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Monge Problem (1781): Find a map T : M Ñ N that minimizes

pMP q “ inf
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cpx, T pxqqdµpxq

under the constraint that T7µ “ ν (i.e µpT´1pAqq “ νpAq for every A)

N, νM, µ

AT´1pAq

Stability: Let T1 : µ1 Ñ ν1 and T2 : µ2 Ñ ν2. We want:

µ1 „ µ2 and ν1 „ ν2 ùñ T1 „ T2

Motivations:

˛ CV of numerical approaches: semi-discrete methods, discrete methods.
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˛ Convergence results: Villani’s book Old and New 2008.

˛ Local quantitative results : assuming regularity of one map.

 [Ambrosio-Gigli, 11]: around Lipschitz map, cpx, yq “ }x´ y}2.

 [Ambrosio-Glaudo-Trevisan, 19] generalized to squared distance on 2manifold,

 [Li-Nochetto, 20]: Stability with both source and target measure.

˛ Global quantitative results

 [Berman, 21]: α-Holder-stability (α “ 1{p2d´1pd` 2qq)

 [Mérigot-Delalande-Chazal, 21]: with α “ 1{6.

Results hold for quadratic cost on Rd or manifold

 Motivation: generalize (local) results to other costs and manifolds
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Previous results:

˛ Local result: around T0 Lipschitz map.

Theorem [Ambrosio-Gigli 11, Mérigot-Delalande Chazal 19] Let X, Y be compact

domains of Rd, Ti : X Ñ Y be optimal transport maps between µ and νi

(i “ 0, 1). If µ is absolutely continuous and T0 is Lipschitz, then

}T1 ´ T0}L2pµq ď C pW1pν1, ν0qq
1
2 .
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˛ Local result: around T0 Lipschitz map.

Theorem [Ambrosio-Gigli 11, Mérigot-Delalande Chazal 19] Let X, Y be compact

domains of Rd, Ti : X Ñ Y be optimal transport maps between µ and νi

(i “ 0, 1). If µ is absolutely continuous and T0 is Lipschitz, then

}T1 ´ T0}L2pµq ď C pW1pν1, ν0qq
1
2 .

∇ϕ is K-Lipschitz ðñ ϕ˚ is 1{K-strongly convex (Legendre transform)

T “ ∇ϕ, where ϕ is a convex function (Brenier theorem)

 notion of c-strongly concave functions.

In order to generalize to any cost function c : X ˆ Y Ñ R
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Outline

˛ Optimal Transport and strong c concavity

˛ Stability under strong c-concavity

˛ Sufficient conditions for strong c-concavity

˛ Applications to the reflector problem
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Part 2: Generated Jacobian Equation

˛ Case 1: Mirror for Point source light (Far Field and Near Field)

˛ Semi-discrete Generated Jacobian equation
˛ Case 2: Mirror for Parallel source light (Far Field and Near Field)
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under the constraint that T7µ “ ν.
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ż

M

cpx, T pxqqdµpxq

under the constraint that T7µ “ ν.

Dual Kantorovitch problem: Find ϕ : M Ñ R and ψ : N Ñ R s.t

pDualq “ sup

ż

M
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ż

N
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where ϕpxq ` ψpyq ď cpx, yq for every x, y.

˛ If pϕ,ψq maximizes (Dual) then

˛ If in addition T is a solution of (MP), then

T pxq P argminyPNcpx, yq ´ ψpyq

ϕpxq “ infyPM cpx, yq ´ ψpyq
ϕ is c-concave

T is induced by ψ
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c-concave functions
Definition: A function ψ : N Ñ RY t´8u is c-concave if there exists a
function ϕ : M Ñ RY t´8u s.t.

ψpyq “ infxPM cpx, yq ´ ϕpxq

˛ ψ “ ϕc is the c-conjuguate of ϕ.

˛ Let Bcψpyq “ tx PM | @z P N cpx, yq ´ ψpyq ď cpx, zq ´ ψpzqu be
the c-superdifferential. We have

“: ϕcpyq

ψ is c-concave ðñ @y P N Bcψpyq ‰ H

Particular case: When cpx, yq “ xx|yy, we have

˛ ψ is c-concave ðñ ψ is concave

˛ Bcψpyq “ B`ψpyq :“ tx PM | @z P N ψpzq ď ψpyq ` xx|z ´ yyu

y z

slope x
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Notion of strong c-concavity

Definition [Gallouet,Mérigot,T] A c-concave function ψ is c-strongly concave

on a set D ĂM ˆN with modulus ω if for every x, y, z such that

cpx, yq ´ ψpyq ď cpx, zq ´ ψpzq´ωpdN py, zqq

px, yq P D, px, zq P D and x P Bcψpyq, one has
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Notion of strong c-concavity

@x P Bψpyq ψpzq ď ψpyq ` xx|z ´ yy ´
α

2
}z ´ y}2

Definition [Gallouet,Mérigot,T] A c-concave function ψ is c-strongly concave

on a set D ĂM ˆN with modulus ω if for every x, y, z such that

cpx, yq ´ ψpyq ď cpx, zq ´ ψpzq´ωpdN py, zqq

px, yq P D, px, zq P D and x P Bcψpyq, one has

Particular case: When cpx, yq “ xx|yy and ωprq “ αr2{2, it coincides with the

notion of strong concavity : A concave function ψ : Rd Ñ R is α-strongly
concave iff for every y

y z

ě α
2 }z ´ y}

2
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Stability w.r.t target measure
Theorem 1 [Gallouet,Mérigot,T]. Let D ĎM ˆN be a compact set and

c : M ˆN Ñ RY t`8u of class C1 on D. Let µ P PpMq and ν0, ν1 P PpNq.
We assume Ti is an optimal transport map from µ to νi with associated

potential ψi : N Ñ R (i “ 0, 1) such that:

˛ ψ0 is Lipschitz on N and c-concave on D.
˛ ψ1 is Lipschitz on N and strongly c-concave with modulus ω on D.
˛ The maps Ti satisfies for any x PM ,px, Tipxqq P D.

Then
ż

M

ωpdN pT0pxq, T1pxqqqdµpxq ď pLippψ0q ` Lippψ1qqW1pν0, ν1q
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Remark. If M and N are domains of Rd and ωprq “ r2 then

}T1 ´ T0}
2
L2pµq ď pLippψ0q ` Lippψ1qqW1pν0, ν1q

˛ Justifies the semi-discrete approach

˛ Generalizes Ambrosio: replaces T1 Lipschitz by ψ1 strongly c-concave.

˛ If D “M ˆN blue assumptions disappear
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dpν1 ´ ν0q ď pLippψ0q ` Lippψ1qqW1pν0, ν1q

On the other hand

A B

B ě

ż

M

cpx, T0pxqq ´ cpx, T1pxqqdµpxq

A ě

ż

M

cpx, T1pxqq ´ cpx, T0pxqq ` ωpdN pT0pxq, T1pxqqqdµpxq

Similarly, since ψ0 is c-concave
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M
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Summing A and B
ż

N

´

ψ1 ´ ψ0

¯

dpν1 ´ ν0q ě

ż

M

ωpdN pT0pxq, T1pxqqqdµpxq ˝
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Error bounds for OT problems
Theorem 2 [Gallouet,Mérigot,T]. Let µ P PpMq, ν P PpNq, D ĎM ˆN be a
compact set. Let T be an optimal transport map from µ to ν with associated
potential ψ : N Ñ R such that:

˛ ψ is strongly c-concave with modulus ω on D.

˛ For any x PM , px, T pxqq P D.

Then any transport plan γ P Γpµ, νq supported on D satisfies
ż

MˆN

ωpdN pT pxq, yqqdγpx, yq ď

ż

MˆN

cpx, yqdγpx, yq ´

ż

M

cpx, T pxqqdµpxq
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Error bounds for OT problems
Theorem 2 [Gallouet,Mérigot,T]. Let µ P PpMq, ν P PpNq, D ĎM ˆN be a
compact set. Let T be an optimal transport map from µ to ν with associated
potential ψ : N Ñ R such that:

˛ ψ is strongly c-concave with modulus ω on D.

˛ For any x PM , px, T pxqq P D.

Then any transport plan γ P Γpµ, νq supported on D satisfies
ż

MˆN

ωpdN pT pxq, yqqdγpx, yq ď

ż

MˆN

cpx, yqdγpx, yq ´

ż

M

cpx, T pxqqdµpxq

Minimal costcost of γsuboptimality gap = ´

Corollary. If ωprq “ Cr2, then

W1pγ, γT q ď
1?
C
psuboptimality gapq1{2

where γT “ pId, T q#µ and W1 is

 kind of strong convexity of cost function γT

gap

γ

for the distance dMˆN “ dM ` dN .
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Stability w.r.t source and target measure
Theorem 3 [Gallouet,Mérigot,T]. Let c : M ˆN Ñ R be Lipschitz, µ, µ̃ P PpMq
and ν, ν̃ P PpNq. Let T : pM,µq Ñ pN, νq be an optimal transport map and

γ̃ be an optimal transport plan between µ̃ and ν̃. We know that T is induced

by a c-concave potential ψ : N Ñ R. We assume that

˛ ψ is strongly c-concave potential with ωprq “ Cr2 on D “M ˆN .

Then

W1pγT , γ̃q ď ε`
b

2Lippcq
C ε, where ε :“ W1pµ̃, µq `W1pν, ν̃q.
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Theorem 3 [Gallouet,Mérigot,T]. Let c : M ˆN Ñ R be Lipschitz, µ, µ̃ P PpMq
and ν, ν̃ P PpNq. Let T : pM,µq Ñ pN, νq be an optimal transport map and

γ̃ be an optimal transport plan between µ̃ and ν̃. We know that T is induced

by a c-concave potential ψ : N Ñ R. We assume that

˛ ψ is strongly c-concave potential with ωprq “ Cr2 on D “M ˆN .

Then

˛ It is a consequence of the previous “suboptimality gap inequality”

W1pγT , γ̃q ď ε`
b

2Lippcq
C ε, where ε :“ W1pµ̃, µq `W1pν, ν̃q.
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Outline

˛ Optimal Transport and strong c concavity

˛ Stability under strong c-concavity

˛ Sufficient conditions for strong c-concavity

˛ Applications to the reflector problem

Part 1: Stability

Part 2: Generated Jacobian Equation

˛ Case 1: Mirror for Point source light (Far Field and Near Field)

˛ Semi-discrete Generated Jacobian equation
˛ Case 2: Mirror for Parallel source light (Far Field and Near Field)
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Ma-Trudinger-Wang tensor
Let c : M ˆN Ñ RY t`8u. We assume that it satisfies (Stwist).

(STwist): c is C2, ∇xcpx, ¨q and ∇ycp¨, yq are injective, ∇2
xyc is non-singular.
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M

TxM

c-expx

y0
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˛ A c-segment pytq1ďtď1 “ ry0, y1sx is the image by c-expx of a segment.
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Ma-Trudinger-Wang tensor
Let c : M ˆN Ñ RY t`8u. We assume that it satisfies (Stwist).

˛ ∇xcpx, ¨q : Domp∇xcq Ď N ÝÑ Ix Ď TxM is one-to-one

˛ The c-exponential is c-expx :“ p´∇xcpx, ¨qq
´1

c-exp : Ix Ď TxM ÝÑ Domp∇xcq Ď N

M

TxM

c-expx

y0

y1
ry0, y1sx

˛ A c-segment pytq1ďtď1 “ ry0, y1sx is the image by c-expx of a segment.

˛ D ĂM ˆN is symmetrically c-convex if

px, y0q P D and px, y1q P D ùñ @t P r0, 1s px, ytq P D

px0, yq P D and px1, yq P D ùñ @t P r0, 1s pxt, yq P D

(STwist): c is C2, ∇xcpx, ¨q and ∇ycp¨, yq are injective, ∇2
xyc is non-singular.

N
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Ma-Trudinger-Wang tensor
Let c : M ˆN Ñ RY t`8u of class C4 that satisfies (Stwist).

Definition. The Ma-Trüdinger-Wang tensor is defined for px0, y0q P D and

pη, ζq P Tx0M ˆ Ty0N by

Scpx0, y0qpη, ζq “ ´
3
2
B
2

Bq2η̃

B
2

By2ζ

`

cpc-expy0pqq, yq
˘

ˇ

ˇ

ˇ

y“y0,q“´∇ycpx0,y0q

with η̃ “ ´∇2
xycpx0, y0qη P Ty0Nwith η̃ “ ´∇2
xycpx0, y0qη P Ty0Nwith η̃ “ ´∇2
xycpx0, y0qη P Ty0N

Definition The weak MTW condition (MTWw) is satisfied on a compact set

D ĎM ˆN if there exists a constant C ą 0 such that for any px0, y0q P D

Scpx0, y0qpη, ζq ě ´C|xζ|η̃y|}ζ}}η}

and pη, ζq P Tx0M ˆ Ty0N we have

˛ 4th order condition that appears in the regularity theory [MTW 2005]

Here ´∇2
xycpx0, y0q : Tx0

M ˆ Ty0N Ñ R is a non singular bilinear form.
the linear form η̃ : Ty0N Ñ R is identified with a vector.
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Differential criterion for strong c-concavity

Theorem [Gallouet,Mérigot,T]. Let D ĎM ˆN be a closed symmetrically

c-concave set and c P C4pD,Rq that satisfy (STwist) and (MTWw) on D.

Let Y “ projN pDq and ψ P C2pY,Rq be c-concave on D. If there exists

λ ą 0 such that for any y P Y

Then ψ is strongly c-concave on D with modulus ωprq “ Cr2, where C ą 0

@x P Bcψpyq D2
yycpx, yq ´D

2ψpxq ě λId

is a constant depending on c, λ and D.

p˚q
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Theorem [Gallouet,Mérigot,T]. Let D ĎM ˆN be a closed symmetrically

c-concave set and c P C4pD,Rq that satisfy (STwist) and (MTWw) on D.

Let Y “ projN pDq and ψ P C2pY,Rq be c-concave on D. If there exists

λ ą 0 such that for any y P Y

Then ψ is strongly c-concave on D with modulus ωprq “ Cr2, where C ą 0

@x P Bcψpyq D2
yycpx, yq ´D

2ψpxq ě λId

is a constant depending on c, λ and D.

quantified version

p˚q



17 - 3

Differential criterion for strong c-concavity
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Theorem [Gallouet,Mérigot,T]. Let D ĎM ˆN be a closed symmetrically

c-concave set and c P C4pD,Rq that satisfy (STwist) and (MTWw) on D.

Let Y “ projN pDq and ψ P C2pY,Rq be c-concave on D. If there exists

λ ą 0 such that for any y P Y

Then ψ is strongly c-concave on D with modulus ωprq “ Cr2, where C ą 0

@x P Bcψpyq D2
yycpx, yq ´D

2ψpxq ě λId

is a constant depending on c, λ and D.

quantified version

p˚q

˛ We can replace p˚q by: The map T : X Ñ Y
T pxq “ argminycpx, yq ´ ψpyq

is of class C1 and satisfies for any x P X , px, T pxqq P D

˛ Can apply to optimal transport maps to get stability results



17 - 5

Differential criterion for strong c-concavity
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Differential criterion for strong c-concavity

Theorem [Gallouet,Mérigot,T]. Let D ĎM ˆN be a closed symmetrically

c-concave set and c P C4pD,Rq that satisfy (STwist) and (MTWw) on D.

Let Y “ projN pDq and ψ P C2pY,Rq be c-concave on D. If there exists

λ ą 0 such that for any y P Y

Then ψ is strongly c-concave on D with modulus ωprq “ Cr2, where C ą 0

@x P Bcψpyq D2
yycpx, yq ´D

2ψpxq ě λId

is a constant depending on c, λ and D.

quantified version

p˚q

˛ We can replace p˚q by: The map T : X Ñ Y
T pxq “ argminycpx, yq ´ ψpyq

is of class C1 and satisfies for any x P X , px, T pxqq P D

˛ Can apply to optimal transport maps to get stability results

 has to be treated on each application

˛ One difficulty: to show that T is supported on a set D where c is smooth.
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Outline

˛ Optimal Transport and strong c concavity

˛ Stability under strong c-concavity

˛ Sufficient conditions for strong c-concavity

˛ Applications to the reflector problem

Part 1: Stability

Part 2: Generated Jacobian Equation

˛ Case 1: Mirror for Point source light (Far Field and Near Field)

˛ Semi-discrete Generated Jacobian equation
˛ Case 2: Mirror for Parallel source light (Near Field)
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Reflector problem: point source light

µ source light

ν target distribution

˛ The problem:

on the sphere
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Reflector problem: point source light

µ source light

ν target distributionR

˛ The problem:

on the sphere

Pb: Find a reflector R that reflects µ to ν [Caffarelli, Oliker 94]
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Reflector problem: point source light

˛ Equivalent to optimal transport pb on S2 for cpx, yq “ ´ lnp1´ xx|yyq.

µ source light

ν target distributionR

˛ The problem:

on the sphere

Pb: Find a reflector R that reflects µ to ν [Caffarelli, Oliker 94]

[Wang 2003, Oliker 2003]
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Reflector problem: point source light

˛ Equivalent to optimal transport pb on S2 for cpx, yq “ ´ lnp1´ xx|yyq.

µ source light

ν target distributionR

˛ The problem:

on the sphere

Pb: Find a reflector R that reflects µ to ν

˛ Numerical methods: νd is a discretization of ν.

e.g. certified Newton algorithm [Mérigot,Meyron,T.]

Simulated
Reflector

νd

reflected
light

[Caffarelli, Oliker 94]

[Wang 2003, Oliker 2003]
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Reflector problem: point source light

Theorem [Gallouet,Mérigot,T]. Let cpx, yq “ ´ lnp1´ xx|yyq, µ and ν0 be

measures with C1,1 densities. Then for all r ą 0, there exists C ą 0 such

where Ti : µÑ νi are optimal transport maps.

sup
yPSd´1

ν1pBpx, rqq ă
1

8

that for every measure ν1 (e.g. νd) satisfying

one has ż

Sd´1

dM pT0pxq, T1pxqq
2dµpxq ď C W1pν0, ν1q
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Theorem [Gallouet,Mérigot,T]. Let cpx, yq “ ´ lnp1´ xx|yyq, µ and ν0 be

measures with C1,1 densities. Then for all r ą 0, there exists C ą 0 such

where Ti : µÑ νi are optimal transport maps.

sup
yPSd´1

ν1pBpx, rqq ă
1

8

that for every measure ν1 (e.g. νd) satisfying

one has ż

Sd´1

dM pT0pxq, T1pxqq
2dµpxq ď C W1pν0, ν1q

˛ c is not differentiable on tx “ yu.

˛ We therefore set Dε “ tpx, yq P Sd´1 ˆ Sd´1 | dSd´1px, yq ě εu

ν1 can be discrete



20 - 4

Reflector problem: point source light

Theorem [Gallouet,Mérigot,T]. Let cpx, yq “ ´ lnp1´ xx|yyq, µ and ν0 be

measures with C1,1 densities. Then for all r ą 0, there exists C ą 0 such

where Ti : µÑ νi are optimal transport maps.

sup
yPSd´1

ν1pBpx, rqq ă
1

8

that for every measure ν1 (e.g. νd) satisfying

one has ż

Sd´1

dM pT0pxq, T1pxqq
2dµpxq ď C W1pν0, ν1q

˛ c is not differentiable on tx “ yu.

˛ We therefore set Dε “ tpx, yq P Sd´1 ˆ Sd´1 | dSd´1px, yq ě εu

Sketch of proof

‚ We show any optimal γ P Γpµ, νq is supported on Dε (similar results of

‚ We show that Dε is symmetrically c-convex.
 strong c-concavity and stability

[Gangbo, Oliker 2007], [Buttazzo 2018] and [Loeper 2011] for non discrete measures).

ν1 can be discrete
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Outline

˛ Optimal Transport and strong c concavity

˛ Stability under strong c-concavity

˛ Sufficient conditions for strong c-concavity

˛ Applications to the reflector problem

Part 1: Stability

Part 2: Generated Jacobian Equation

˛ Case 1: Mirror for Point source light (Far Field and Near Field)

˛ Semi-discrete Generated Jacobian equation
˛ Case 2: Mirror for Parallel source light (Near Field)
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µ

R
ν

Mirror / Point light source: Optimal Transport
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Mirror: Point light source / Far-Field  OT

Problem (FF): Find ψ P RN such that

where Lagipψq “ tx P S2
0, cpx, yiq ` ψi ď cpx, yjq ` ψj @ju,

@i P t1, ¨ ¨ ¨Nu µpLagipψqq “ νi.

 We have to solve an OT problem

ψi :“ logpκiq, and cpx, yq “ ´ logp1´ xx|yyq.

 The mirror is parametrized by

Sd´1 Ñ Rd

x ÞÑ

´

mini
eψi

1´xx|yiy

¯

x

emini cpx,yiq`ψi “ eψ
c
pxq

where ψcpxq “ minyi cpx, yq ´ ψpyiq

ccl : x P S2
0 ÞÑ eψ

c
pxqx parametrizes the mirror.

is the c-conjugate function of ψ.

eψ
c
pxq

x



24 - 1

Mirror: Point light source / Near-Field  JGE
y1

y2

y3

Punctual light at origin o, µ measure on S2
o

Prescribed near-field: ν “
ř

i νiδyi on R3

o
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Mirror: Point light source / Near-Field  JGE
y1

y2

y3

Punctual light at origin o, µ measure on S2
o

Prescribed near-field: ν “
ř

i νiδyi on R3

o
Eipaiq “ convex hull of ellipsoid with focals o

and yi, and major axis length ai

Rp~aq “ B
`

XNi“1Eipaiq
˘

Vip~aq “ πS2
o
pRp~aq X BEipaiqq

Near-field reflector antenna problem:

Problem (NF): Find a1, . . . , aN such that for every i, µpVip~aqq “ νi .

amount of light reflected to the point yi.

V1p~aq

Oliker ’04
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Mirror: Point light source / Near-Field  JGE

Computation of visibility cells:
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Mirror: Point light source / Near-Field  JGE

BEipκiq is parameterized in radial coordinates by

ρi : x P S2
o ÞÑ

a2i´}yi}
2
{4

ai´xx|yiy{2

Computation of visibility cells:

where 2ai is the length of major axis
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Mirror: Point light source / Near-Field  JGE

BEipκiq is parameterized in radial coordinates by

ðñ
a2i´}yi}

2
{4

ai´xx|yiy{2
ď

a2j´}yj}
2
{4

aj´xx|yjy{2
x P Vip~κq

ρi : x P S2
o ÞÑ

a2i´}yi}
2
{4

ai´xx|yiy{2

Computation of visibility cells:

where 2ai is the length of major axis
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Mirror: Point light source / Near-Field  JGE

BEipκiq is parameterized in radial coordinates by

ðñ
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Mirror: Point light source / Near-Field  JGE

BEipκiq is parameterized in radial coordinates by

ðñ
a2i´}yi}

2
{4

ai´xx|yiy{2
ď

a2j´}yj}
2
{4

aj´xx|yjy{2
x P Vip~κq

ρi : x P S2
o ÞÑ

a2i´}yi}
2
{4

ai´xx|yiy{2

ðñ
ai´xx|yiy{2
a2i´}yi}

2{4
ě

aj´xx|yjy{2

a2j´}yj}
2{4

Not linear in aj

ðñ Gpx, yi, 1{aiq ě Gpx, yj , 1{ajq with ψi “ 1{ai

Computation of visibility cells:

where 2ai is the length of major axis
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Mirror: Point light source / Near-Field  JGE

BEipκiq is parameterized in radial coordinates by

ðñ
a2i´}yi}

2
{4

ai´xx|yiy{2
ď

a2j´}yj}
2
{4

aj´xx|yjy{2
x P Vip~κq

ρi : x P S2
o ÞÑ

a2i´}yi}
2
{4

ai´xx|yiy{2

Problem (FF): Find ψ1, . . . , ψN such that

where Lagipψq “ tx P S2
0, Gpx, yi, ψiq ě Gpx, yj , ψjq @ju.

@i P t1, ¨ ¨ ¨Nu µpLagip~ψqq “ νi.

ðñ
ai´xx|yiy{2
a2i´}yi}

2{4
ě

aj´xx|yjy{2

a2j´}yj}
2{4

Not linear in aj

ðñ Gpx, yi, 1{aiq ě Gpx, yj , 1{ajq with ψi “ 1{ai

Computation of visibility cells:

where 2ai is the length of major axis

 Generated Jacobian Equation [Trudinger, 14]
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Mirror: Point light source / Near-Field  JGE

Problem (FF): Find ψ1, . . . , ψN such that

where Lagipψq “ tx P S2
0, Gpx, yi, ψiq ě Gpx, yj , ψjq @ju.

@i P t1, ¨ ¨ ¨Nu µpLagip~ψqq “ νi.

 We have to solve the Generated Jacobian equation
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Mirror: Point light source / Near-Field  JGE

Problem (FF): Find ψ1, . . . , ψN such that

where Lagipψq “ tx P S2
0, Gpx, yi, ψiq ě Gpx, yj , ψjq @ju.

@i P t1, ¨ ¨ ¨Nu µpLagip~ψqq “ νi.

 We have to solve the Generated Jacobian equation

 The mirror is parametrized by

Sd´1 Ñ Rd
x ÞÑ pmaxiGpx, yi, ψiqqx

ψGpxq

where ψGpxq “ maxyi Gpx, yi, ψpyiqq
is the G-conjugate function of ψ.



26 - 4

Mirror: Point light source / Near-Field  JGE

Problem (FF): Find ψ1, . . . , ψN such that

where Lagipψq “ tx P S2
0, Gpx, yi, ψiq ě Gpx, yj , ψjq @ju.

@i P t1, ¨ ¨ ¨Nu µpLagip~ψqq “ νi.

 We have to solve the Generated Jacobian equation

 The mirror is parametrized by

Sd´1 Ñ Rd
x ÞÑ pmaxiGpx, yi, ψiqqx

ψGpxq

where ψGpxq “ maxyi Gpx, yi, ψpyiqq

ccl : x P S2
0 ÞÑ ψGpxqx parametrizes the mirror.

is the G-conjugate function of ψ.
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Outline

˛ Optimal Transport and strong c concavity

˛ Stability under strong c-concavity

˛ Sufficient conditions for strong c-concavity

˛ Applications to the reflector problem

Part 1: Stability

Part 2: Generated Jacobian Equation

˛ Case 1: Mirror for Point source light (Far Field and Near Field)

˛ Semi-discrete Generated Jacobian equation
˛ Case 2: Mirror for Parallel source light (Near Field)
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Mirror / Collimated source: Near Field

Here, Σ is a maximum of paraboloids

upxq “ max1ďiďN
1

2ψi
´

ψi
2 ||x´ yi||

2

of focus yi and direction p0, 0,´1q.
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Mirror / Collimated source: Near Field

Here, Σ is a maximum of paraboloids

upxq “ max1ďiďN
1

2ψi
´

ψi
2 ||x´ yi||

2

Lagipψq “
!

x P Ω|@j : 1
2ψi

´
ψi
2 ||x´ yi||

2 ě 1
2ψj

´
ψj
2 ||x´ yj ||

2
)

of focus yi and direction p0, 0,´1q.
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Mirror / Collimated source: Near Field

Here, Σ is a maximum of paraboloids

upxq “ max1ďiďN
1

2ψi
´

ψi
2 ||x´ yi||

2

Lagipψq “
!

x P Ω|@j : 1
2ψi

´
ψi
2 ||x´ yi||

2 ě 1
2ψj

´
ψj
2 ||x´ yj ||

2
)

Gpx, yj , ψjq

of focus yi and direction p0, 0,´1q.
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Mirror / Collimated source: Near Field

 Generated Jacobian Equation in R2

Here, Σ is a maximum of paraboloids

upxq “ max1ďiďN
1

2ψi
´

ψi
2 ||x´ yi||

2

Lagipψq “
!

x P Ω|@j : 1
2ψi

´
ψi
2 ||x´ yi||

2 ě 1
2ψj

´
ψj
2 ||x´ yj ||

2
)

Gpx, yj , ψjq

of focus yi and direction p0, 0,´1q.

Problem (FF): Find ψ1, . . . , ψN such that

where Lagipψq “ tx P S2
0, Gpx, yi, viq ě Gpx, yj , vjq @ju.

@i P t1, ¨ ¨ ¨Nu µpLagip~ψqq “ νi.
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Outline

˛ Optimal Transport and strong c concavity

˛ Stability under strong c-concavity

˛ Sufficient conditions for strong c-concavity

˛ Applications to the reflector problem

Part 1: Stability

Part 2: Generated Jacobian Equation

˛ Case 1: Mirror for Point source light (Far Field and Near Field)

˛ Semi-discrete Generated Jacobian equation
˛ Case 2: Mirror for Parallel source light (Near Field)
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Generated Jacobian Equation

Definition: G : Ωˆ Y ˆ RÑ R is called a generating function if it satisfies :

Definition: The Laguerre cells are :
Lagipψq “ tx P Ω, Gpx, yi, viq ě Gpx, yj , vjq @ju.

Far field parallel reflector : Gpx, y, vq “ xx, py ´ v

Near field parallel reflector Gpx, y, vq “ 1
2v ´

v
2 ||x´ y||

2

(Reg) : @α P R, suppx,y,vqPΩˆYˆs´8,αs |∇xGpx, y, vq| ă `8

(Mono) : @px, y, vq P Ωˆ Y ˆ R : BvGpx, y, vq ă 0

(Twist) : py, vq ÞÑ pGpx, y, vq,∇xGpx, y, vqq is injective for any x P X

(UC) @y P Y, limvÑ´8 infxPΩGpx, y, vq “ `8

Exemple:

The Generated Jacobian equation consists in finding ψ P RN such that

Hpψq “ ν

where the function H is given by Hpψq “ pµpLagipψqqq1ďiďN .

Generated Jacobian Equation
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Differential of H

Proposition: Under an hypothesis of genericity of Y , H is of class C1

BHj

Bψi
pψq “

ż

Lagijpψq

ρpxq
|BvGpx, yi, ψiq|

||∇xGjpx, ψq ´∇xGipx, ψq||
dHd´1pxq ě 0 for i ‰ j

BHi

Bψi
pψq “ ´

ÿ

j‰i

BHj

Bψi
pψq

with Gipx, ψq “ Gpx, yi, ψiq.

Recall: Hpψq “ pµpLagipψqqq1ďiďN .

yi yj
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Differential of H

Proposition: Under an hypothesis of genericity of Y , H is of class C1

BHj

Bψi
pψq “

ż

Lagijpψq

ρpxq
|BvGpx, yi, ψiq|

||∇xGjpx, ψq ´∇xGipx, ψq||
dHd´1pxq ě 0 for i ‰ j

BHi

Bψi
pψq “ ´

ÿ

j‰i

BHj

Bψi
pψq

with Gipx, ψq “ Gpx, yi, ψiq.

 DH is not symmetric

 p1, ¨ ¨ ¨ , 1q is not in the Kernel of DH

Recall: Hpψq “ pµpLagipψqqq1ďiďN .

yi yj
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Properties of DH

S` “
 

ψ P RN |@i,Hipψq ą 0
(

˛ DHpψq the differential of H is of rank N ´ 1 on S`.

˛ The image of DH is impDHpψqq “ 1K where 1 “ p1, ¨ ¨ ¨ , 1q P RN .

˛ kerpDHpψqq “ Spanpwq with wi ą 0

Proposition:

Proposition: (Unique descent direction)

Let ψ P S`, then the system:
"

DHpψqd “ Hpψq ´ ν
d1 “ 0

has a unique solution.
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Damped Newton’s Algorithm

Equation Hpψq “ ν

Admissible domain: Sδ “ tψ P tαu ˆ rβ, γspN´1q
@i,Hipψq ě δu

ρpLagipψqq ě δ

Damped Newton Algorithm
where Hpψq “ pρpLagipψqqq1ďiďN
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Damped Newton’s Algorithm

Loop: Ñ Calculate dk s.t. DHpψkqdk “ Hpψkq ´ ν and dk1 “ 0

Damped Newton algorithm: for solving Hpψq “ ν

Equation Hpψq “ ν

Ñ τk “ maxtτ P 2´N
| ψkτ P Sδ and }Hpψkτ q ´ ν} ď p1´ τ

2
q}Hpψkq ´ ν}u

Input: ψ0
P Sδ and precision ε

Admissible domain: Sδ “ tψ P tαu ˆ rβ, γspN´1q
@i,Hipψq ě δu

ρpLagipψqq ě δ

Ñ ψk`1 :“ ψ
τk
k

Damped Newton Algorithm
where Hpψq “ pρpLagipψqqq1ďiďN

Ñ Define ψk,τ “ ψk ´ τdk



33 - 3

Damped Newton’s Algorithm

Loop: Ñ Calculate dk s.t. DHpψkqdk “ Hpψkq ´ ν and dk1 “ 0

Damped Newton algorithm: for solving Hpψq “ ν

Theorem(Gallouet, Mérigot, T., CVPDE 2022): Let X Ă Ω be a compact set,

Equation Hpψq “ ν

Ñ τk “ maxtτ P 2´N
| ψkτ P Sδ and }Hpψkτ q ´ ν} ď p1´ τ

2
q}Hpψkq ´ ν}u

Input: ψ0
P Sδ and precision ε

Admissible domain: Sδ “ tψ P tαu ˆ rβ, γspN´1q
@i,Hipψq ě δu

ρpLagipψqq ě δ

Ñ ψk`1 :“ ψ
τk
k

Damped Newton Algorithm
where Hpψq “ pρpLagipψqqq1ďiďN

Ñ Define ψk,τ “ ψk ´ τdk

ρ P C0
pXq, tρ ą 0u X intpXq is path-connected, and Y satisfies generic assumptions

}Hpψk`1q ´ ν} ď
´

1´ τ˚

2

¯

}Hpψkq ´ ν}

w.r.t. BX, δ ď min1ďiďN νi{2. Then there is linear convergence:
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Numerics: vanishing density

Mirror for parallel source light: algorithm
targeted image N “ 400ˆ 480

Targ
et

lig
ht

Mirror R

Collimated source

R2
ˆ t0u
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Numerics: vanishing density

Mirror for parallel source light: algorithm

Laguerre cells

˛ Computation of Laguerre cells:
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Numerics: vanishing density

Mirror for parallel source light: algorithm

Laguerre cells

˛ Computation of Laguerre cells:

 Mobius diagrams:

Definition: Given P “ tpiu Ď Rd and pωiq P RN

Mobppiq :“ tx P Rd; i “ arg minj λi}x´ pj}
2 ` ωju



34 - 4

Numerics: vanishing density

Mirror for parallel source light: algorithm

Laguerre cells

˛ Computation of Laguerre cells:

 Mobius diagrams:

Definition: Given P “ tpiu Ď Rd and pωiq P RN

Mobppiq :“ tx P Rd; i “ arg minj λi}x´ pj}
2 ` ωju

Lemma: (Boissonnat, Wormser, Yvinec, 07)

Lagipψq “ Mobppiq “ Projz“0pPowi X Pq
where Projz“0 is the orthogonal projection.

and P is the paraboloid z “ x2 ` y2
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Numerics: vanishing density

Mirror for parallel source light: algorithm
targeted image N “ 400ˆ 480

Targ
et

lig
ht

Mirror R

Collimated source

R2
ˆ t0u
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Comparison Far Field / Near Field

Visibility cells in Far Field Visibility cells in Near Field
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Problem with the far-field assumption

Putting three copies of the same lens shifted by h...

h

Problem with far-field assumption
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Problem with the far-field assumption

Putting three copies of the same lens shifted by h...

... produces a superposition of images shifted by h.

h yi P S2

yi P S2

yi P S2

Problem with far-field assumption
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Problem with the far-field assumption

Putting three copies of the same lens shifted by h...

... produces a superposition of images shifted by h.

One wants to produce images at finite distance ÝÑ near-field problem.

h yi P S2

yi P S2

yi P S2

Problem with far-field assumption
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Approximating near-field using far-field

NF pb: Build a component R sending light towards z1, . . . , zN P tDu ˆ R2

(instead of y1, . . . , yN P S2q)

Iterated FF problem
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Approximating near-field using far-field

We approximate solutions to the NF problem using a sequence of FF pb.

NF pb: Build a component R sending light towards z1, . . . , zN P tDu ˆ R2

Step 0: Solve far-field problem with target y
p0q
i “ zi{}zi}

t´Ru ˆ R2 t0u ˆ R2 tDu ˆ R2

Source Lens Target

zi

0

y
p0q
i

Iterated FF problem



37 - 3

Approximating near-field using far-field

We approximate solutions to the NF problem using a sequence of FF pb.

NF pb: Build a component R sending light towards z1, . . . , zN P tDu ˆ R2

Step 0: Solve far-field problem with target y
p0q
i “ zi{}zi}

t´Ru ˆ R2 t0u ˆ R2 tDu ˆ R2

Source Lens Target

zi

0

y
p0q
i

Rp0q first estimation of the lens

Iterated FF problem
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Approximating near-field using far-field

We approximate solutions to the NF problem using a sequence of FF pb.

NF pb: Build a component R sending light towards z1, . . . , zN P tDu ˆ R2

Step 0: Solve far-field problem with target y
p0q
i “ zi{}zi}

t´Ru ˆ R2 t0u ˆ R2 tDu ˆ R2

Source Lens Target

zi

0

y
p0q
i

b
p0q
i

Rp0q first estimation of the lens

b
p0q
i “ barycenter of ith facet

Iterated FF problem
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Approximating near-field using far-field

We approximate solutions to the NF problem using a sequence of FF pb.

NF pb: Build a component R sending light towards z1, . . . , zN P tDu ˆ R2

Step 0: Solve far-field problem with target y
p0q
i “ zi{}zi}

t´Ru ˆ R2 t0u ˆ R2 tDu ˆ R2

Source Lens Target

zi

0

Step 1: Solve far-field problem with target y
p1q
i “ pzi ´ b

p0q
i q{}zi ´ b

p0q
i }

y
p0q
i

b
p0q
i

y
p1q
i

Rp0q first estimation of the lens

b
p0q
i “ barycenter of ith facet

Iterated FF problem
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Approximating near-field using far-field

We approximate solutions to the NF problem using a sequence of FF pb.

NF pb: Build a component R sending light towards z1, . . . , zN P tDu ˆ R2

Step 0: Solve far-field problem with target y
p0q
i “ zi{}zi}

t´Ru ˆ R2 t0u ˆ R2 tDu ˆ R2

Source Lens Target

zi

0

Step 1: Solve far-field problem with target y
p1q
i “ pzi ´ b

p0q
i q{}zi ´ b

p0q
i }

y
p0q
i

b
p0q
i

y
p1q
i

Step k+1: Solve far-field problem with target y
pk`1q
i “ pzi ´ b

pkq
i q{}zi ´ b

pkq
i }, ...

Efficient heuristic to solve NF problem using a FF solver...

Iterated FF problem
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Convergence of the algorithm

Target 1st iteration 2nd iteration 5th iteration
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Pillows
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Pillows
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Pillows
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Numerical result

red light

green light

blue light

˛ We solve one near-field problem per color channel.

˛ Near-field assumption needs to be taken into account for
the image to be perfectly superimposed on the screen.

screen

Color channels



40 - 2

Numerical result

Color channels
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Conclusion

˛ We propose a definition of strong c-concavity
˛ Several stability results under this assumption
˛ Provide a sufficient condition for strong concavity.
˛ Stability results in non imaging optics

˛ Global stability results with general cost functions

˛ We extended an algorithm to Generated Jacobian Equation

˛ Each problem is a Monge-Ampère equation

˛ Extended light
˛ Iterative OT to solve GJE ?

Ongoing work

Stabilily

Generated Jacobian Equation
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Conclusion

˛ We propose a definition of strong c-concavity
˛ Several stability results under this assumption
˛ Provide a sufficient condition for strong concavity.
˛ Stability results in non imaging optics

Thank you !
˛ Global stability results with general cost functions

˛ We extended an algorithm to Generated Jacobian Equation

˛ Each problem is a Monge-Ampère equation

˛ Extended light
˛ Iterative OT to solve GJE ?

Ongoing work

Stabilily

Generated Jacobian Equation


