info: https://martijna.win.tue.nl/Optics/

https://martijna.win.tue.nl
https://martijna.win.tue.nl/Optics/
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