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Motivations: stability in optimal transport

Optimal transport. Let ¢c: M x N — R is a cost function (e.g. c(z,y) = |z — y|)

Monge Problem (1781): Find a map T : M — N that minimizes

(MP) = inf f (. T(x))dpu(z)
M
under the constraint that Ty = v (i.e (T~ (A)) = v(A) for every A)

Stability: Let 77 : u1 — v1 and 15 : us — v9. We want:

p1 ~ p2 and vy ~ g = 17 ~ 15

Motivations:

¢ CV of numerical approaches: semi-discrete methods, discrete methods.
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Previous results:

¢ Convergence results: Villani's book Old and New 2008.

¢ Local quantitative results : assuming regularity of one map.

¢

Ambrosio-Gigli,

¢

~~ [Li-Nochetto, 20

11]: around Lipschitz map, c(z,y) = |z — y|*.

Ambrosio-Glaudo-Trevisan, 19] generalized to squared distance on 2manifold,

. Stability with both source and target measure.

¢ Global quantitative results

~ [Berman, 21]: a-Holder-stability (v = 1/(297(d + 2)))

~+ [Mérigot-Delalande-Chazal, 21]: with a = 1/6.

Results hold for quadratic cost on R? or manifold

~~ Motivation
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¢ Local result: around 1 Lipschitz map.
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Theorem [Ambrosio-Gigli 11, Mérigot-Delalande Chazal 19] Let X, Y be compact
domains of R?, T; : X — Y be optimal transport maps between 1 and v;

(¢ =0,1). If uis absolutely continuous and 7Tj is Lipschitz, then

|77 — To L2y < C(Wi(vi,10))2 .

¢ Local result: around 1 Lipschitz map.

¢ The proof is based on the following property

T = Vi, where ¢ is a convex function (Brenier theorem)

Vi is K-Lipschitz <= ™ is 1/K-strongly convex  (Legendre transform)

In order to generalize to any cost functionc: X xY — R

~+ notion of c-strongly concave functions.
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Outline

Part 1: Stability
¢ Optimal Transport and strong ¢ concavity

¢ Stability under strong c-concavity
¢ Sufficient conditions for strong c-concavity

¢ Applications to the reflector problem

Part 2: Generated Jacobian Equation
¢ Case 1: Mirror for Point source light (Far Field and Near Field)

¢ Case 2: Mirror for Parallel source light (Far Field and Near Field)
¢ Semi-discrete Generated Jacobian equation
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Optimal Transport and c-concave functions

Let M, N be Riemannian manifolds, ¢: M x N — R u {+o0} be a (Isc) cost
function, i and v probability measures on M and V.

Monge Problem: Find a map T': M — N that minimizes

(MP)  inf f (. T(x))dpu(z)
M
under the constraint that Tyu = v.

Dual Kantorovitch problem: Find o : M - Rand ¢y : N — R s.t
(Dual) = sup | g(@)du(@) + | vy
N
where p(z) + Y(y) < c(x,y) for every x,y.

o If (©,1) maximizes (Dual) then _—*( is c-concave

Cx = inf,enr c(x,y) — (@

¢ If in addition T is a solution of (MP), then T is induced by 1)
6 g @(x) € argmin, ¢ yc(T,y) — w(f




c-concave functions
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function ¢ : M — R U {—0} s.t.

Y(y) = infeepn c(x,y) — o(z)
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c-concave functions

Definition: A function ¢ : N - R u {—o0} is c-concave if there exists a
function ¢ : M — R U {—0} s.t.

Y(y) = infzen c(z,y) — o(x) =: ©°(y)

¢ Y = ° is the c-conjuguate of .

o Let %Y(y) ={zre M |Vze N c(z,y) —(y) < c(z,2) —¢(2)} be
the c-superdifferential. We have

Y is c-concave <— Vye N 0U(y) # &

>

Particular case: When c(z,y) = (x|y), we have

’(\ slope x

¢ 7 is c-concave <= 1) is concave \

Y <

o P(y) =tY(y) :={xeM|Vze N (2) <¢ly)+ {(zx]z — y)}
7-6
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Notion of strong c-concavity

Definition [Gallouet,Mérigot, T] A c-concave function v is c-strongly concave
on aset D c M x N with modulus w if for every z, vy, z such that

(x,y) e D, (z,z) e D and x € 0°¢(y), one has
c(z,y) = P(y) < ez, 2) = P(2)—wldn(y; 2))



Notion of strong c-concavity

Definition [Gallouet,Mérigot, T] A c-concave function v is c-strongly concave
on aset D c M x N with modulus w if for every z, vy, z such that

(x,y) e D, (z,z) e D and x € 0°¢(y), one has
c(z,y) = P(y) < ez, 2) = P(2)—wldn(y; 2))

Particular case: When c(z,y) = {x|y) and w(r) = ar?/2, it coincides with the

notion of strong concavity : A concave function ¢ : R — R is a-strongly
concave iff for every y

Vo e dply) v(z) <vy) + ez —y) — [z~ y? e

‘ > Gz —yl?
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Part 1: Stability
¢ Optimal Transport and strong c concavity

¢ Stability under strong c-concavity
+ Sufficient conditions for strong c-concavity

¢ Applications to the reflector problem

Part 2: Generated Jacobian Equation
¢ Case 1: Mirror for Point source light (Far Field and Near Field)

¢ Case 2: Mirror for Parallel source light (Far Field and Near Field)
¢ Semi-discrete Generated Jacobian equation



Stability w.r.t target measure

Theorem 1 [Gallouet,Mérigot, T]. Let D < M x N be a compact set and
c: M x N —Ru{+w} of class C! on D. Let p€ P(M) and vg,v1 € P(N).
We assume T; is an optimal transport map from p to v, with associated
potential ©; : N — R (i = 0, 1) such that:

¢ g Is Lipschitz on N and c-concave on D.

¢ 1 Is Lipschitz on N and strongly c-concave with modulus w on D.

¢ The maps T; satisfies for any x € M,(x,T;(x)) € D.
Then

fM w(dw (To(x), Th (2)))du(z) < (Lip(to) + Lip(41)) Wi (vo, 1)
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Theorem 1 [Gallouet,Mérigot, T]. Let D < M x N be a compact set and
c: M x N —Ru{+w} of class C! on D. Let p€ P(M) and vg,v1 € P(N).
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potential ©; : N — R (i = 0, 1) such that:

¢ g Is Lipschitz on N and c-concave on D.

¢ 11 1s Lipschitz on N and strongly c-concave with modulus w on D.

¢ The maps T; satisfies for any x € M,(x,T;(x)) € D.
Then

fM w(dw (To(x), Th (2)))du(z) < (Lip(to) + Lip(41)) Wi (vo, 1)

Remark. If M and N are domains of R% and w(r) = r? then
ITy — TolZ2(,) < (Lip(vo) + Lip(31)) Wi (vo, v1)

¢ Justifies the semi-discrete approach
¢ Generalizes Ambrosio: replaces 17 Lipschitz by 11 strongly c-concave.
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Theorem 1 [Gallouet,Mérigot, T]. Let D < M x N be a compact set and
c: M x N —Ru{+w} of class C! on D. Let p€ P(M) and vg,v1 € P(N).
We assume T; is an optimal transport map from p to v, with associated
potential ©; : N — R (i = 0, 1) such that:

o g is Lipschitz-on-N-and cconrcaveon-
¢ 1 Is Hpsehttzon——and strongly c-concave with modulus w on D.

¢ - 1 1\ 1

Then

fM w(dw (To(x), Th (2)))du(z) < (Lip(to) + Lip(41)) Wi (vo, 1)

Remark. If M and N are domains of R% and w(r) = r? then
ITy — TolZ2(,) < (Lip(vo) + Lip(31)) Wi (vo, v1)

¢ Justifies the semi-discrete approach

¢ Generalizes Ambrosio: replaces 17 Lipschitz by 11 strongly c-concave.

10 4If D = M x N blue assumptions disappear




Stability w.r.t target measure

Proof. Since ¢y and 1, are Lipschitz, Kantorovich-Rubinstein theorem:

JN (% — ¢0> d(v1 — vp) < (Lip(¢pg) + Lip(vy1)) W1 (1o, 1)
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Proof. Since ¢y and 1, are Lipschitz, Kantorovich-Rubinstein theorem:

JN (% — ¢0) d(v1 — vp) < (Lip(¢pg) + Lip(vy1)) W1 (1o, 1)

On the other hand
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JN (% - ¢0) d(v1 — vp) < (Lip(¢pg) + Lip(vy1)) W1 (1o, 1)

On the other hand

JN (% — %)d(m — V) = ¢1d V1 — @{%d (vo — VD

.
A = ¢1dV1—J 1 d g
N N

r\

- | @@ ) - | eT@)dat)  (ince T = )
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_ ;4 (wl(Tl () — wl(To(rE))) d p(z)
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- | @@ ) - | eT@)dat)  (ince T = )
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Stability w.r.t target measure

Proof. Since ¢y and 1, are Lipschitz, Kantorovich-Rubinstein theorem:

JN (% - ¢0) d(v1 — vp) < (Lip(¢pg) + Lip(vy1)) W1 (1o, 1)

On the other hand

JN (1?1 — %)d(m —1p) S

%d V1 —@{wod (Vo — VD

A= JM c(x, Ty (x)) — c(x, To(x)) + w(dn (To(x

Similarly, since v is c-concave

B> fM (, To(x)) — e, T (x))dp(x)

Summing A and B

JN (% - %)d(m — ) = JMw(dN(TO(x),T1 (2)))dp(z)

11 -8




Error bounds for OT problems

Theorem 2 [Gallouet,Mérigot, T]. Let 1 € P(M), UV E P(N), D c M x N be a
compact set. Let 7" be an optimal transport map from 1 to v with associated

potential 1 : N — IR such that:
¢ 1 Is strongly c-concave with modulus won D.

o Foranyxe M, (z,T(z)) €
Then any transport plan v € I'(p, y) supported on D satisfies

r\

Jm Nw(dN(T( ©),y))a (e, y) JM N c(x,y)dy(z,y) — JM c(z,T(x))du(x)
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Error bounds for OT problems

Theorem 2 [Gallouet,Mérigot, T]. Let 1 € P(M), UV E P(N), D c M x N be a
compact set. Let 7' be an optimal transport map from p to v with associated

potential 1 : N — IR such that:
¢ 1 Is strongly c-concave with modulus w on D.

o Forany x e M, (x,T(x)) € D.
Then any transport plan v € I'(u, ) supported on D satisfies

J:w Nw(dN(T() y))dvy(z,y) @N (z,y)d( I‘D faﬁT du)

suboptimality gap = \cost of v — Minimal cost”

Corollary. If w(r) = Cr?, then !
Wi(y,vr) < \% (suboptimality gap)l/2
where yp = (Id,T)xp and Wy is

for the distance dy/«nv = dys + dy.

1 _ 4 > kind of strong convexity of cost function YT Y



Stability w.r.t source and target measure

Theorem 3 [Gallouet,Mérigot, T]. Let ¢ : M x N — R be Lipschitz, u, i € 7)(
and v,v e P(N). Let T : (M, ) — (N, v) be an optimal transport map and
~ be an optimal transport plan between 1 and . We know that 1" is induced

by a c-concave potential p : N — R. We assume that
e 1) is strongly c-concave potential with w(r) = Cr? on D = M x N.

hen

Wi(yr,d) < e+ \/QLIP(C) e, where e:=Wi(i,pn) + Wi(v, D).

M)
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Theorem 3 [Gallouet,Mérigot, T]. Let ¢ : M x N — R be Lipschitz, u, i € P(M)
and v,v e P(N). Let T : (M, ) — (N, v) be an optimal transport map and
~ be an optimal transport plan between 1 and . We know that 1" is induced

by a c-concave potential p : N — R. We assume that
e 1) is strongly c-concave potential with w(r) = Cr? on D = M x N.

hen

Wi(yr,d) < e+ \/QLIP(C) e, where e:=Wi(i,pn) + Wi(v, D).

¢ It is a consequence of the previous “suboptimality gap inequality”
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Ma- Trudinger-Wang tensor

et c: M x N - Ru {+00}. We assume that it satisfies (Stwist).

(STwist): cis C?, Vyc(x,-) and Vyc(-,y) are injective, V2 c is non-singular.
o Vyc(x,-): Dom(Vye)c N — Iz cT,M isone-to-one
¢ The c-exponential is c-exp_, := (—Ve(z,)) ™"

cexp: lrcT,M — Dom(V,c)< N

M

¢ A c-segment (y:)1<i<1 = |Y0,y1 |+ is the image by c-exp,, of a segment.

o D c M x N is symmetrically c-convex if
(x,y0) € D and (z,y1) e D = Vtel0,1] (z,y:) € D
(xo,y) € D and (z1,y)e D = Vte|0,1] (x4,y) € D
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Ma- Trudinger-Wang tensor

Let c: M x N — R U {+00} of class C* that satisfies (Stwist).

Definition. The Ma-Tridinger-Wang tensor is defined for (xq,yo) € D and
(n,¢) € Ty M x Ty, N by

S (o, ) = -32, 2 cle-e ’ l

with 71 = —Vin(ZIZ‘O, yo)n € T, N

Here —V3, c(z0,40) : TooM x Ty N — R is a non singular bilinear form.
the linear form 7 : T),, N — R is identified with a vector.

Definition The weak MTW condition (MTWw) is satisfied on a compact set
D < M x N if there exists a constant C' > 0 such that for any (xq,y9) € D

and (n,¢) € T,,M x T,,,N we have
Sc(w0,90)(n,¢) = =CIKLIMl ]|

¢ 4th order condition that appears in the regularity theory [MTW 2005]
16



Differential criterion for strong c-concavity

Theorem [Gallouet,Mérigot, T]. Let D & M x N be a closed symmetrically
c-concave set and ¢ € C*4(D,R) that satisfy (STwist) and (MTWw) on D.
Let Y = proj, (D) and ¢ € C%*(Y,R) be c-concave on D. If there exists

A > 0 such that for any y € )/
Ve e 0Y(y) Dyyc(z,y) — D*P(z) = My (%)
Cr?, where C > 0

Then 1) is strongly c-concave on D with modulus w(r)

Is a constant depending on ¢, A and D.
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13

Outline

Part 1: Stability
¢ Optimal Transport and strong c concavity

¢ Stability under strong c-concavity
¢ Sufficient conditions for strong c-concavity

¢ Applications to the reflector problem

Part 2: Generated Jacobian Equation
¢ Case 1: Mirror for Point source light (Far Field and Near Field)

¢ Case 2: Mirror for Parallel source light (Near Field)
¢ Semi-discrete Generated Jacobian equation



Reflector problem: point source light

¢ The problem:

19-1

1t source light

A\

v target distribution
on the sphere



Reflector problem: point source light

L 4 The pr0b|em: M source Ilght \
—p
v target distribution
on the sphere
/
Pb: Find a reflector R that reflects yu to v [Caffarelli, Oliker 94]
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Reflector problem: point source light

2 The pr0b|em: [ source ||ght \
: —p
R v target distribution
on the sphere
/
Pb: Find a reflector R that reflects 1 to v [Caffarelli, Oliker 94]
» Equivalent to optimal transport pb on S? for c(x,y) = — In(1 — {(z|y)).

[Wang 2003, Oliker 2003]
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Reflector problem: point source light

¢ The problem: 1 source light \
—P>e Vdq

o
o U target distribution

on the sphere

/
Pb: Find a reflector R that reflects yu to v [Caffarelli, Oliker 94]

» Equivalent to optimal transport pb on S? for ¢(z,y) = —In(1 — (z|y)).
[Wang 2003, Oliker 2003]

¢ Numerical methods: v, is a discretization of v.

eg Certlfled NeWton a|g0rlthm [Mérigot,Meyron,T.]

Reflector

Simulated
reflected
light

19-4



Reflector problem: point source light

Theorem [Gallouet,Mérigot, T]. Let c(z,y) = —In(1 — {z|y)), 1 and 1 be
measures with C1! densities. Then for all » > 0, there exists C' > 0 such
that for every measure v; (e.g. v4) satisfying

one has
[ dun(To(a). @) due) < € Wa(wo, )

where T : 4 — v; are optimal transport maps.
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Reflector problem: point source light

Theorem [Gallouet,Mérigot, T]. Let c(z,y) = —In(1 — {z|y)), 1 and 1 be
measures with C1! densities. Then for all » > 0, there exists C' > 0 such
that for every measure v; (e.g. v4) satisfying

Gp v (B(z,1)) < . v, can be discrete

[ dun(To(a). @) due) < € Wa(wo, )

where T : 4 — v; are optimal transport maps.

one has

¢ c is not differentiable on {z = y}.

» We therefore set D, = {(z,y) € S¢™1 x S4! | dga—1(x,y) = €}
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Reflector problem: point source light

Theorem [Gallouet,Mérigot, T]. Let c(z,y) = —In(1 — {z|y)), 1 and 1 be
measures with C1! densities. Then for all » > 0, there exists C' > 0 such
that for every measure v; (e.g. v4) satisfying

Gp v (B(z,1)) < . v, can be discrete

yeSd—1

one has
[ dun(To(a). @) due) < € Wa(wo, )

where T : 4 — v; are optimal transport maps.

¢ c is not differentiable on {z = y}.

» We therefore set D, = {(z,y) € S¢™1 x S4! | dga—1(x,y) = €}

Sketch of proof

e We show any optimal v € I'(u, ) is supported on D, (similar results of
[Gangbo, Oliker 2007], [Buttazzo 2018] and [Loeper 2011] for non discrete measures).

e \We show that D). is symmetrically c-convex.
50 - 4 ~+ strong c-concavity and stability
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Mirror / Point light source: Optimal Transport

__pe

22



Mirror: Point light source / Far-Field ~~ OT

~+ We have to solve an OT problem
Problem (FF): Find ¢) € RY such that
vie{l,---N}  p(Lagi(¥)) = v
where Lag, () = {x € S§, c(x,y;) +¥; < c(z,y;) +; Vil
Y; = log(k;), and c(x,y) = —log(1 —<{x|y)).

~» T he mirror is parametrized by
Sd_l . Rd

T mm21 < D

mmz c(x,y;)+v; _ G@D (z)

where () = miny, c(z,y) — ¥ ()
Is the c-conjugate function of .

ccl : x € SE — e¥ () g parametrizes the mirror.

23



Mirror: Point light source / Near-Field ~~ JGE

Y1 . .
P Punctual light at origin o, ;1 measure on S?

Prescribed near-field: v = > v;6,, on R?

Y3
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Y3
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Prescribed near-field: v = > v;6,, on R?

F;(a;) = convex hull of ellipsoid with focals o
and y;, and major axis length a;
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Mirror: Point light source / Near-Field ~~ JGE

Punctual light at origin o, ;1 measure on S?
Prescribed near-field: v = > v;6,, on R?

F;(a;) = convex hull of ellipsoid with focals o
and y;, and major axis length a;

R(a) =0 (m,filEi(ai))

Y3
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Mirror: Point light source / Near-Field ~~ JGE

24 - 5

Y3

Punctual light at origin o, ;1 measure on S?
Prescribed near-field: v = > v;6,, on R?

F;(a;) = convex hull of ellipsoid with focals o
and y;, and major axis length a;



Mirror: Point light source / Near-Field ~~ JGE

Y1
P Punctual light at origin o, ;1 measure on S?
Prescribed near-field: v = > v;6,, on R?
F;(a;) = convex hull of ellipsoid with focals o
0 2 and y;, and major axis length a;
R(@) = 0 (N 1 Ei(a;))
Vi(d) = ms2(R(d) n dF;(a;))
Y3
Near-field reflector antenna problem: Oliker '04

Problem (NF): Find a4, ...,ay such that for every ¢, u(V;(a)) = v; .
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Mirror: Point light source / Near-Field ~~ JGE

Computation of visibility cells:
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Mirror: Point light source / Near-Field ~~ JGE

Computation of visibility cells:

0F;(k;) is parameterized in radial coordinates by
a; —|y:l*/4

a;—<z|yi)/2

where 2a; is the length of major axis

: 2
IOZ'.$€SO'—>
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Mirror: Point light source / Near-Field ~~ JGE

Computation of visibility cells:

0F;(k;) is parameterized in radial coordinates by
a; —|y:l*/4

a;—<z|yi)/2

where 2a; is the length of major axis

: 2
IOZ'.$€SO'—>

a?luil?/4 _ a3-lv;l*/4

r e Vi(K) «— a;—{xlyiy/2 = a;—x|y;)/2

25 -3



Mirror: Point light source / Near-Field ~~ JGE

Computation of visibility cells:

0F;(k;) is parameterized in radial coordinates by

a; —|y:l*/4

a;—<z|yi)/2 | |
where 2a; is the length of major axis  Not linear in a;

(7 ai—|y:|?/4 ai—|y;*/4 /
v € Vi(R) < a; —{x|yi)/2 S aj—<x|y;)/2

: 2
IO,L'.$ESO'—>
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Mirror: Point light source / Near-Field ~~ JGE

Computation of visibility cells:

0F;(k;) is parameterized in radial coordinates by

a; —|y:l*/4

a;—<z|yi)/2 | |
where 2a; is the length of major axis  Not linear in a;

L 2_Jyil2/a _ af—ly;)?/4 /
ZC e V /f — a’z Hy'LH / < J J
Z( ) a; —<z|yi)/2 T aj—x|y;)/2
ai —Cxlyi)/2 < a5 —(x|y;)/2
ai—yil?/4 = aZ—|y;l?/4

> G(z,y;,1/a;) =2 G(z,y;,1/a;) with ¢; = 1/a;

: 2
IO,L'.$ESO'—>

<
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Mirror: Point light source / Near-Field ~~ JGE

Computation of visibility cells:

0F;(k;) is parameterized in radial coordinates by

a; —|yill*/4

a;—<z|yi)/2 | |
where 2a; is the length of major axis  Not linear in a;

L 2_Jyil2/a _ af—ly;)?/4 /
ZC e V /{ — a’z Hy'LH / < J J
Z( ) a; —<z|yi)/2 T aj—x|y;)/2
ai —Cxlyi)/2 < a5 —(x|y;)/2
ai—yil?/4 = aZ—|y;l?/4

> G(z,y;,1/a;) =2 G(z,y;,1/a;) with ¢; = 1/a;

: 2
IOZ'..CEESO'—)

<

~~ Generated Jacobian Equation [Trudinger, 14]
Problem (FF): Find 1, ..., %N such that

—

Vie{l,---N}  p(Lagi(¥)) = v
where Lag, () = {x € S§, G(,yi, i) = G(v,y5,%;5) Vj}.
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Mirror: Point light source / Near-Field ~~ JGE

~~ We have to solve the Generated Jacobian equation

Problem (FF): Find ¢)1, ..., 4y such that

-

vieil,---N}  p(Lagi(v)) = vi.
where Lagz(w) — {CIZ € S(2)7 G(xayzawz) = G(CC?yJ)w]) \V/j}
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Mirror: Point light source / Near-Field ~~ JGE

~~ We have to solve the Generated Jacobian equation
Problem (FF): Find 1, ... ¢y such that

vieil,---N}  p(Lagi(v)) = vi.
where Lagz(w) — {CIZ € S(2)7 G(xayzawz) = G(CC?yJ)w]) \V/j}

~+ T he mirror i1s parametrized by

Sd_l —> Rd
T —> (maXz' G(xay27¢2))m
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Mirror: Point light source / Near-Field ~~ JGE

~~ We have to solve the Generated Jacobian equation
Problem (FF): Find 1, ... ¢y such that

Vie {l,---N}  p(Lagi(¥)) = vi.
where Lagz(w) — {CIZ € S(2)7 G(xayzawz) = G(CC?yJ)w]) \V/j}

~+ T he mirror i1s parametrized by

Sd 1
B

where wG( ) = INaXy, ($ yzaw(
Is the G-conjugate function of 1.
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Mirror: Point light source / Near-Field ~~ JGE

~~ We have to solve the Generated Jacobian equation
Problem (FF): Find 1, ... ¢y such that

Vie {l,---N}  p(Lagi(¥)) = v
where Lag;(¢) = {z € S§, G(z,y;,¢¥:) = G(z,y;,¢;) Vj}.

~+ T he mirror Is parametrized by

where ¢% (z) = max,, G(z, yz,w(
Is the G-conjugate function of 1.

ccl : € S3 +— % (x)x parametrizes the mirror.

26 - 4
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¢ Semi-discrete Generated Jacobian equation



Mirror / Collimated source: Near Field

Here, > is a maximum of paraboloids

-----------

28 - 1

b T

e ——————

of focus y; and direction (0,0, —1).

Ys

e u(:lf) = MaX|{<;<N Qzlm

r — yil|?
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Mirror / Collimated source: Near Field

Here, > is a maximum of paraboloids

e ——————

-------

of focus y; and direction (0,0, —1).

TS u(x) = maxXi<i< N 211% %2

-----------

r — yil|?

v —yil? = 5 = %lle - yl?}
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Mirror / Collimated source: Near Field

Here, > is a maximum of paraboloids

e ——————

of focus y; and direction (0,0, —1).

TS u(x) = maxXi<i< N 211% %2

-------

-----------

r — yil|?

L ‘,:’f .";F‘tm Vs
I & ™, Y2 Ya G(z, Yj» wﬂ)

¢ —yll? & 5 — Ylle =y}
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Mirror / Collimated source: Near Field

Here, > is a maximum of paraboloids

e ——————

of focus y; and direction (0,0, —1).

TS u(x) = maxXi<i< N 211% %2

-------

r — yil|?

I 'U'i ‘f.-" i :'}h v‘n\
I & ™, Y2 Ya G(z, Yj» wﬂ)

Lag,(¥) = {2 € Q) : 5 — Lo —uil 2 & 2 — Yl — )}

~~» Generated Jacobian Equation in R?

Problem (FF): Find %1, ...,%n such that

—

Vie {l,---N}  w(Lagi(v)) = vi.
where Lag;(v) = {z € S5, G(z,y:,v:) = G(x,y;,v;) Vj}.

28 - 4
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Generated Jacobian Equation

Definition: G : {2 x Y xR — R is called a generating function if it satisfies :
(Reg) : Vax € R.SUD (s y uyerey w] oo VoG, )| <+
(Mono) : V(z,y,v) e 2 xY xR :0,G(z,y,v) <0
(Twist) : (y,v) — (G(x,y,v), V,G(x,y,v)) is injective for any x € X
(UC) Yy e Y, lim,_, o inf cq G(z,y,v) = +0

Definition: The Laguerre cells are :
Lag,(¢) = {z € Q, G(z,y:, vi)

\%

G($, Yj s vj) V]}

The Generated Jacobian equation consists in finding 1) € R" such that

H(y) =v
where the function H is given by H () = (u(Lag;(¥)))1<i<N.

~

Exemple:
Far field parallel reflector : G(x,y,v) = {x,p) — v
Near field parallel reflector G(z,y,v) = 5= — 2||z — y||?

30



Differential of H

Recall: H(¢) = (1(Lagi(¥)))1<i<n-
Proposition: Under an hypothesis of genericity of Y , H is of class C*

0H, 0uG (2, yi, Vi) d—1 o
B d >0 f

i v Lagij(w) ) |VaGj(x, ) = VaGi(z, ¥)| HE e > Dfori

5o, (V) = ; 5, (W)

with G;(x,v) = G(x, y;, ¥;).
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Differential of H

Recall: H(¢) = (1(Lagi(¥)))1<i<n-
Proposition: Under an hypothesis of genericity of Y , H is of class C*

0H, 100G (T, yi, ;)| d—1 .
B dH >0 f
o5, Lagmﬂ .G, (@ 9) — VaCi(a, D) (@) > Ofor i # ]

OH,

__\ 04
5o, (V) = ; 5, (W)

with G;(x,v) = G(x, y;, ¥;).

~~ DH 1s not symmetric
~» (1,---,1) is not in the Kernel of DH
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Properties of DH

St ={y e RN|Vi, H;(¢) > 0}
Proposition:
e DH(1)) the differential of H is of rank N —1 on S™.

¢ The image of DH is im(DH(vY)) = 1+ where 1 = (1,---

o ker(DH(v)) = Span(w) with w; > 0

Proposition: (Unique descent direction)
Let b € ST, then the system:

{ DH(¢)d = H(y) — v
d; =0

has a unique solution.

1) e RY,



Damped Newton Algorithm

Equation H(y) =v  where H(¢)) = (p(Lag;(v)))1<i<n
Admissible domain: S° = {¢) € {a} x [8,7]N ™Y Vi, H;(v)) = 6§}
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Damped Newton Algorithm

Equation H(y) =v  where H(¢)) = (p(Lag;(v)))1<i<n
Admissible domain: S° = {¢) € {a} x [8,7]N ™Y Vi, H;(v)) = 6§}

Damped Newton algorithm: for solving H () = v

: : Input: ° € S° and precision &
Loop — Calculate d* s.t. DH(")d" = H(4") —v and d} =0
: — Define 7™ = * — 7d"

g maX{T c 27| 5 € 5 gnd JHT) — vl < (1 - HIHE") - )

— Yy 1=
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Damped Newton Algorithm

Equation H(y) =v  where H(¢) = (p(Lag;(¥)))1<i<n
Admissible domain: S° = {¢) € {a} x [8,7]N ™Y Vi, H;(v)) = 6§}

Damped Newton algorithm: for solving H () = v

: : Input: ° € S° and precision &
Loop — Calculate d* s.t. DH(")d" = H(4") —v and d} =0
: — Define 7™ = * — 7d"

ko maX{T c 27| 5 € 5 gnd JHT) — vl < (1 - HIHE") - )

— Yy 1=

Theorem(Gallouet, Mérigot, T., CVPDE 2022): Let X < ) be a compact set,
peC’(X), {p>0}nint(X) is Wand Y satisfies@ assum@
w.r.t. 0X, d < mini<i<n v;/2. The re is linear convergence:

[ = o] < (1= 5) [H@Y) - v
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Mirror for parallel source light: algorithm

Mirror R _ targeted image N = 400 x 480
<
\\\ \\é\oo
? éoél
R? x {0} <2

Collimated source
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Mirror for parallel source light: algorithm

¢ Computation of Laguerre cells:

Laguerre cells

34 - 2



Mirror tor parallel source light: algorithm

¢ Computation of Laguerre cells:
~~ Mobius diagrams:

Definition: Given P = {p;} € R% and (w;) € RN
Mob(p;) := {z € R%;i = argmin; \;|z — p;|* + w;}

Laguerre cells
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Mirror tor parallel source light: algorithm

¢ Computation of Laguerre cells:
~~ Mobius diagrams:

Definition: Given P = {p;} € R% and (w;) € RN
Mob(p;) := {z € R%;i = argmin; \;|z — p;|* + w;}

Lemma: (Boissonnat, Wormser, Yvinec, 07)
Lag;(¢) = Mob(p;) = Proj,_,(Pow; n P)

where Proj,_, Is the orthogonal projection.

Laguerre cells

and P is the paraboloid z = 22 + y?
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Mirror for parallel source light: algorithm

Mirror R

targeted image N = 400 x 480

---------

X
\\é\oQ

&

R* x {0}
Collimated source

34 -5
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C

omparison Far Field / Near Field

Visibility cells in Far Field

Visibility cells in Near Field



Problem with far-field assumption

Putting three copies of the same lens shifted by h...

-----------




Problem with far-field assumption

Putting three copies of the same lens shifted by h...

-----------

........ ... produces a superposition of images shifted by h.



Problem with far-field assumption

Putting three copies of the same lens shifted by h...

........ ... produces a superposition of images shifted by h.



Problem with far-field assumption

Putting three copies of the same lens shifted by h...

........ ... produces a superposition of images shifted by h.

‘One wants to produce images at finite distance — near-field problem.
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lterated FF problem

NF pb: Build a component R sending light towards zq, ..

.,ZNE{D}XRQ

(instead of y1,...,yn € S%))
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lterated FF problem

NF pb: Build a component R sending light towards 21, ..., 25 € {D} x R?

We approximate solutions to the NF problem using a sequence of FF pb.

(0)

Step 0: Solve far-field problem with target v,/ = z;/| 2|

(O) ............................... L ZZ
yz ...........................
O / 1
o
B B (0} x R? (D} x B?
Source Lens Target
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lterated FF problem

NF pb: Build a component R sending light towards 21, ..., 25 € {D} x R?

We approximate solutions to the NF problem using a sequence of FF pb.

(0)

Step 0: Solve far-field problem with target v,/ = z;/| 2|

RSO 1) SRR S
% """ o 2;
O ®
o
{—R} x R? 0} x R? {D} x R?
Source Lens Target

37 - 3 first estimation of the lens



lterated FF problem

NF pb: Build a component R send

ing lig

We approximate solutions to the N

Step 0: Solve far-field problem with target

{—R} x R?
Source

37 - 4

- prob

ht towards 21,..., 2y € {D} x R?

em using a sequence of FF pb.

(0)

i = Zif 7]

b@(()) = barycenter of 1th fag

first estimation of the lens

et



lterated FF problem

NF pb: Build a component R send

ing lig

We approximate solutions to the N

Step 0: Solve far-field problem with target v,

- prob

ht towards 21,..., 2y € {D} x R?

em using a sequence of FF pb.

(0)

= 2i/| 2|

Step 1: Solve far-field problem with target y( ) = (z; — b,go))/Hzi — bEO)H

{—R} x R?
Source

37 -5

b@(()) = barycenter of 1th fag

first estimation of the lens

et



lterated FF problem

NF pb: Build a component R send

ing lig

We approximate solutions to the N

Step 0: Solve far-field problem with target v,
Step 1: Solve far-field problem with target y,

.................................................................................. (0_).
0
{—R} x R? {0} x R2
Source Lens

Step k+1: Solve far-field problem with target y,

- prob

ht towards 21,..., 2y € {D} x R?
em using a sequence of FF pb.
) = zif )z
R R ERt
BNC) N
. (1) ................................................... () Z’I,
Yi
o
o
{D} x R?
Target

k k
D — (2 = b))z — b,

37 -6

Efficient heuristic to solve NF problem using a FF solver...




Convergence of the algorithm

Target 1st iteration 2nd iteration 5th Iteration
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Pillows
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Pillows
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Pillows
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Color channels

red light

blue light

screen

¢ We solve one near-field problem per color channel.

¢ Near-field assumption needs to be taken into account for
the image to be perfectly superimposed on the screen.
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Conclusion

Stabilily
¢ We propose a definition of strong c-concavity
Several stability results under this assumption

4
¢ Provide a sufficient condition for strong concavity.
¢ Stability results in non imaging optics

Generated Jacobian Equation

¢ We extended an algorithm to Generated Jacobian Equation
¢ Each problem i1s a Monge-Ampere equation

Ongoing work

¢ |terative OT to solve GJE ?
¢ Extended light

¢ Global stability results with general cost functions
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Conclusion

Stabilily
¢ We propose a definition of strong c-concavity
Several stability results under this assumption

4
¢ Provide a sufficient condition for strong concavity.
¢ Stability results in non imaging optics

Generated Jacobian Equation

¢ We extended an algorithm to Generated Jacobian Equation
¢ Each problem i1s a Monge-Ampere equation

Ongoing work

¢ |terative OT to solve GJE ?
¢ Extended light

¢ Global stability results with general cost functions

A1 - 2 Thank you I



