Numerical methods for the design of optical components, optimal transport and Generated Jacobian equations

Part 2: Stability in Optimal transport & Generated Jacobian Equations

Boris Thibert

Joint works with Quentin Mérigot, Jocelyn Meyron, Anatole Gallouet

Woudschoten conference, Sept. 25-27 2024

Optimal transport. Let $c: M \times N \to \mathbb{R}$ is a cost function (e.g. c(x, y) = ||x - y||)

Optimal transport. Let $c: M \times N \to \mathbb{R}$ is a cost function (e.g. c(x, y) = ||x - y||)

Monge Problem (1781): Find a map $T: M \to N$ that minimizes $(MP) = \inf \int_M c(x, T(x)) d\mu(x)$ under the constraint that $T_{\sharp}\mu = \nu$ (i.e $\mu(T^{-1}(A)) = \nu(A)$ for every A)

Optimal transport. Let $c: M \times N \to \mathbb{R}$ is a cost function (e.g. c(x, y) = ||x - y||)

Monge Problem (1781): Find a map $T: M \to N$ that minimizes $(MP) = \inf \int_M c(x, T(x))d\mu(x)$ under the constraint that $T_{\sharp}\mu = \nu$ (i.e $\mu(T^{-1}(A)) = \nu(A)$ for every A)

Stability: Let $T_1 : \mu_1 \to \nu_1$ and $T_2 : \mu_2 \to \nu_2$. We want: $\mu_1 \sim \mu_2$ and $\nu_1 \sim \nu_2 \implies T_1 \sim T_2$

2 - 3

Optimal transport. Let $c: M \times N \to \mathbb{R}$ is a cost function (e.g. c(x, y) = ||x - y||)

Monge Problem (1781): Find a map $T: M \to N$ that minimizes $(MP) = \inf \int_M c(x, T(x))d\mu(x)$ under the constraint that $T_{\sharp}\mu = \nu$ (i.e $\mu(T^{-1}(A)) = \nu(A)$ for every A)

Stability: Let
$$T_1: \mu_1 \to \nu_1$$
 and $T_2: \mu_2 \to \nu_2$. We want $\mu_1 \sim \mu_2$ and $\nu_1 \sim \nu_2 \implies T_1 \sim T_2$

Motivations:

• CV of numerical approaches: semi-discrete methods, discrete methods.

• Convergence results: Villani's book Old and New 2008.

- Convergence results: Villani's book Old and New 2008.
- Local quantitative results : assuming regularity of one map.
- \rightsquigarrow [Ambrosio-Gigli, 11]: around Lipschitz map, $c(x, y) = ||x y||^2$.
- \rightsquigarrow [Ambrosio-Glaudo-Trevisan, 19] generalized to squared distance on 2manifold,
- \rightsquigarrow [Li-Nochetto, 20]: Stability with both source and target measure.

- Convergence results: Villani's book Old and New 2008.
- Local quantitative results : assuming regularity of one map.
- \rightsquigarrow [Ambrosio-Gigli, 11]: around Lipschitz map, $c(x, y) = ||x y||^2$.
- \rightsquigarrow [Ambrosio-Glaudo-Trevisan, 19] generalized to squared distance on 2manifold, \rightarrow [Li-Nochetto, 20]: Stability with both source and target measure.
 - Global quantitative results
- \rightsquigarrow [Berman, 21]: α -Holder-stability ($\alpha = 1/(2^{d-1}(d+2))$)
- \rightsquigarrow [Mérigot-Delalande-Chazal, 21]: with $\alpha = 1/6$.

- Convergence results: Villani's book Old and New 2008.
- Local quantitative results : assuming regularity of one map.
- \rightsquigarrow [Ambrosio-Gigli, 11]: around Lipschitz map, $c(x, y) = \|x y\|^2$.
- \rightsquigarrow [Ambrosio-Glaudo-Trevisan, 19] generalized to squared distance on 2manifold, \rightarrow [Li-Nochetto, 20]: Stability with both source and target measure.
 - Global quantitative results
- \rightsquigarrow [Berman, 21]: α -Holder-stability ($\alpha = 1/(2^{d-1}(d+2))$)
- \rightsquigarrow [Mérigot-Delalande-Chazal, 21]: with $\alpha = 1/6$.

Results hold for quadratic cost on \mathbb{R}^d or manifold \rightsquigarrow Motivation: generalize (local) results to other costs and manifolds

3 - 4

Theorem [Ambrosio-Gigli 11, Mérigot-Delalande Chazal 19] Let X, Y be compact domains of \mathbb{R}^d , $T_i : X \to Y$ be optimal transport maps between μ and ν_i (i = 0, 1). If μ is absolutely continuous and T_0 is Lipschitz, then $\|T_1 - T_0\|_{L^2(\mu)} \leq C \left(W_1(\nu_1, \nu_0)\right)^{\frac{1}{2}}$.

• Local result: around T_0 Lipschitz map.

Theorem [Ambrosio-Gigli 11, Mérigot-Delalande Chazal 19] Let X, Y be compact domains of \mathbb{R}^d , $T_i : X \to Y$ be optimal transport maps between μ and ν_i (i = 0, 1). If μ is absolutely continuous and T_0 is Lipschitz, then $\|T_1 - T_0\|_{L^2(\mu)} \leq C \left(W_1(\nu_1, \nu_0)\right)^{\frac{1}{2}}$.

• Local result: around T_0 Lipschitz map.

• The proof is based on the following property $T = \nabla \varphi$, where φ is a convex function (Brenier theorem) $\nabla \varphi$ is K-Lipschitz $\iff \varphi^*$ is 1/K-strongly convex (Legendre transform)

Theorem [Ambrosio-Gigli 11, Mérigot-Delalande Chazal 19] Let X, Y be compact domains of \mathbb{R}^d , $T_i : X \to Y$ be optimal transport maps between μ and ν_i (i = 0, 1). If μ is absolutely continuous and T_0 is Lipschitz, then $\|T_1 - T_0\|_{L^2(\mu)} \leq C \left(W_1(\nu_1, \nu_0)\right)^{\frac{1}{2}}$.

• Local result: around T_0 Lipschitz map.

• The proof is based on the following property $T = \nabla \varphi$, where φ is a convex function (Brenier theorem) $\nabla \varphi$ is K-Lipschitz $\iff \varphi^*$ is 1/K-strongly convex (Legendre transform)

In order to generalize to any cost function $c: X \times Y \rightarrow \mathbb{R}$ \rightsquigarrow notion of *c*-strongly concave functions.

4 - 3

Outline

Part 1: Stability

- Optimal Transport and strong c concavity
- Stability under strong *c*-concavity
- Sufficient conditions for strong *c*-concavity
- Applications to the reflector problem

Part 2: Generated Jacobian Equation

- Case 1: Mirror for Point source light (Far Field and Near Field)
- Case 2: Mirror for Parallel source light (Far Field and Near Field)
- Semi-discrete Generated Jacobian equation

Let M, N be Riemannian manifolds, $c: M \times N \to \mathbb{R} \cup \{+\infty\}$ be a (lsc) cost function, μ and ν probability measures on M and N.

Monge Problem: Find a map $T: M \rightarrow N$ that minimizes

$$(MP) = \inf \int_M c(x, T(x)) d\mu(x)$$

under the constraint that $T_{\sharp}\mu = \nu$.

Let M, N be Riemannian manifolds, $c: M \times N \to \mathbb{R} \cup \{+\infty\}$ be a (lsc) cost function, μ and ν probability measures on M and N.

Monge Problem: Find a map $T: M \rightarrow N$ that minimizes

$$(MP) = \inf \int_{M} c(x, T(x)) d\mu(x)$$

under the constraint that $T_{\sharp}\mu = \nu$.

Kantorovitch relaxation: Find a minimizer of

(Primal) =
$$\inf_{\gamma \in \Gamma(\mu,\nu)} \int_M c(x,y) d\gamma(x,y)$$

where $\Gamma(\mu, \nu)$ is the set of transport plans between μ and ν : $\Gamma(\mu, \nu) = \begin{cases} \gamma \in \mathcal{P}(M \times N), & \gamma(A \times N) = \mu(A) \quad \forall A \subset M \\ \gamma(M \times B) = \nu(B) \quad \forall B \subset N \end{cases} \end{cases}$

Let M, N be Riemannian manifolds, $c: M \times N \to \mathbb{R} \cup \{+\infty\}$ be a (lsc) cost function, μ and ν probability measures on M and N.

Monge Problem: Find a map $T: M \rightarrow N$ that minimizes

$$(MP) = \inf \int_{M} c(x, T(x)) d\mu(x)$$

under the constraint that $T_{\sharp}\mu = \nu$.

Kantorovitch relaxation: Find a minimizer of

$$(\text{Primal}) = \inf_{\gamma \in \Gamma(\mu,\nu)} \int_M c(x,y) d\gamma(x,y)$$

where $\Gamma(\mu, \nu)$ is the set of transport plans between μ and ν : $\Gamma(\mu, \nu) = \begin{cases} \gamma \in \mathcal{P}(M \times N), & \gamma(A \times N) = \mu(A) \quad \forall A \subset M \\ \gamma(M \times B) = \nu(B) \quad \forall B \subset N \end{cases} \end{cases}$

Wasserstein distance $W_p(\mu,\nu) = \left(\inf_{\gamma \in \Gamma(\mu,\nu)} \int_M d_M(x,y)^p d\gamma(x,y)\right)^{1/p}$ 6 - 3

Let M, N be Riemannian manifolds, $c: M \times N \to \mathbb{R} \cup \{+\infty\}$ be a (lsc) cost function, μ and ν probability measures on M and N.

Monge Problem: Find a map $T: M \rightarrow N$ that minimizes

$$(MP) = \inf \int_M c(x, T(x)) d\mu(x)$$

under the constraint that $T_{\sharp}\mu = \nu$.

Dual Kantorovitch problem: Find $\varphi : M \to \mathbb{R}$ and $\psi : N \to \mathbb{R}$ s.t $(\text{Dual}) = \sup \int_{M} \varphi(x) d\mu(x) + \int_{N} \psi(y) d\nu(y)$ where $\varphi(x) + \psi(y) \leq c(x, y)$ for every x, y.

Let M, N be Riemannian manifolds, $c: M \times N \to \mathbb{R} \cup \{+\infty\}$ be a (lsc) cost function, μ and ν probability measures on M and N.

Monge Problem: Find a map $T: M \rightarrow N$ that minimizes

$$(MP) = \inf \int_M c(x, T(x)) d\mu(x)$$

under the constraint that $T_{\sharp}\mu = \nu$.

Dual Kantorovitch problem: Find $\varphi : M \to \mathbb{R}$ and $\psi : N \to \mathbb{R}$ s.t $(\text{Dual}) = \sup \int_{M} \varphi(x) d\mu(x) + \int_{N} \psi(y) d\nu(y)$ where $\varphi(x) + \psi(y) \leq c(x, y)$ for every x, y.

• If
$$(\varphi, \psi)$$
 maximizes (Dual) then
 $\varphi(x) = \inf_{y \in M} c(x, y) - \psi(y)$

Let M, N be Riemannian manifolds, $c: M \times N \to \mathbb{R} \cup \{+\infty\}$ be a (lsc) cost function, μ and ν probability measures on M and N.

Monge Problem: Find a map $T: M \rightarrow N$ that minimizes

$$(MP) = \inf \int_{M} c(x, T(x)) d\mu(x)$$

under the constraint that $T_{\sharp}\mu = \nu$.

Dual Kantorovitch problem: Find $\varphi : M \to \mathbb{R}$ and $\psi : N \to \mathbb{R}$ s.t $(\text{Dual}) = \sup \int_M \varphi(x) d\mu(x) + \int_N \psi(y) d\nu(y)$ where $\varphi(x) + \psi(y) \leq c(x, y)$ for every x, y.

• If (φ, ψ) maximizes (Dual) then $\varphi(x) = \inf_{y \in M} c(x, y) - \psi(y)$ • φ is c-concave

Let M, N be Riemannian manifolds, $c: M \times N \to \mathbb{R} \cup \{+\infty\}$ be a (lsc) cost function, μ and ν probability measures on M and N.

Monge Problem: Find a map $T: M \rightarrow N$ that minimizes

$$(MP) = \inf \int_{M} c(x, T(x)) d\mu(x)$$

under the constraint that $T_{\sharp}\mu = \nu$.

Dual Kantorovitch problem: Find $\varphi : M \to \mathbb{R}$ and $\psi : N \to \mathbb{R}$ s.t $(\text{Dual}) = \sup \int_{M} \varphi(x) d\mu(x) + \int_{N} \psi(y) d\nu(y)$ where $\varphi(x) + \psi(y) \leq c(x, y)$ for every x, y.

• If (φ, ψ) maximizes (Dual) then $\varphi(x) = \inf_{y \in M} c(x, y) - \psi(y)$ • φ is c-concave

• If in addition T is a solution of (MP), then $T(x) \in \operatorname{argmin}_{y \in N} c(x,y) - \psi(y)$ 6 - 7

Let M, N be Riemannian manifolds, $c: M \times N \to \mathbb{R} \cup \{+\infty\}$ be a (lsc) cost function, μ and ν probability measures on M and N.

Monge Problem: Find a map $T: M \rightarrow N$ that minimizes

$$(MP) = \inf \int_{M} c(x, T(x)) d\mu(x)$$

under the constraint that $T_{\sharp}\mu = \nu$.

Dual Kantorovitch problem: Find $\varphi : M \to \mathbb{R}$ and $\psi : N \to \mathbb{R}$ s.t $(\text{Dual}) = \sup \int_{M} \varphi(x) d\mu(x) + \int_{N} \psi(y) d\nu(y)$ where $\varphi(x) + \psi(y) \leq c(x, y)$ for every x, y.

• If (φ, ψ) maximizes (Dual) then $\varphi(x) = \inf_{y \in M} c(x, y) - \psi(y)$ $\varphi(x) = \inf_{y \in M} \phi(x, y) - \psi(y)$

• If in addition T is a solution of (MP), then $T(x) \in \operatorname{argmin}_{y \in N} c(x, y) - \psi(y)$ 6 - 8

Definition: A function $\psi : N \to \mathbb{R} \cup \{-\infty\}$ is c-concave if there exists a function $\varphi : M \to \mathbb{R} \cup \{-\infty\}$ s.t. $\psi(y) = \inf_{x \in M} c(x, y) - \varphi(x)$

Definition: A function $\psi : N \to \mathbb{R} \cup \{-\infty\}$ is c-concave if there exists a function $\varphi : M \to \mathbb{R} \cup \{-\infty\}$ s.t. $\psi(y) = \inf_{x \in M} c(x, y) - \varphi(x) =: \varphi^{c}(y)$

• $\psi = \varphi^c$ is the c-conjuguate of φ .

Definition: A function $\psi : N \to \mathbb{R} \cup \{-\infty\}$ is c-concave if there exists a function $\varphi : M \to \mathbb{R} \cup \{-\infty\}$ s.t. $\psi(y) = \inf_{x \in M} c(x, y) - \varphi(x) =: \varphi^{c}(y)$

• $\psi = \varphi^c$ is the c-conjuguate of φ .

• Let $\partial^c \psi(y) = \{x \in M \mid \forall z \in N \quad c(x,y) - \psi(y) \leq c(x,z) - \psi(z)\}$ be the c-superdifferential. We have

 ψ is c-concave $\iff \forall y \in N \ \partial^c \psi(y) \neq \emptyset$

Definition: A function $\psi : N \to \mathbb{R} \cup \{-\infty\}$ is c-concave if there exists a function $\varphi : M \to \mathbb{R} \cup \{-\infty\}$ s.t. $\psi(y) = \inf_{x \in M} c(x, y) - \varphi(x) =: \varphi^{c}(y)$

• $\psi = \varphi^c$ is the c-conjuguate of φ .

• Let $\partial^c \psi(y) = \{x \in M \mid \forall z \in N \quad c(x,y) - \psi(y) \leq c(x,z) - \psi(z)\}$ be the c-superdifferential. We have

 ψ is c-concave $\iff \forall y \in N \ \partial^c \psi(y) \neq \emptyset$

Definition: A function $\psi : N \to \mathbb{R} \cup \{-\infty\}$ is c-concave if there exists a function $\varphi : M \to \mathbb{R} \cup \{-\infty\}$ s.t. $\psi(y) = \inf_{x \in M} c(x, y) - \varphi(x) =: \varphi^{c}(y)$

• $\psi = \varphi^c$ is the c-conjuguate of φ .

• Let $\partial^c \psi(y) = \{x \in M \mid \forall z \in N \quad c(x,y) - \psi(y) \leq c(x,z) - \psi(z)\}$ be the c-superdifferential. We have

 ψ is c-concave $\iff \forall y \in N \ \partial^c \psi(y) \neq \emptyset$

Definition: A function $\psi : N \to \mathbb{R} \cup \{-\infty\}$ is c-concave if there exists a function $\varphi : M \to \mathbb{R} \cup \{-\infty\}$ s.t. $\psi(y) = \inf_{x \in M} c(x, y) - \varphi(x) =: \varphi^{c}(y)$

• $\psi = \varphi^c$ is the c-conjuguate of φ .

• Let $\partial^c \psi(y) = \{x \in M \mid \forall z \in N \quad c(x,y) - \psi(y) \leq c(x,z) - \psi(z)\}$ be the c-superdifferential. We have

 ψ is c-concave $\iff \forall y \in N \ \partial^c \psi(y) \neq \emptyset$

Particular case: When $c(x, y) = \langle x | y \rangle$, we have

• ψ is *c*-concave $\iff \psi$ is concave

•
$$\partial^c \psi(y) = \partial^+ \psi(y) := \{x \in M \mid \forall z \in N \quad \psi(z) \leq \psi(y) + \langle x | z - y \rangle \}$$

- 6

Notion of strong *c*-concavity

Definition [Gallouet,Mérigot,T] A c-concave function ψ is *c*-strongly concave on a set $D \subset M \times N$ with modulus ω if for every x, y, z such that $(x, y) \in D, (x, z) \in D$ and $x \in \partial^c \psi(y)$, one has

 $c(x,y) - \psi(y) \leq c(x,z) - \psi(z) - \omega(d_N(y,z))$

Notion of strong *c*-concavity

Definition [Gallouet,Mérigot,T] A c-concave function ψ is *c*-strongly concave on a set $D \subset M \times N$ with modulus ω if for every x, y, z such that $(x, y) \in D, (x, z) \in D$ and $x \in \partial^c \psi(y)$, one has

 $c(x,y) - \psi(y) \leq c(x,z) - \psi(z) - \omega(d_N(y,z))$

Particular case: When $c(x, y) = \langle x | y \rangle$ and $\omega(r) = \alpha r^2/2$, it coincides with the notion of strong concavity : A concave function $\psi : \mathbb{R}^d \to \mathbb{R}$ is α -strongly concave iff for every y

Outline

Part 1: Stability

- Optimal Transport and strong \boldsymbol{c} concavity
- Stability under strong *c*-concavity
- Sufficient conditions for strong *c*-concavity
- Applications to the reflector problem

Part 2: Generated Jacobian Equation

- Case 1: Mirror for Point source light (Far Field and Near Field)
- Case 2: Mirror for Parallel source light (Far Field and Near Field)
- Semi-discrete Generated Jacobian equation

Theorem 1 [Gallouet,Mérigot,T]. Let $D \subseteq M \times N$ be a compact set and $c: M \times N \to \mathbb{R} \cup \{+\infty\}$ of class C^1 on D. Let $\mu \in \mathcal{P}(M)$ and $\nu_0, \nu_1 \in \mathcal{P}(N)$. We assume T_i is an optimal transport map from μ to ν_i with associated potential $\psi_i: N \to \mathbb{R}$ (i = 0, 1) such that:

- ψ_0 is Lipschitz on N and c-concave on D.
- ψ_1 is Lipschitz on N and strongly c-concave with modulus ω on D.
- The maps T_i satisfies for any $x \in M, (x, T_i(x)) \in D$.

Then

 $\int_{M} \omega(\mathrm{d}_{N}(T_{0}(x), T_{1}(x))) \mathrm{d}\mu(x) \leq (\mathrm{Lip}(\psi_{0}) + \mathrm{Lip}(\psi_{1})) W_{1}(\nu_{0}, \nu_{1})$

Theorem 1 [Gallouet,Mérigot,T]. Let $D \subseteq M \times N$ be a compact set and $c: M \times N \to \mathbb{R} \cup \{+\infty\}$ of class C^1 on D. Let $\mu \in \mathcal{P}(M)$ and $\nu_0, \nu_1 \in \mathcal{P}(N)$. We assume T_i is an optimal transport map from μ to ν_i with associated potential $\psi_i: N \to \mathbb{R}$ (i = 0, 1) such that:

- ψ_0 is Lipschitz on N and c-concave on D.
- ψ_1 is Lipschitz on N and strongly c-concave with modulus ω on D.
- The maps T_i satisfies for any $x \in M, (x, T_i(x)) \in D$.

Then

 $\int_{M} \omega(\mathrm{d}_{N}(T_{0}(x), T_{1}(x))) \mathrm{d}\mu(x) \leq (\mathrm{Lip}(\psi_{0}) + \mathrm{Lip}(\psi_{1})) W_{1}(\boldsymbol{\nu_{0}}, \boldsymbol{\nu_{1}})$

Remark. If M and N are domains of \mathbb{R}^d and $\omega(r) = r^2$ then $\|T_1 - T_0\|_{L^2(\mu)}^2 \leq (\operatorname{Lip}(\psi_0) + \operatorname{Lip}(\psi_1))W_1(\nu_0, \nu_1)$

Theorem 1 [Gallouet,Mérigot,T]. Let $D \subseteq M \times N$ be a compact set and $c: M \times N \to \mathbb{R} \cup \{+\infty\}$ of class C^1 on D. Let $\mu \in \mathcal{P}(M)$ and $\nu_0, \nu_1 \in \mathcal{P}(N)$. We assume T_i is an optimal transport map from μ to ν_i with associated potential $\psi_i: N \to \mathbb{R}$ (i = 0, 1) such that:

- ψ_0 is Lipschitz on N and c-concave on D.
- ψ_1 is Lipschitz on N and strongly c-concave with modulus ω on D.
- The maps T_i satisfies for any $x \in M, (x, T_i(x)) \in D$.

Then

 $\int_{M} \omega(\mathrm{d}_{N}(T_{0}(x), T_{1}(x))) \mathrm{d}\mu(x) \leq (\mathrm{Lip}(\psi_{0}) + \mathrm{Lip}(\psi_{1})) W_{1}(\boldsymbol{\nu_{0}}, \boldsymbol{\nu_{1}})$

Remark. If M and N are domains of \mathbb{R}^d and $\omega(r) = r^2$ then $\|T_1 - T_0\|_{L^2(\mu)}^2 \leq (\operatorname{Lip}(\psi_0) + \operatorname{Lip}(\psi_1))W_1(\nu_0, \nu_1)$

- Justifies the semi-discrete approach
- Generalizes Ambrosio: replaces T_1 Lipschitz by ψ_1 strongly c-concave.

10 - 3

Theorem 1 [Gallouet,Mérigot,T]. Let $D \subseteq M \times N$ be a compact set and $c: M \times N \to \mathbb{R} \cup \{+\infty\}$ of class C^1 on D. Let $\mu \in \mathcal{P}(M)$ and $\nu_0, \nu_1 \in \mathcal{P}(N)$. We assume T_i is an optimal transport map from μ to ν_i with associated potential $\psi_i: N \to \mathbb{R}$ (i = 0, 1) such that:

- ψ_0 is Lipschitz on N and c concave on D.
- ψ_1 is Lipschitz on N and strongly c-concave with modulus ω on D.
- The maps T_i satisfies for any $x \in M, (x, T_i(x)) \in D$.

Then

 $\int_{M} \omega(\mathrm{d}_{N}(T_{0}(x), T_{1}(x))) \mathrm{d}\mu(x) \leq (\mathrm{Lip}(\psi_{0}) + \mathrm{Lip}(\psi_{1})) W_{1}(\boldsymbol{\nu_{0}}, \boldsymbol{\nu_{1}})$

Remark. If M and N are domains of \mathbb{R}^d and $\omega(r) = r^2$ then $\|T_1 - T_0\|_{L^2(\mu)}^2 \leq (\operatorname{Lip}(\psi_0) + \operatorname{Lip}(\psi_1))W_1(\nu_0, \nu_1)$

- Justifies the semi-discrete approach
- Generalizes Ambrosio: replaces T_1 Lipschitz by ψ_1 strongly c-concave.
- If $D = M \times N$ blue assumptions disappear

Proof. Since ψ_0 and ψ_1 are Lipschitz, Kantorovich-Rubinstein theorem:

$$\int_{N} \left(\psi_1 - \psi_0 \right) \mathrm{d}(\nu_1 - \nu_0) \leq (\mathrm{Lip}(\psi_0) + \mathrm{Lip}(\psi_1)) W_1(\nu_0, \nu_1)$$

Proof. Since ψ_0 and ψ_1 are Lipschitz, Kantorovich-Rubinstein theorem:

$$\int_{N} \left(\psi_1 - \psi_0 \right) \mathrm{d}(\nu_1 - \nu_0) \leq (\mathrm{Lip}(\psi_0) + \mathrm{Lip}(\psi_1)) W_1(\nu_0, \nu_1)$$

On the other hand

$$\int_{N} \left(\psi_{1} - \psi_{0} \right) \mathrm{d}(\nu_{1} - \nu_{0}) = \int_{N} \psi_{1} \mathrm{d}(\nu_{1} - \nu_{0}) + \int_{N} \psi_{0} \mathrm{d}(\nu_{0} - \nu_{1})$$
Proof. Since ψ_0 and ψ_1 are Lipschitz, Kantorovich-Rubinstein theorem:

$$\int_{N} \left(\psi_1 - \psi_0 \right) \mathrm{d}(\nu_1 - \nu_0) \leq (\mathrm{Lip}(\psi_0) + \mathrm{Lip}(\psi_1)) W_1(\nu_0, \nu_1)$$

$$\int_{N} \left(\psi_{1} - \psi_{0} \right) \mathrm{d}(\nu_{1} - \nu_{0}) = \left(\int_{N} \psi_{1} \mathrm{d}(\nu_{1} - \nu_{0}) + \left(\int_{N} \psi_{0} \mathrm{d}(\nu_{0} - \nu_{1}) \right) \right)$$

Proof. Since ψ_0 and ψ_1 are Lipschitz, Kantorovich-Rubinstein theorem:

$$\int_{N} \left(\psi_1 - \psi_0\right) \mathrm{d}(\nu_1 - \nu_0) \leq (\mathrm{Lip}(\psi_0) + \mathrm{Lip}(\psi_1)) W_1(\nu_0, \nu_1)$$

$$\begin{split} & \int_{N} \left(\psi_{1} - \psi_{0} \right) \mathrm{d}(\nu_{1} - \nu_{0}) = \underbrace{\int_{N} \psi_{1} \mathrm{d}(\nu_{1} - \nu_{0})}_{N} + \underbrace{\int_{N} \psi_{0} \mathrm{d}(\nu_{0} - \nu_{1})}_{B} \\ & A = \int_{N} \psi_{1} \mathrm{d} \nu_{1} - \int_{N} \psi_{1} \mathrm{d} \nu_{0} \\ & = \int_{M} \psi_{1}(T_{1}(x)) \mathrm{d} \mu(x) - \int_{M} \psi_{1}(T_{0}(x)) \mathrm{d} \mu(x) \quad \text{(since } T_{i\sharp}\mu = \nu_{i}\text{)} \\ & = \int_{M} \left(\psi_{1}(T_{1}(x)) - \psi_{1}(T_{0}(x)) \right) \mathrm{d} \mu(x) \end{split}$$

Proof. Since ψ_0 and ψ_1 are Lipschitz, Kantorovich-Rubinstein theorem:

$$\int_{N} \left(\psi_1 - \psi_0 \right) \mathrm{d}(\nu_1 - \nu_0) \leq (\mathrm{Lip}(\psi_0) + \mathrm{Lip}(\psi_1)) W_1(\nu_0, \nu_1)$$

$$\begin{split} & \int_{N} \left(\psi_{1} - \psi_{0} \right) \mathrm{d}(\nu_{1} - \nu_{0}) = \left(\int_{N} \psi_{1} \mathrm{d}(\nu_{1} - \nu_{0}) + \left(\int_{N} \psi_{0} \mathrm{d}(\nu_{0} - \nu_{1}) \right) \right) \mathrm{d} A \\ & = \int_{N} \psi_{1} \mathrm{d} \nu_{1} - \int_{N} \psi_{1} \mathrm{d} \nu_{0} \\ & = \int_{M} \psi_{1}(T_{1}(x)) \mathrm{d} \mu(x) - \int_{M} \psi_{1}(T_{0}(x)) \mathrm{d} \mu(x) \quad (\text{since } T_{i\sharp}\mu = \nu_{i}) \\ & = \int_{M} \left(\psi_{1}(T_{1}(x)) - \psi_{1}(T_{0}(x)) \right) \mathrm{d} \mu(x) \quad \text{By strong } c\text{-concavity of } \psi_{1} \\ & \ge \int_{M} c(x, T_{1}(x)) - c(x, T_{0}(x)) + \omega(\mathrm{d}_{N}(T_{0}(x), T_{1}(x))) \mathrm{d} \mu(x) \quad \text{A} \end{split}$$

Proof. Since ψ_0 and ψ_1 are Lipschitz, Kantorovich-Rubinstein theorem:

$$\int_{N} \left(\psi_1 - \psi_0 \right) \mathrm{d}(\nu_1 - \nu_0) \leq (\mathrm{Lip}(\psi_0) + \mathrm{Lip}(\psi_1)) W_1(\nu_0, \nu_1)$$

$$\int_{N} (\psi_{1} - \psi_{0}) d(\nu_{1} - \nu_{0}) = \int_{N} \psi_{1} d(\nu_{1} - \nu_{0}) + \int_{N} \psi_{0} d(\nu_{0} - \nu_{1}) B$$

$$A \ge \int_{M} c(x, T_1(x)) - c(x, T_0(x)) + \omega(d_N(T_0(x), T_1(x))) d\mu(x)$$

Proof. Since ψ_0 and ψ_1 are Lipschitz, Kantorovich-Rubinstein theorem:

$$\int_{N} \left(\psi_1 - \psi_0 \right) \mathrm{d}(\nu_1 - \nu_0) \leq (\mathrm{Lip}(\psi_0) + \mathrm{Lip}(\psi_1)) W_1(\nu_0, \nu_1)$$

On the other hand

$$\int_{N} (\psi_{1} - \psi_{0}) d(\nu_{1} - \nu_{0}) = \int_{N} \psi_{1} d(\nu_{1} - \nu_{0}) + \int_{N} \psi_{0} d(\nu_{0} - \nu_{1}) B$$

$$A \ge \int_{M} c(x, T_1(x)) - c(x, T_0(x)) + \omega(d_N(T_0(x), T_1(x))) d\mu(x)$$

Similarly, since ψ_0 is c-concave

$$\boldsymbol{B} \ge \int_{M} c(\boldsymbol{x}, T_0(\boldsymbol{x})) - c(\boldsymbol{x}, T_1(\boldsymbol{x})) \mathrm{d}\boldsymbol{\mu}(\boldsymbol{x})$$

Proof. Since ψ_0 and ψ_1 are Lipschitz, Kantorovich-Rubinstein theorem:

$$\int_{N} \left(\psi_1 - \psi_0\right) \mathrm{d}(\nu_1 - \nu_0) \leq (\mathrm{Lip}(\psi_0) + \mathrm{Lip}(\psi_1)) W_1(\nu_0, \nu_1)$$

On the other hand

$$\int_{N} (\psi_{1} - \psi_{0}) d(\nu_{1} - \nu_{0}) = \int_{N} \psi_{1} d(\nu_{1} - \nu_{0}) + \int_{N} \psi_{0} d(\nu_{0} - \nu_{1}) B$$

$$A \ge \int_{M} c(x, T_1(x)) - c(x, T_0(x)) + \omega(d_N(T_0(x), T_1(x))) d\mu(x)$$

Similarly, since ψ_0 is c-concave

$$\boldsymbol{B} \ge \int_{M} c(x, T_0(x)) - c(x, T_1(x)) \mathrm{d}\mu(x)$$

Summing A and B

$$\int_{N} \left(\psi_1 - \psi_0 \right) \mathrm{d}(\nu_1 - \nu_0) \ge \int_{M} \omega(\mathrm{d}_N(T_0(x), T_1(x))) \mathrm{d}\mu(x)$$

11 - 8

Theorem 2 [Gallouet,Mérigot,T]. Let $\mu \in \mathcal{P}(M)$, $\nu \in \mathcal{P}(N)$, $D \subseteq M \times N$ be a compact set. Let T be an optimal transport map from μ to ν with associated potential $\psi : N \to \mathbb{R}$ such that:

- ψ is strongly c-concave with modulus ω on D.
- For any $x \in M$, $(x, T(x)) \in D$.

$$\int_{M \times N} \omega(\mathrm{d}_N(T(x), y)) \mathrm{d}\gamma(x, y) \leq \int_{M \times N} c(x, y) \mathrm{d}\gamma(x, y) - \int_M c(x, T(x)) \mathrm{d}\mu(x)$$

Theorem 2 [Gallouet,Mérigot,T]. Let $\mu \in \mathcal{P}(M)$, $\nu \in \mathcal{P}(N)$, $D \subseteq M \times N$ be a compact set. Let T be an optimal transport map from μ to ν with associated potential $\psi : N \to \mathbb{R}$ such that:

- ψ is strongly c-concave with modulus ω on D.
- For any $x \in M$, $(x, T(x)) \in D$.

Theorem 2 [Gallouet,Mérigot,T]. Let $\mu \in \mathcal{P}(M)$, $\nu \in \mathcal{P}(N)$, $D \subseteq M \times N$ be a compact set. Let T be an optimal transport map from μ to ν with associated potential $\psi : N \to \mathbb{R}$ such that:

- ψ is strongly c-concave with modulus ω on D.
- For any $x \in M$, $(x, T(x)) \in D$.

$$\int_{M \times N} \omega(\mathrm{d}_N(T(x), y)) \mathrm{d}\gamma(x, y) \leq \underbrace{\int_{M \times N} c(x, y) \mathrm{d}\gamma(x, y)}_{M \times N} - \underbrace{\int_M c(x, T(x)) \mathrm{d}\mu(x)}_{M \times N}$$
suboptimality gap = cost of γ – Minimal cost

Theorem 2 [Gallouet,Mérigot,T]. Let $\mu \in \mathcal{P}(M)$, $\nu \in \mathcal{P}(N)$, $D \subseteq M \times N$ be a compact set. Let T be an optimal transport map from μ to ν with associated potential $\psi : N \to \mathbb{R}$ such that:

- ψ is strongly c-concave with modulus ω on D.
- For any $x \in M$, $(x, T(x)) \in D$.

12 - 4

$$\int_{M \times N} \omega(\mathrm{d}_N(T(x), y)) \mathrm{d}\gamma(x, y) \leq \underbrace{\int_{M \times N} c(x, y) \mathrm{d}\gamma(x, y)}_{M \times N} - \underbrace{\int_M c(x, T(x)) \mathrm{d}\mu(x)}_{M \times N}$$
suboptimality gap = cost of γ – Minimal cost

Corollary. If
$$\omega(r) = Cr^2$$
, then
 $W_1(\gamma, \gamma_T) \leq \frac{1}{\sqrt{C}} (\text{suboptimality gap})^{1/2}$
where $\gamma_T = (Id, T)_{\#}\mu$ and W_1 is
for the distance $d_{M \times N} = d_M + d_N$.

Stability w.r.t source and target measure

Theorem 3 [Gallouet,Mérigot,T]. Let $c: M \times N \to \mathbb{R}$ be Lipschitz, $\mu, \tilde{\mu} \in \mathcal{P}(M)$ and $\nu, \tilde{\nu} \in \mathcal{P}(N)$. Let $T: (M, \mu) \to (N, \nu)$ be an optimal transport map and $\tilde{\gamma}$ be an optimal transport plan between $\tilde{\mu}$ and $\tilde{\nu}$. We know that T is induced by a c-concave potential $\psi: N \to \mathbb{R}$. We assume that

• ψ is strongly c-concave potential with $\omega(r) = Cr^2$ on $D = M \times N$. Then

$$W_1(\gamma_T, \tilde{\gamma}) \leq \varepsilon + \sqrt{\frac{2 \operatorname{Lip}(c)}{C} \varepsilon}, \quad \text{where } \varepsilon := W_1(\tilde{\mu}, \mu) + W_1(\nu, \tilde{\nu}).$$

Stability w.r.t source and target measure

Theorem 3 [Gallouet,Mérigot,T]. Let $c: M \times N \to \mathbb{R}$ be Lipschitz, $\mu, \tilde{\mu} \in \mathcal{P}(M)$ and $\nu, \tilde{\nu} \in \mathcal{P}(N)$. Let $T: (M, \mu) \to (N, \nu)$ be an optimal transport map and $\tilde{\gamma}$ be an optimal transport plan between $\tilde{\mu}$ and $\tilde{\nu}$. We know that T is induced by a c-concave potential $\psi: N \to \mathbb{R}$. We assume that

• ψ is strongly c-concave potential with $\omega(r) = Cr^2$ on $D = M \times N$. Then

$$W_1(\gamma_T, \tilde{\gamma}) \leq \varepsilon + \sqrt{\frac{2\operatorname{Lip}(c)}{C}}\varepsilon, \quad \text{where } \varepsilon := W_1(\tilde{\mu}, \mu) + W_1(\nu, \tilde{\nu}).$$

• It is a consequence of the previous "suboptimality gap inequality"

Outline

Part 1: Stability

- Optimal Transport and strong c concavity
- Stability under strong *c*-concavity
- Sufficient conditions for strong *c*-concavity
- Applications to the reflector problem

Part 2: Generated Jacobian Equation

- Case 1: Mirror for Point source light (Far Field and Near Field)
- Case 2: Mirror for Parallel source light (Far Field and Near Field)
- Semi-discrete Generated Jacobian equation

Let $c: M \times N \to \mathbb{R} \cup \{+\infty\}$. We assume that it satisfies (Stwist).

(STwist): c is C^2 , $\nabla_x c(x, \cdot)$ and $\nabla_y c(\cdot, y)$ are injective, $\nabla_{xy}^2 c$ is non-singular.

Let $c: M \times N \to \mathbb{R} \cup \{+\infty\}$. We assume that it satisfies (Stwist).

(STwist): c is C^2 , $\nabla_x c(x, \cdot)$ and $\nabla_y c(\cdot, y)$ are injective, $\nabla_{xy}^2 c$ is non-singular.

• $\nabla_x c(x, \cdot)$: $\operatorname{Dom}(\nabla_x c) \subseteq N \longrightarrow \operatorname{I} x \subseteq T_x M$ is one-to-one

Let $c: M \times N \to \mathbb{R} \cup \{+\infty\}$. We assume that it satisfies (Stwist).

(STwist): c is C^2 , $\nabla_x c(x, \cdot)$ and $\nabla_y c(\cdot, y)$ are injective, $\nabla_{xy}^2 c$ is non-singular.

- $\nabla_x c(x, \cdot)$: $\operatorname{Dom}(\nabla_x c) \subseteq N \longrightarrow \operatorname{I} x \subseteq T_x M$ is one-to-one
- The c-exponential is $\operatorname{c-exp}_x := (-\nabla_x c(x, \cdot))^{-1}$

 $c\text{-exp}: \quad Ix \subseteq T_xM \quad \longrightarrow \quad Dom(\nabla_x c) \subseteq N$

Let $c: M \times N \to \mathbb{R} \cup \{+\infty\}$. We assume that it satisfies (Stwist).

(STwist): c is C^2 , $\nabla_x c(x, \cdot)$ and $\nabla_y c(\cdot, y)$ are injective, $\nabla_{xy}^2 c$ is non-singular.

- $\nabla_x c(x, \cdot)$: $\operatorname{Dom}(\nabla_x c) \subseteq N \longrightarrow \operatorname{I} x \subseteq T_x M$ is one-to-one
- The c-exponential is $\operatorname{c-exp}_x := (-\nabla_x c(x, \cdot))^{-1}$

 $c\text{-exp}: \quad Ix \subseteq T_xM \quad \longrightarrow \quad Dom(\nabla_x c) \subseteq N$

• A c-segment $(y_t)_{1 \le t \le 1} = [y_0, y_1]_x$ is the image by $c - exp_x$ of a segment.

Let $c: M \times N \to \mathbb{R} \cup \{+\infty\}$. We assume that it satisfies (Stwist).

(STwist): c is C^2 , $\nabla_x c(x, \cdot)$ and $\nabla_y c(\cdot, y)$ are injective, $\nabla_{xy}^2 c$ is non-singular.

- $\nabla_x c(x, \cdot)$: $\operatorname{Dom}(\nabla_x c) \subseteq N \longrightarrow \operatorname{I} x \subseteq T_x M$ is one-to-one
- The c-exponential is $\operatorname{c-exp}_x := (-\nabla_x c(x, \cdot))^{-1}$

 $c\text{-exp}: \quad \mathbf{I}x \subseteq T_x M \quad \longrightarrow \quad \mathrm{Dom}(\nabla_x c) \subseteq N$

• A c-segment $(y_t)_{1 \le t \le 1} = [y_0, y_1]_x$ is the image by $c - exp_x$ of a segment.

◆
$$D \subset M \times N$$
 is symmetrically *c*-convex if
 $(x, y_0) \in D$ and $(x, y_1) \in D \implies \forall t \in [0, 1] (x, y_t) \in D$
 $(x_0, y) \in D$ and $(x_1, y) \in D \implies \forall t \in [0, 1] (x_t, y) \in D$
15 - 5

Let $c: M \times N \to \mathbb{R} \cup \{+\infty\}$ of class C^4 that satisfies (Stwist).

Definition. The Ma-Trüdinger-Wang tensor is defined for $(x_0, y_0) \in D$ and $(\eta, \zeta) \in T_{x_0}M \times T_{y_0}N$ by

$$\begin{split} \mathfrak{S}_c(x_0,y_0)(\eta,\zeta) &= -\frac{3}{2} \frac{\partial^2}{\partial q_{\tilde{\eta}}^2} \frac{\partial^2}{\partial y_{\zeta}^2} \left(c(\operatorname{c-exp}_{y_0}(q),y) \right) \Big|_{y=y_0,q=-\nabla_y c(x_0,y_0)} \\ \text{with } \tilde{\eta} &= -\nabla_{xy}^2 c(x_0,y_0) \eta \in T_{y_0} N \end{split}$$

Here $-\nabla_{xy}^2 c(x_0, y_0) : T_{x_0} M \times T_{y_0} N \to \mathbb{R}$ is a non singular bilinear form. the linear form $\tilde{\eta} : T_{y_0} N \to \mathbb{R}$ is identified with a vector.

Definition The weak MTW condition (MTWw) is satisfied on a compact set $D \subseteq M \times N$ if there exists a constant C > 0 such that for any $(x_0, y_0) \in D$ and $(\eta, \zeta) \in T_{x_0}M \times T_{y_0}N$ we have $\mathfrak{S}_c(x_0, y_0)(\eta, \zeta) \ge -C|\langle \zeta | \tilde{\eta} \rangle |\|\zeta\| \|\eta\|$

• 4th order condition that appears in the regularity theory [MTW 2005]

Theorem [Gallouet,Mérigot,T]. Let $D \subseteq M \times N$ be a closed symmetrically c-concave set and $c \in C^4(D, \mathbb{R})$ that satisfy (STwist) and (MTWw) on D. Let $\mathcal{Y} = \operatorname{proj}_N(D)$ and $\psi \in C^2(\mathcal{Y}, \mathbb{R})$ be *c*-concave on D. If there exists $\lambda > 0$ such that for any $y \in \mathcal{Y}$

 $\forall x \in \partial^c \psi(y) \quad D^2_{yy} c(x, y) - D^2 \psi(x) \ge \lambda I_d \quad (*)$

Then ψ is strongly c-concave on D with modulus $\omega(r) = Cr^2$, where C > 0 is a constant depending on c, λ and D.

Theorem [Gallouet, Mérigot, T]. Let $D \subseteq M \times N$ be a closed symmetrically c-concave set and $c \in C^4(D, \mathbb{R})$ that satisfy (STwist) and (MTWw) on D. Let $\mathcal{Y} = \operatorname{proj}_N(D)$ and $\psi \in C^2(\mathcal{Y}, \mathbb{R})$ be *c*-concave on D. If there exists $\lambda > 0$ such that for any $y \in \mathcal{Y}$ $\forall x \in \partial^c \psi(y) \quad D^2_{yy}c(x, y) - D^2\psi(x) \ge \lambda I_d$ (*) Then ψ is strongly *c*-concave on D with modulus $\omega(r) = Cr^2$ where C > 0is a constant depending on c, λ and D.

quantified version —

Theorem [Gallouet, Mérigot, T]. Let $D \subseteq M \times N$ be a closed symmetrically c-concave set and $c \in C^4(D, \mathbb{R})$ that satisfy (STwist) and (MTWw) on D. Let $\mathcal{Y} = \operatorname{proj}_N(D)$ and $\psi \in C^2(\mathcal{Y}, \mathbb{R})$ be *c*-concave on D. If there exists $\lambda > 0$ such that for any $y \in \mathcal{Y}$ $\forall x \in \partial^c \psi(y) \quad D^2_{yy}c(x, y) - D^2\psi(x) \ge \lambda I_d$ (*) Then ψ is strongly *c*-concave on D with modulus $\omega(r) = Cr^2$ where C > 0is a constant depending on c, λ and D.

quantified version —

• We can replace (*) by: The map $T: \mathcal{X} \to \mathcal{Y}$ $T(x) = \operatorname{argmin}_y c(x, y) - \psi(y)$

is of class \mathcal{C}^1 and satisfies for any $x \in \mathcal{X}$, $(x, T(x)) \in D$

Theorem [Gallouet, Mérigot, T]. Let $D \subseteq M \times N$ be a closed symmetrically c-concave set and $c \in C^4(D, \mathbb{R})$ that satisfy (STwist) and (MTWw) on D. Let $\mathcal{Y} = \operatorname{proj}_N(D)$ and $\psi \in C^2(\mathcal{Y}, \mathbb{R})$ be c-concave on D. If there exists $\lambda > 0$ such that for any $y \in \mathcal{Y}$ $\forall x \in \partial^c \psi(y) \quad D^2_{yy}c(x, y) - D^2\psi(x) \ge \lambda I_d$ (*) Then ψ is strongly c-concave on D with modulus $\omega(r) = Cr^2$ where C > 0is a constant depending on c, λ and D.

— quantified version —

• We can replace (*) by: The map $T: \mathcal{X} \to \mathcal{Y}$ $T(x) = \operatorname{argmin}_y c(x, y) - \psi(y)$

is of class \mathcal{C}^1 and satisfies for any $x \in \mathcal{X}$, $(x, T(x)) \in D$

Can apply to optimal transport maps to get stability results

17 - 4

Theorem [Gallouet, Mérigot, T]. Let $D \subseteq M \times N$ be a closed symmetrically c-concave set and $c \in C^4(D, \mathbb{R})$ that satisfy (STwist) and (MTWw) on D. Let $\mathcal{Y} = \operatorname{proj}_N(D)$ and $\psi \in C^2(\mathcal{Y}, \mathbb{R})$ be c-concave on D. If there exists $\lambda > 0$ such that for any $y \in \mathcal{Y}$ $\forall x \in \partial^c \psi(y) \quad D^2_{yy}c(x, y) - D^2\psi(x) \ge \lambda I_d$ (*) Then ψ is strongly c-concave on D with modulus $\omega(r) = Cr^2$ where C > 0is a constant depending on c, λ and D.

—— quantified version —

• We can replace (*) by: The map $T: \mathcal{X} \to \mathcal{Y}$ $T(x) = \operatorname{argmin}_y c(x, y) - \psi(y)$

is of class \mathcal{C}^1 and satisfies for any $x \in \mathcal{X}$, $(x, T(x)) \in D$

- Can apply to optimal transport maps to get stability results
- One difficulty: to show that T is supported on a set D where c is smooth.

17 - 5

Theorem [Gallouet,Mérigot,T]. Let $D \subseteq M \times N$ be a closed symmetrically c-concave set and $c \in C^4(D, \mathbb{R})$ that satisfy (STwist) and (MTWw) on D. Let $\mathcal{Y} = \operatorname{proj}_N(D)$ and $\psi \in C^2(\mathcal{Y}, \mathbb{R})$ be c-concave on D. If there exists $\lambda > 0$ such that for any $y \in \mathcal{Y}$ $\forall x \in \partial^c \psi(y) \quad D^2_{yy}c(x, y) - D^2\psi(x) \ge \lambda I_d$ (*) Then ψ is strongly c-concave on D with modulus $\omega(r) = Cr^2$ where C > 0is a constant depending on c, λ and D.

—— quantified version —

• We can replace (*) by: The map $T: \mathcal{X} \to \mathcal{Y}$ $T(x) = \operatorname{argmin}_y c(x, y) - \psi(y)$

is of class \mathcal{C}^1 and satisfies for any $x \in \mathcal{X}$, $(x, T(x)) \in D$

- Can apply to optimal transport maps to get stability results
- One difficulty: to show that T is supported on a set D where c is smooth. 17 - 6 \longrightarrow has to be treated on each application

Outline

Part 1: Stability

- Optimal Transport and strong c concavity
- Stability under strong *c*-concavity
- Sufficient conditions for strong *c*-concavity
- Applications to the reflector problem

Part 2: Generated Jacobian Equation

- Case 1: Mirror for Point source light (Far Field and Near Field)
- Case 2: Mirror for Parallel source light (Near Field)
- Semi-discrete Generated Jacobian equation

• The problem:

 μ source light

 ν target distribution on the sphere

• Equivalent to optimal transport pb on \mathbb{S}^2 for $c(x,y)=-\ln(1-\langle x|y\rangle).$ [Wang 2003, Oliker 2003]

- Equivalent to optimal transport pb on \mathbb{S}^2 for $c(x,y)=-\ln(1-\langle x|y\rangle).$ [Wang 2003, Oliker 2003]
- Numerical methods: ν_d is a discretization of ν .

19 - 4

e.g. certified Newton algorithm [Mérigot, Meyron, T.]

Simulated reflected light

Theorem [Gallouet,Mérigot,T]. Let $c(x,y) = -\ln(1 - \langle x | y \rangle)$, μ and ν_0 be measures with $C^{1,1}$ densities. Then for all r > 0, there exists C > 0 such that for every measure ν_1 (e.g. ν_d) satisfying

$$\sup_{y\in\mathbb{S}^{d-1}}\nu_1(B(x,r))<\frac{1}{8}$$

one has

$$d_M(T_0(x), T_1(x))^2 d\mu(x) \leq C W_1(\nu_0, \nu_1)$$

where $T_i: \mu \rightarrow \nu_i$ are optimal transport maps.

Theorem [Gallouet,Mérigot,T]. Let $c(x,y) = -\ln(1 - \langle x|y \rangle)$, μ and ν_0 be measures with $C^{1,1}$ densities. Then for all r > 0, there exists C > 0 such that for every measure ν_1 (e.g. ν_d) satisfying

$$\sup_{y \in \mathbb{S}^{d-1}} \nu_1(B(x,r)) < \frac{1}{8} \qquad \nu_1 \text{ can be discrete}$$

one has

$$d_M(T_0(x), T_1(x))^2 d\mu(x) \leq C W_1(\nu_0, \nu_1)$$

where $T_i: \mu \rightarrow \nu_i$ are optimal transport maps.

Theorem [Gallouet,Mérigot,T]. Let $c(x, y) = -\ln(1 - \langle x | y \rangle)$, μ and ν_0 be measures with $C^{1,1}$ densities. Then for all r > 0, there exists C > 0 such that for every measure ν_1 (e.g. ν_d) satisfying

one has

$$\begin{split} \sup_{y \in \mathbb{S}^{d-1}} \nu_1(B(x,r)) < \frac{1}{8} & \quad \nu_1 \text{ can be discrete} \\ \int_{\mathbb{S}^{d-1}} \mathrm{d}_M(T_0(x), T_1(x))^2 \mathrm{d}\mu(x) \leqslant C \ W_1(\nu_0, \nu_1) \\ \end{split}$$
where $T_i : \mu \to \nu_i$ are optimal transport maps.

• c is not differentiable on $\{x = y\}$.

• We therefore set $D_{\varepsilon} = \{(x, y) \in \mathbb{S}^{d-1} \times \mathbb{S}^{d-1} \mid d_{\mathbb{S}^{d-1}}(x, y) \ge \varepsilon\}$

Theorem [Gallouet, Mérigot, T]. Let $c(x, y) = -\ln(1 - \langle x | y \rangle)$, μ and ν_0 be measures with $C^{1,1}$ densities. Then for all r > 0, there exists C > 0 such that for every measure ν_1 (e.g. ν_d) satisfying

one has

$$\int_{\mathbb{S}^{d-1}} d_M(T_0(x), T_1(x))^2 d\mu(x) \leq C \ W_1(\nu_0, \nu_1)$$
where $T_i : \mu \to \nu_i$ are optimal transport maps.

• c is not differentiable on $\{x = y\}$.

• We therefore set $D_{\varepsilon} = \{(x, y) \in \mathbb{S}^{d-1} \times \mathbb{S}^{d-1} \mid d_{\mathbb{S}^{d-1}}(x, y) \ge \varepsilon\}$

Sketch of proof

• We show any optimal $\gamma \in \Gamma(\mu, \nu)$ is supported on D_{ε} (similar results of [Gangbo, Oliker 2007], [Buttazzo 2018] and [Loeper 2011] for non discrete measures).

- We show that D_{ε} is symmetrically *c*-convex.
 - \rightsquigarrow strong c-concavity and stability

20 - 4

one

Outline

Part 1: Stability

- Optimal Transport and strong c concavity
- Stability under strong *c*-concavity
- Sufficient conditions for strong *c*-concavity
- Applications to the reflector problem

Part 2: Generated Jacobian Equation

- Case 1: Mirror for Point source light (Far Field and Near Field)
- Case 2: Mirror for Parallel source light (Near Field)
- Semi-discrete Generated Jacobian equation

\rightsquigarrow We have to solve an OT problem

Problem (FF): Find
$$\psi \in \mathbb{R}^N$$
 such that
 $\forall i \in \{1, \dots, N\} \qquad \mu(Lag_i(\psi)) = \nu_i.$
where $Lag_i(\psi) = \{x \in \mathbb{S}_0^2, \ c(x, y_i) + \psi_i \leq c(x, y_j) + \psi_j \quad \forall j\},$
 $\psi_i := \log(\kappa_i), \text{ and } c(x, y) = -\log(1 - \langle x | y \rangle).$

 $\begin{array}{l} \rightsquigarrow \text{ The mirror is parametrized by} \\ \mathbb{S}^{d-1} \rightarrow \mathbb{R}^{d} \\ x \mapsto \left(\min_{i} \frac{e^{\psi_{i}}}{1 - \langle x | y_{i} \rangle}\right) x \\ e^{\min_{i} c(x, y_{i}) + \psi_{i}} = e^{\psi^{c}(x)} \\ \text{where } \psi^{c}(x) = \min_{y_{i}} c(x, y) - \psi(y_{i}) \\ \text{is the } c\text{-conjugate function of } \psi. \end{array}$

ccl : $x \in \mathbb{S}_0^2 \mapsto e^{\psi^c(x)}x$ parametrizes the mirror.

Punctual light at origin o, μ measure on S_o^2 Prescribed near-field: $\nu = \sum_i \nu_i \delta_{y_i}$ on \mathbb{R}^3

Punctual light at origin o, μ measure on S_o^2 Prescribed near-field: $\nu = \sum_i \nu_i \delta_{y_i}$ on \mathbb{R}^3

Punctual light at origin o, μ measure on S_o^2 Prescribed near-field: $\nu = \sum_i \nu_i \delta_{y_i}$ on \mathbb{R}^3

$$R(\vec{a}) = \partial \left(\bigcap_{i=1}^{N} E_i(a_i) \right)$$

 y_3

Punctual light at origin o, μ measure on S_o^2 Prescribed near-field: $\nu = \sum_i \nu_i \delta_{y_i}$ on \mathbb{R}^3

$$R(\vec{a}) = \partial \left(\bigcap_{i=1}^{N} E_i(a_i) \right)$$
$$V_i(\vec{a}) = \pi_{\mathcal{S}_o^2} (R(\vec{a}) \cap \partial E_i(a_i))$$

Punctual light at origin o, μ measure on S_o^2 Prescribed near-field: $\nu = \sum_i \nu_i \delta_{y_i}$ on \mathbb{R}^3

 $E_i(a_i) = \text{convex hull of ellipsoid with focals } o$ and y_i , and major axis length a_i

$$R(\vec{a}) = \partial \left(\bigcap_{i=1}^{N} E_i(a_i) \right)$$
$$V_i(\vec{a}) = \pi_{\mathcal{S}_o^2}(R(\vec{a}) \cap \partial E_i(a_i))$$

Near-field reflector antenna problem:

Oliker '04

Problem (NF): Find a_1, \ldots, a_N such that for every i, $\mu(V_i(\vec{a})) = \nu_i$. amount of light reflected to the point y_i .

Computation of visibility cells:

Computation of visibility cells:

 $\partial E_i(\kappa_i)$ is parameterized in radial coordinates by $\rho_i: x \in \mathbb{S}_o^2 \mapsto \frac{a_i^2 - \|y_i\|^2/4}{a_i - \langle x | y_i \rangle/2}$ where $2a_i$ is the length of major axis

Computation of visibility cells:

 $\partial E_i(\kappa_i)$ is parameterized in radial coordinates by $\rho_i: x \in \mathbb{S}_o^2 \mapsto \frac{a_i^2 - \|y_i\|^2/4}{a_i - \langle x | y_i \rangle/2}$ where $2a_i$ is the length of major axis $u_i(\vec{x}) = a_i^2 - \|y_i\|^2/4 = a_i^2 - \|y_i\|^2/4$

$$x \in \mathcal{V}_i(\vec{\kappa}) \iff \frac{a_i^2 - \|y_i\|^2 / 4}{a_i - \langle x | y_i \rangle / 2} \leqslant \frac{a_j^2 - \|y_j\|^2 / 4}{a_j - \langle x | y_j \rangle / 2}$$

Computation of visibility cells:

$$\begin{array}{l} \partial E_i(\kappa_i) \text{ is parameterized in radial coordinates by} \\ \rho_i: x \in \mathbb{S}_o^2 \mapsto \frac{a_i^2 - \|y_i\|^2/4}{a_i - \langle x|y_i \rangle/2} \\ \text{where } 2a_i \text{ is the length of major axis } & \text{Not linear in } a_j \\ x \in V_i(\vec{\kappa}) \iff \frac{a_i^2 - \|y_i\|^2/4}{a_i - \langle x|y_i \rangle/2} \leqslant \frac{a_j^2 - \|y_j\|^2/4}{a_j - \langle x|y_j \rangle/2} \end{array}$$

Computation of visibility cells:

 $\begin{array}{l} \partial E_i(\kappa_i) \text{ is parameterized in radial coordinates by} \\ \rho_i: x \in \mathbb{S}_o^2 \mapsto \frac{a_i^2 - \|y_i\|^2/4}{a_i - \langle x | y_i \rangle/2} \\ \text{where } 2a_i \text{ is the length of major axis} \quad \text{Not linear in } a_j \\ x \in \mathcal{V}_i(\vec{\kappa}) \iff \frac{a_i^2 - \|y_i\|^2/4}{a_i - \langle x | y_i \rangle/2} \leqslant \frac{a_j^2 - \|y_j\|^2/4}{a_j - \langle x | y_j \rangle/2} \\ \iff \frac{a_i - \langle x | y_i \rangle/2}{a_i^2 - \|y_i\|^2/4} \geqslant \frac{a_j - \langle x | y_j \rangle/2}{a_j^2 - \|y_j\|^2/4} \\ \iff G(x, y_i, 1/a_i) \geqslant G(x, y_j, 1/a_j) \text{ with } \psi_i = 1/a_i \end{array}$

Computation of visibility cells:

$$\begin{array}{l} \partial E_i(\kappa_i) \text{ is parameterized in radial coordinates by} \\ \rho_i: x \in \mathbb{S}_o^2 \mapsto \frac{a_i^2 - \|y_i\|^2/4}{a_i - \langle x | y_i \rangle/2} \\ \text{where } 2a_i \text{ is the length of major axis} \quad \text{Not linear in } a_j \\ x \in V_i(\vec{\kappa}) \iff \frac{a_i^2 - \|y_i\|^2/4}{a_i - \langle x | y_i \rangle/2} \leqslant \frac{a_j^2 - \|y_j\|^2/4}{a_j - \langle x | y_j \rangle/2} \\ \iff \frac{a_i - \langle x | y_i \rangle/2}{a_i^2 - \|y_i\|^2/4} \geqslant \frac{a_j - \langle x | y_j \rangle/2}{a_j^2 - \|y_j\|^2/4} \\ \iff G(x, y_i, 1/a_i) \geqslant G(x, y_j, 1/a_j) \text{ with } \psi_i = 1/a_i \end{array}$$

→ Generated Jacobian Equation [Trudinger, 14]

Problem (FF): Find ψ_1, \ldots, ψ_N such that $\forall i \in \{1, \cdots, N\} \qquad \mu(Lag_i(\vec{\psi})) = \nu_i.$ where $Lag_i(\psi) = \{x \in \mathbb{S}_0^2, \ G(x, y_i, \psi_i) \ge G(x, y_j, \psi_j) \quad \forall j\}.$

→ We have to solve the Generated Jacobian equation

Problem (FF): Find ψ_1, \ldots, ψ_N such that $\forall i \in \{1, \cdots, N\} \qquad \mu(Lag_i(\vec{\psi})) = \nu_i.$ where $Lag_i(\psi) = \{x \in \mathbb{S}_0^2, \ G(x, y_i, \psi_i) \ge G(x, y_j, \psi_j) \quad \forall j\}.$

 \rightsquigarrow We have to solve the Generated Jacobian equation

Problem (FF): Find ψ_1, \ldots, ψ_N such that $\forall i \in \{1, \cdots, N\} \qquad \mu(Lag_i(\vec{\psi})) = \nu_i.$ where $Lag_i(\psi) = \{x \in \mathbb{S}_0^2, \ G(x, y_i, \psi_i) \ge G(x, y_j, \psi_j) \quad \forall j\}.$

 \rightsquigarrow The mirror is parametrized by

$$\begin{array}{rccc} \mathbb{S}^{d-1} & \to & \mathbb{R}^d \\ x & \mapsto & (\max_i G(x, y_i, \psi_i)) x \end{array}$$

 \rightsquigarrow We have to solve the Generated Jacobian equation

Problem (FF): Find ψ_1, \ldots, ψ_N such that $\forall i \in \{1, \cdots, N\} \qquad \mu(Lag_i(\vec{\psi})) = \nu_i.$ where $Lag_i(\psi) = \{x \in \mathbb{S}_0^2, \ G(x, y_i, \psi_i) \ge G(x, y_j, \psi_j) \quad \forall j\}.$

 \rightsquigarrow The mirror is parametrized by

$$\begin{split} \mathbb{S}^{d-1} &\to \mathbb{R}^{d} \\ x &\mapsto (\max_{i} G(x, y_{i}, \psi_{i})) x \\ & \psi^{G}(x) \\ \end{split}$$
 where $\psi^{G}(x) = \max_{y_{i}} G(x, y_{i}, \psi(y_{i}))$ is the *G*-conjugate function of ψ .

 \rightsquigarrow We have to solve the Generated Jacobian equation

Problem (FF): Find ψ_1, \ldots, ψ_N such that $\forall i \in \{1, \cdots, N\} \qquad \mu(Lag_i(\vec{\psi})) = \nu_i.$ where $Lag_i(\psi) = \{x \in \mathbb{S}_0^2, \ G(x, y_i, \psi_i) \ge G(x, y_j, \psi_j) \quad \forall j\}.$

 \rightsquigarrow The mirror is parametrized by

$$\begin{split} \mathbb{S}^{d-1} &\to \mathbb{R}^d \\ x &\mapsto (\max_i G(x, y_i, \psi_i)) x \\ \hline \psi^G(x) \\ \end{split}$$
 where $\psi^G(x) = \max_{y_i} G(x, y_i, \psi(y_i))$
is the *G*-conjugate function of ψ .

ccl : $x \in \mathbb{S}_0^2 \mapsto \psi^G(x)x$ parametrizes the mirror.

Outline

Part 1: Stability

- Optimal Transport and strong c concavity
- Stability under strong *c*-concavity
- Sufficient conditions for strong *c*-concavity
- Applications to the reflector problem

Part 2: Generated Jacobian Equation

- Case 1: Mirror for Point source light (Far Field and Near Field)
- Case 2: Mirror for Parallel source light (Near Field)
- Semi-discrete Generated Jacobian equation

 \rightsquigarrow Generated Jacobian Equation in \mathbb{R}^2

Problem (FF): Find ψ_1, \ldots, ψ_N such that $\forall i \in \{1, \cdots, N\} \qquad \mu(Lag_i(\vec{\psi})) = \nu_i.$ where $Lag_i(\psi) = \{x \in \mathbb{S}_0^2, \ G(x, y_i, v_i) \ge G(x, y_j, v_j) \quad \forall j\}.$

28 - 4

Outline

Part 1: Stability

- Optimal Transport and strong c concavity
- Stability under strong *c*-concavity
- Sufficient conditions for strong *c*-concavity
- Applications to the reflector problem

Part 2: Generated Jacobian Equation

- Case 1: Mirror for Point source light (Far Field and Near Field)
- Case 2: Mirror for Parallel source light (Near Field)
- Semi-discrete Generated Jacobian equation

Generated Jacobian Equation

Definition: $G: \Omega \times Y \times \mathbb{R} \to \mathbb{R}$ is called a generating function if it satisfies : (Reg): $\forall \alpha \in \mathbb{R}, \sup_{(x,y,v)\in\Omega\times Y\times]-\infty,\alpha]} |\nabla_x G(x,y,v)| < +\infty$ (Mono): $\forall (x,y,v) \in \Omega \times Y \times \mathbb{R} : \partial_v G(x,y,v) < 0$ (Twist): $(y,v) \mapsto (G(x,y,v), \nabla_x G(x,y,v))$ is injective for any $x \in X$ (UC) $\forall y \in Y, \lim_{v \to -\infty} \inf_{x \in \Omega} G(x,y,v) = +\infty$

Definition: The Laguerre cells are : $Lag_i(\psi) = \{x \in \Omega, G(x, y_i, v_i) \ge G(x, y_j, v_j) \quad \forall j\}.$

The **Generated Jacobian equation** consists in finding $\psi \in \mathbb{R}^N$ such that $H(\psi) = \nu$ where the function H is given by $H(\psi) = (\mu(Lag_i(\psi)))_{1 \leq i \leq N}$.

Exemple:

Far field parallel reflector : $G(x, y, v) = \langle x, p \rangle - v$ Near field parallel reflector $G(x, y, v) = \frac{1}{2v} - \frac{v}{2}||x - y||^2$

Differential of H

Recall: $H(\psi) = (\mu(Lag_i(\psi)))_{1 \leq i \leq N}$.

Proposition: Under an hypothesis of genericity of Y , H is of class \mathcal{C}^1

$$\frac{\partial H_j}{\partial \psi_i}(\psi) = \int_{Lag_{ij}(\psi)} \rho(x) \frac{|\partial_v G(x, y_i, \psi_i)|}{||\nabla_x G_j(x, \psi) - \nabla_x G_i(x, \psi)||} d\mathcal{H}^{d-1}(x) \ge 0 \text{ for } i \neq j$$

$$\frac{\partial H_i}{\partial \psi_i}(\psi) = -\sum_{j\neq i} \frac{\partial H_j}{\partial \psi_i}(\psi)$$

with
$$G_i(x, \psi) = G(x, y_i, \psi_i)$$
.

Differential of H

Recall: $H(\psi) = (\mu(Lag_i(\psi)))_{1 \leq i \leq N}$.

Proposition: Under an hypothesis of genericity of Y , H is of class \mathcal{C}^1

$$\frac{\partial H_j}{\partial \psi_i}(\psi) = \int_{Lag_{ij}(\psi)} \rho(x) \frac{|\partial_v G(x, y_i, \psi_i)|}{||\nabla_x G_j(x, \psi) - \nabla_x G_i(x, \psi)||} d\mathcal{H}^{d-1}(x) \ge 0 \text{ for } i \neq j$$

$$\frac{\partial H_i}{\partial \psi_i}(\psi) = -\sum_{j\neq i} \frac{\partial H_j}{\partial \psi_i}(\psi)$$

with
$$G_i(x,\psi) = G(x,y_i,\psi_i)$$
.

 $\rightsquigarrow DH$ is not symmetric $\rightsquigarrow (1, \cdots, 1)$ is not in the Kernel of DH

Properties of DH

$$\mathcal{S}^+ = \left\{ \psi \in \mathbb{R}^N | \forall i, H_i(\psi) > 0 \right\}$$

Proposition:

- $DH(\psi)$ the differential of H is of rank N-1 on \mathcal{S}^+ .
- The image of DH is $im(DH(\psi)) = 1^{\perp}$ where $1 = (1, \dots, 1) \in \mathbb{R}^N$.
- $ker(DH(\psi)) = Span(w)$ with $w_i > 0$

Proposition: (Unique descent direction) Let $\psi \in S^+$, then the system: $\begin{cases} DH(\psi)d = H(\psi) - \nu \\ d_1 = 0 \end{cases}$ has a unique solution.

Damped Newton Algorithm

Equation $H(\psi) = \nu$ where $H(\psi) = (\rho(\text{Lag}_i(\psi)))_{1 \le i \le N}$ Admissible domain: $S^{\delta} = \{\psi \in \{\alpha\} \times [\beta, \gamma]^{(N-1)} \; \forall i, H_i(\psi) \ge \delta\}$

 $\rho(\operatorname{Lag}_i(\psi)) \geqslant \delta - -$

Damped Newton Algorithm

Equation $H(\psi) = \nu$ where $H(\psi) = (\rho(\text{Lag}_i(\psi)))_{1 \le i \le N}$ Admissible domain: $S^{\delta} = \{\psi \in \{\alpha\} \times [\beta, \gamma]^{(N-1)} \; \forall i, H_i(\psi) \ge \delta\}$

 $\rho(\operatorname{Lag}_i(\psi)) \geqslant \delta - - -$

Damped Newton algorithm: for solving $H(\psi) = \nu$ **Input:** $\psi^0 \in S^{\delta}$ and precision ε

Loop: \rightarrow Calculate d^k s.t. $DH(\psi^k)d^k = H(\psi^k) - \nu$ and $d_1^k = 0$

$$\rightarrow \text{ Define } \psi^{\kappa,\tau} = \psi^{\kappa} - \tau d^{\kappa}$$

$$\rightarrow \tau^{k} = \max\{\tau \in 2^{-\mathbb{N}} \mid \psi^{k\tau} \in \mathcal{S}^{\delta} \text{ and } \|H(\psi^{k\tau}) - \nu\| \leq (1 - \frac{\tau}{2}) \|H(\psi^{k}) - \nu\|\}$$

$$\rightarrow \psi_{k+1} := \psi_{k}^{\tau_{k}}$$

Damped Newton Algorithm

Equation $H(\psi) = \nu$ where $H(\psi) = (\rho(\text{Lag}_i(\psi)))_{1 \le i \le N}$ Admissible domain: $S^{\delta} = \{\psi \in \{\alpha\} \times [\beta, \gamma]^{(N-1)} \; \forall i, H_i(\psi) \ge \delta\}$

 $\rho(\operatorname{Lag}_{i}(\psi)) \geq \delta$ Damped Newton algorithm: for solving $H(\psi) = \nu$ Input: $\psi^{0} \in S^{\delta}$ and precision ε Loop: \rightarrow Calculate d^{k} s.t. $DH(\psi^{k})d^{k} = H(\psi^{k}) - \nu$ and $d_{1}^{k} = 0$ \rightarrow Define $\psi^{k,\tau} = \psi^{k} - \tau d^{k}$ $\rightarrow \tau^{k} = \max\{\tau \in 2^{-\mathbb{N}} \mid \psi^{k\tau} \in S^{\delta} \text{ and } \|H(\psi^{k\tau}) - \nu\| \leq (1 - \frac{\tau}{2}) \|H(\psi^{k}) - \nu\|\}$ $\rightarrow \psi_{k+1} := \psi_{k}^{\tau_{k}}$

Theorem(Gallouet, Mérigot, T., CVPDE 2022): Let $X \subset \Omega$ be a compact set, $\rho \in C^0(X)$, $\{\rho > 0\} \cap int(X)$ is path-connected, and Y satisfies generic assumptions w.r.t. ∂X , $\delta \leq \min_{1 \leq i \leq N} \nu_i/2$. Then there is linear convergence:

$$|H(\psi^{k+1}) - \nu|| \leq \left(1 - \frac{\tau^*}{2}\right) ||H(\psi^k) - \nu||$$

targeted image $N = 400 \times 480$

Collimated source

• Computation of Laguerre cells:

Laguerre cells

• Computation of Laguerre cells:

→ Mobius diagrams:

Definition: Given $P = \{p_i\} \subseteq \mathbb{R}^d$ and $(\omega_i) \in \mathbb{R}^N$ $\operatorname{Mob}(p_i) := \{x \in \mathbb{R}^d; i = \arg \min_j \lambda_i ||x - p_j||^2 + \omega_j\}$

Laguerre cells

• Computation of Laguerre cells:

→ Mobius diagrams:

Definition: Given $P = \{p_i\} \subseteq \mathbb{R}^d$ and $(\omega_i) \in \mathbb{R}^N$ $\operatorname{Mob}(p_i) := \{x \in \mathbb{R}^d; i = \arg \min_j \lambda_i ||x - p_j||^2 + \omega_j\}$

Lemma: (Boissonnat, Wormser, Yvinec, 07) $Lag_i(\psi) = Mob(p_i) = Proj_{z=0}(Pow_i \cap P)$ where $Proj_{z=0}$ is the orthogonal projection. and P is the paraboloid $z = x^2 + y^2$

Laguerre cells

targeted image $N=400\times480$

Collimated source

Comparison Far Field / Near Field

Visibility cells in Far Field

Visibility cells in Near Field
Putting three copies of the same lens shifted by h...

36 - 1

Putting three copies of the same lens shifted by h...

 \dots produces a superposition of images shifted by h.

Putting three copies of the same lens shifted by h...

 \dots produces a superposition of images shifted by h.

Putting three copies of the same lens shifted by h...

 \dots produces a superposition of images shifted by h.

One wants to produce images at finite distance \longrightarrow near-field problem.

36 - 4

NF pb: Build a component \mathcal{R} sending light towards $z_1, \ldots, z_N \in \{D\} \times \mathbb{R}^2$ (instead of $y_1, \ldots, y_N \in \mathbb{S}^2$))

NF pb: Build a component \mathcal{R} sending light towards $z_1, \ldots, z_N \in \{D\} \times \mathbb{R}^2$ We approximate solutions to the NF problem using a sequence of FF pb.

Step 0: Solve far-field problem with target $y_i^{(0)} = z_i / ||z_i||$

37 - 2

NF pb: Build a component \mathcal{R} sending light towards $z_1, \ldots, z_N \in \{D\} \times \mathbb{R}^2$ We approximate solutions to the NF problem using a sequence of FF pb.

Step 0: Solve far-field problem with target $y_i^{(0)} = z_i / ||z_i||$

NF pb: Build a component \mathcal{R} sending light towards $z_1, \ldots, z_N \in \{D\} \times \mathbb{R}^2$ We approximate solutions to the NF problem using a sequence of FF pb.

Step 0: Solve far-field problem with target $y_i^{(0)} = z_i / ||z_i||$

NF pb: Build a component \mathcal{R} sending light towards $z_1, \ldots, z_N \in \{D\} \times \mathbb{R}^2$ We approximate solutions to the NF problem using a sequence of FF pb.

Step 0: Solve far-field problem with target $y_i^{(0)} = z_i/||z_i||$ **Step 1:** Solve far-field problem with target $y_i^{(1)} = (z_i - b_i^{(0)})/||z_i - b_i^{(0)}||$

NF pb: Build a component \mathcal{R} sending light towards $z_1, \ldots, z_N \in \{D\} \times \mathbb{R}^2$ We approximate solutions to the NF problem using a sequence of FF pb.

Step 0: Solve far-field problem with target $y_i^{(0)} = z_i/||z_i||$ **Step 1:** Solve far-field problem with target $y_i^{(1)} = (z_i - b_i^{(0)})/||z_i - b_i^{(0)}||$

Convergence of the algorithm

Target

1st iteration

2nd iteration

5th iteration

Pillows

Pillows

Pillows

Color channels

Color channels

Conclusion

Stabilily

- We propose a definition of strong *c*-concavity
- Several stability results under this assumption
- Provide a sufficient condition for strong concavity.
- Stability results in non imaging optics

Generated Jacobian Equation

- We extended an algorithm to Generated Jacobian Equation
- Each problem is a Monge-Ampère equation

Ongoing work

- Iterative OT to solve GJE ?
- Extended light
- Global stability results with general cost functions

Conclusion

Stabilily

- We propose a definition of strong *c*-concavity
- Several stability results under this assumption
- Provide a sufficient condition for strong concavity.
- Stability results in non imaging optics

Generated Jacobian Equation

• We extended an algorithm to Generated Jacobian Equation

Thank you

• Each problem is a Monge-Ampère equation

Ongoing work

- Iterative OT to solve GJE ?
- Extended light
- Global stability results with general cost functions