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Nonimaging optics: motivations

Goal: design components that transfer a prescribed source light
to a prescribed target distribution




Nonimaging optics: motivations

Goal: design components that transfer a prescribed source light
to a prescribed target distribution

Motivations / applications

» Car beam design

» Public lighting

59 » Reduction of light pollution



Imaging optics: mirror case

We are given a one-to-one map f: X — Y.




Imaging optics: mirror case

We are given a one-to-one map f: X — Y.

Goal: Find a surface S such that the reflection of X onto Y preserves f.
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Non-imaging optics: mirror case

Input: Source light with intensity u No one-to-one map given

arget light with intensity v




Non-imaging optics: mirror case

Input: Source light with intensity u No one-to-one map given

arget light with intensity v

Goal: Find a surface S such that reflects 11 to the v by Snell's law
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Case 1: mirror for point light source
Case 2: mirror for collimated source light
Case 3: other cases

Semi-discrete optimal transport
Damped Newton algorithm

Non-imaging optics: Far-Field target
Non-imaging optics: Near-Field target



Mirror / Point light source

o2 Punctual light at origin o, ;1 measure on S?
> Prescribed far-field: v on S%_



Mirror / Point light source
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SQ

Punctual light at origin o, ;1 measure on S?
Prescribed far-field: v on S2_

Goal: Find a surface R which sends (S2, i) to

(Seo, ) under reflection by Snell's law.
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Prescribed far-field: v on S2_

Goal: Find a surface R which sends (S2, i) to

(Seo, ) under reflection by Snell's law.

» R is parameterized by x € S2 — zu(z)

where u : S5 — R radial distance
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Prescribed far-field: v on S2_
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» R is parameterized by x € S2 — zu(z)
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Mirror / Point light source

SQ

Brenier formulation Tiu=v
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Punctual light at origin o, ;1 measure on S?
Prescribed far-field: v on S2_

Goal: Find a surface R which sends (S2, i) to
(Seo, ) under reflection by Snell's law.

» R is parameterized by x € S2 — zu(z)

where u : S5 — R radial distance
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T:xe€Si—y=x—2(x|n)n




Mirror / Point light source

SQ

Brenier formulation Tiu=v
I.e. for every borelian B

u(T~1(B)) = v(B)

6-6

Punctual light at origin o, ;1 measure on S?
Prescribed far-field: v on S2_

Goal: Find a surface R which sends (S2, i) to
(Seo, ) under reflection by Snell's law.

» R is parameterized by x € S2 — zu(z)

where u : S5 — R radial distance

» Snell’s law
T:xe€Si—y=x—2(x|n)n




Mirror / Point light source

SQ

Brenier formulation Tiu=v
I.e. for every borelian B

u(T~1(B)) = v(B)
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Punctual light at origin o, ;1 measure on S?
Prescribed far-field: v on S2_

Goal: Find a surface R which sends (S2, i) to
(Seo, ) under reflection by Snell's law.

» R is parameterized by x € S2 — zu(z)

where u : S5 — R radial distance

» Snell’s law
T:xe€Si—y=x—2(x|n)n

Change of variable

If w(z) = f(x)dx and v(y) = g(y)dy
9(T'(z)) det(DT(z)) = f(x)




Mirror / Point light source

Monge

Designing the mirror /£ amounts to solving

Monge-Ampére equation: Find u : S5 — R™ vérifiant
fu(T(x))det(DT'(x)) = fu.(x)
T(x) = . <f\)n(ﬂé)>)n(95) |
M) = A G




Mirror / Point light source

Monge

Designing the mirror £ amounts to solving

(-2

Monge-Ampére equation: Find u : S5 — R™ vérifiant
fu(T(x))det(DT'(x)) = fu.(x)
T(x) = . <EC\)"?/(«’IE)>)”(95) |
M) = A G




Mirror / Point light source

Oliker

1994 : existence de solutions

Monge Ampere

Designing the mirror £ amounts to solving

/-3

Monge-Ampére equation: Find u : S5 — R™ vérifiant
fu(T(x))det(DT'(x)) = fu.(x)
T(x) = . <?5|)n(ifé)>)n(fﬂ) |
M) = A G

SSION:
%‘(lpsogslmma




Mirror / Point light source: semi-discrete

o2 Punctual light at origin o, ;1 measure on S?
O



Mirror / Point light source: semi-discrete

o2 Punctual light at origin o, ;1 measure on S?
> Prescribed far-field: v = v14,, on S2,

Y1
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Mirror / Point light source: semi-discrete

Punctual light at origin o, ;1 measure on S?

SQ
> Prescribed far-field: v = v14,, on S2,

y; R : paraboloid of direction y; and focal O
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Mirror / Point light source: semi-discrete

Y1
Punctual light at origin o, © measure on S?

2
SOO D . . 2
rescribed far-field: v = > . v;0,, on 8,

Y2

Ys



Mirror / Point light source: semi-discrete

Punctual light at origin o, © measure on S?

Prescribed far-field: v =>".1;4,, on 82,

P;(k;) = solid paraboloid of revolution with focal o,

direction y; and focal distance k;
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Mirror / Point light source: semi-discrete

Punctual light at origin o, © measure on S?

(ks) Prescribed far-field: v =" v;0,, on SZ

P;(k;) = solid paraboloid of revolution with focal o,

direction y; and focal distance k;

Decomposition of S2: V;(R) = 52 (R(R) N OP;(k;))

0]

= directions that are reflected towards y;.
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Mirror / Point light source: semi-discrete

Punctual light at origin o, © measure on S?

(ks) Prescribed far-field: v =" v;0,, on SZ

P;(k;) = solid paraboloid of revolution with focal o,

direction y; and focal distance k;

R(R) =0 (N, P;(ki))

Decomposition of S2: V;(R) = 52 (R(R) N OP;(k;))

0]

= directions that are reflected towards y;.

Problem (FF): Find x1,...,xx such that for every i, u(V;(RK)) = v;.
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Mirror / Point light source: Optimal Transport

Lemma: With ¢(z,y) = —log(1 — (z|y)), and ¥; := log(k;),
Lag, () :== V;(R) ={x € S§, c(x,y;) + ;i < c(z,y;) +v; Vil

Caffarelli-Oliker '94




Mirror / Point light source: Optimal Transport

Lemma: With ¢(z,y) = —log(1 — (z|y)), and ¥; := log(k;),
Lag, () :== V;(R) ={x € S§, c(x,y;) + ;i < c(z,y;) +v; Vil

Caffarelli-Oliker '94

~+ An optimal transport problem on S?
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Mirror / Point light source: Optimal Transport

~~ We have to solve an OT problem
Problem (FF): Find ¢y € R such that
Vie{l, N} u(Lagi(¥)) =w
where Lag,; () = {z € S§, c(x,y;) +¢; < c(z,y;) +; Vil
Y; = log(k;), and c(x,y) = —log(1 — (z|y)).
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Mirror / Point light source: Optimal Transport

~+ We have to solve an OT problem
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Mirror / Point light source: Optimal Transport

~~ We have to solve an OT problem
Problem (FF): Find ¢y € R such that
Vie{l, N} u(Lagi(¥)) =w
where Lag,; () = {z € S§, c(x,y;) +¢; < c(z,y;) +; Vil
Y; = log(k;), and c(x,y) = —log(1 — (z|y)).

~» T he mirror is parametrized by
Sl Rd

eming c(@,ys)+i _ b ()

where ¢%(z) = miny, c (56, y) — ¥(ys)
Is the c-conjugate function of .
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Mirror / Point light source: Optimal Transport

~~ We have to solve an OT problem
Problem (FF): Find ¢y € R such that
Vie{l, N} u(Lagi(¥)) =w
where Lag,; () = {z € S§, c(x,y;) +¢; < c(z,y;) +; Vil
Y; = log(k;), and c(x,y) = —log(1 — (z|y)).

~» T he mirror is parametrized by
si-1 - R4

pInin; c(xz,y:)+vi — €¢C($)

where 1¢(x) = min,, c(x,y) — ¥ (y;)
Is the c-conjugate function of .

ccl : z € S2 — e¥ @ parametrizes the mirror.

10- 4
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Non-imaging optics: Near-Field target



Mirror / Collimated source light

Collimated light ;& measure on Q C R? x {0}

Mirror K . .
Prescribed far-field: v on S§?

Goal: Find a surface R which sends (€2, i) to
(S%, v) under reflection by Snell’s law.

Collimated source
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Mirror / Collimated source light

Collimated light ;& measure on Q C R? x {0}

Mirror K .
Prescribed far-field: v on S?

Goal: Find a surface R which sends (€2, i) to
(S%, v) under reflection by Snell’s law.

» R param. by x € Q +— (z,u(x))
where u : {2 — R height function

Collimated source » Snell's law: the ray e, coming from x
is reflected in direction F'(Vu(x)).

12 -2



Mirror / Collimated source light

Collimated light ;& measure on Q C R? x {0}

Mirror K . .
Prescribed far-field: v on S§?

Goal: Find a surface R which sends (€2, i) to
(S%, v) under reflection by Snell’s law.

» R param. by x € Q +— (z,u(x))

| I where u : {2 — R height function

Collimated source » Snell's law: the ray e, coming from x
is reflected in direction F'(Vu(x)).

Brenier formulation (F'oVu)su=v
S VA u((FoVu) 1(A) =v(A)
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Mirror / Collimated source light

Collimated light ;& measure on Q C R? x {0}

Mirror K .
Prescribed far-field: v on S?

Goal: Find a surface R which sends (€2, i) to
(S%, v) under reflection by Snell’s law.

» R param. by x € Q +— (z,u(x))

| I where u : {2 — R height function

Collimated source » Snell's law: the ray e, coming from x
is reflected in direction F'(Vu(x)).

Brenier formulation (F'oVu)su=v
& VA p((F o Vu)~(4)) = ()
& VB p((Vu)™1(B)) = (B) with B=F~1(A) C R?
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Mirror / Collimated source light

Collimated light ;& measure on Q C R? x {0}

Mirror K . .
Prescribed far-field: v on S§?

Goal: Find a surface R which sends (€2, i) to
(S%, v) under reflection by Snell’s law.

» R param. by x € Q — (z,u(x))

| I where u : {2 — R height function

Collimated source » Snell's law: the ray e, coming from x
is reflected in direction F'(Vu(x)).

Brenier formulation (F'oVu)su=v
& VA p((F o Vu)~(4)) = ()
& VB p((Vu)™1(B)) = (B) with B=F~1(A) C R?

, %det(Vquj(a:))g(Vu(x)) = f(x)if p(z) = f(x)dr and v(x) = g(x)dx



Mirror / Collimated source light

Collimated light ;& measure on Q C R? x {0}

Mirror K .
Prescribed far-field: v on S?

Goal: Find a surface R which sends (€2, i) to
(S%, v) under reflection by Snell’s law.

» R param. by x € Q +— (z,u(x))

| v 0 where u : {2 — R height function

Collimated source » Snell's law: the ray e, coming from x
is reflected in direction F'(Vu(x)).

Monge-Ampére equation in R?

Find u : Q — R? such that det(V2u(x))g(Vu(z)) = f(x)
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Mirror / Collimated source light: semi-discrete

Collimated light ;& measure on Q C R? x {0}
Prescribed far-field: v =>".1;4,, on S?
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Mirror / Collimated source light: semi-discrete

Collimated light ;& measure on Q C R? x {0}
Prescribed far-field: v =>".1;4,, on S?

light source

L
We choose to parameterize R by Vs () /\&é\&
¢ \
[ ] &

r € Q— (x,max;{x|p;) — ;) ]
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Mirror / Collimated source light: semi-discrete

Collimated light ;& measure on Q C R? x {0}
Prescribed far-field: v =>".1;4,, on S?

light source

L
We choose to parameterize R by

r € Q— (x,max;{x|p;) — ;)

Problem (FF): Find v, ...,%N such that for every 1, w(Vi(¥)) = ;.

amount of light reflected in direction y;.

13- 3



Mirror / Collimated source: Optimal Transport

light source
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Mirror { Collimated source: Optimal Transport

light source

~» Optimal transport problem in R?

—

Problem (FF): Find v, ...,%N such that for every ¢, u(V;(v)) = v;.
14 - 2
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Four inverse problems

Mirror K :,

X

: &\\‘%(\
< 2
R? x {0} <3S

Collimated source

Point source
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Four inverse problems

Mirror R _ 52 NfTargetight
\ Lens
X,
\ g \\‘%(\
@0@& g2
R? x {0} 2 : R? x {0}
Collimated source Collimated source

Point source
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Four inverse problems

Mirror R _ 52 NfTargetight
\ Lens
X,
\ 5 \\%\
5 @0@& g2
R? x {0} 2 : R? x {0}
Collimated source Collimated source

RN N N N N NN NN N NN NN NN NN

Mirror R a rﬁl ight

Point source Point source
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Four inverse problems

Mirror R S2 Targ}“ght
concave too

\ Lens
X,
\ 5 \\%\
? @0@& g2
R? x {0} 2 : R? x {0}
Collimated source Collimated source

RN N N N N NN NN N NN NN NN NN

Mirror R a rg}H ght

Point source Point source
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Mirror &
concave too

X,
_ )
@0@& g2
R? x {0} 2 : R? x {0}
Collimated source Collimated source
Mirror R 2 argetlight

Point source Point source
16 - 5
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Monge problem (1781)

How to optimally move sand 7
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Monge problem (1781)

How to optimally move sand 7

let ¢c: X XY — R be a cost function e.g. c(z,y) = |z — yl?

18 - 2



Monge problem (1781)

How to optimally move sand 7

T-1(A)

T 7?
\ Y, v
X, 1 X~
A
let ¢: X XY — R be a cost function e.g. c(z,y) = |z — yl?

Monge problem. Find a map 7' : X — Y such that

» T preserves the mass, ie. v(A) = u(T~1(A))

» 1" minimizes the total cost

min [, c(x, T(z))dp(z)

1él'h% minimizer does not always exist; Constraint not linear



Monge problem (1781)

How to optimally move sand 7

Llet c: X XY — IR be a cost function

Kantorovitch relaxation — 1940’s
Minimise [ ¢(z,y)dn(z,y)
where 7 Is a transport plan, I.e

7 1s a probability measure on X x Y
(A X Y) = p(A)

o XX B) = v(B)




Numerical optimal transport

Discrete source and target

@i o Vj | .
B linear programming
® . ... e 0
' ' Bertsekas’ auction algorithm
© o g O Sinkhorn /IPFP
[
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Numerical optimal transport

o N7 Discrete source and target
.“:':':'::"".".""-: ............................................. linear programming
®. .. el 0
. ) Bertsekas’ auction algorithm
¢ o Tag © Sinkhorn /IPFP
°

Source and target with density (PDE):

Benamou-Brenier formulation

Stencil methods for Monge Ampeére equations
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Numerical optimal transport

Discrete source and target

@i o Vj | .
......................................... linear programming
® . .. el 0
' ' Bertsekas’ auction algorithm
o o g O Sinkhorn /IPFP

Source and target with density (PDE):

Benamou-Brenier formulation

Stencil methods for Monge Ampeére equations

Source with density, discrete target:

Coordinate-wise increment
Oliker-Prussner '89 Caffarelli-Kochengin-Oliker '97

Kitagawa '12

Newton and quasi-Newton methods

Aurenhammer, Hoffmann, Aronov '98
Mérigot '11, Levy'lb, Kitagawa-Mérigot-T.'17, etc.

19 - 3



Semi-discrete optimal transport

u(x) = p(x)dx probability measure on X
v =) .0, prob. measure on finite Y = {y1, -+ ,yn}

c: X XY — R cost function

X
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Semi-discrete optimal transport

u(x) = p(x)dx probability measure on X
v =) .0, prob. measure on finite Y = {y1, -+ ,yn}

c: X XY — R cost function

Transport map: 7 : X — Y st. Vi, (T ' ({y;})) = v (i.e. Tpp =v)
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Semi-discrete optimal transport

u(x) = p(x)dx probability measure on X
v =) .0, prob. measure on finite Y = {y1, -+ ,yn}

c: X XY — R cost function

Transport map: 7 : X — Y st. Vi, (T ' ({y;})) = v (i.e. Tpp =v)

'Monge problem: Find a transport map 7" : X — Y that minimizes
[y el T(w)) d )

20 -3



Semi-discrete optimal transport
p: X — R density of population

Y = location of bakeries
c(z,y:) = ||z — yi”
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Semi-discrete optimal transport
p: X — R density of population

Y = location of bakeries
c(z,y:) = ||z — yi”

» If the price of bread is uniform, people go the closest bakery:

Vor(y;) =1z € X;Vj, c(z,y;) < c(x,y;)}
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Semi-discrete optimal transport
p: X — R density of population

Y = location of bakeries
C('CU?yi) — Hﬂf — Y

» If prices are given by 11, -- ,1¥n, people make a compromise:

|°

Lag,(v) ={z € X; V], c(z,y;) +¢¥; < clz,y;) +¥,}
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Semi-discrete optimal transport
p: X — R density of population

Y = location of bakeries
C(mayi) — Hﬂf — Y

» If prices are given by 11, -- ,1¥n, people make a compromise:

|°

Lag,(v) ={z € X; V], c(z,y;) +¢¥; < clz,y;) +¥,}

» We define the function “number of people”

21 -4

H : R™ — R™
(YVi)i<i<n (fLagip(ﬂU)df)léKn




Semi-discrete optimal transport
p: X — R density of population

Y = location of bakeries
c(z,y:) = ||z — yi”

» If prices are given by 11, -- ,1¥n, people make a compromise:

Lag,(v) ={z € X; V], c(z,y;) +¢¥; < clz,y;) +¥,}

» We define the function “number of people”
H R™ o R™
(Widi<icn = (Jrag P(@)dT)1<i<n

Monge-Ampere equation :

Trouver ¥ € R” tel que H(V) = v
2L




Semi-discrete optimal transport
p: X — R density of population

Y = location of bakeries
c(z,y:) = ||z — yi”

» If prices are given by 11, -- ,1¥n, people make a compromise:

Lag,(v) ={z € X; V], c(z,y;) +¢¥; < clz,y;) +¥,}

» We define the function “number of people”
H R™ o R™
(Widi<icn = (Jrag P(@)dT)1<i<n

Monge-Ampére equation : T:X—=Y

r +— y; si x € Lag, ()
Trouver ¥ € R” tel que H(V) = v .
1 1" 1s a transport map




Concave optimisation problem

Theorem (variational formulation)

H =V
where ® : R™ — IR Is concave
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Concave optimisation problem

‘Theorem (variational formulation)

_ H=Vo
where ® : R™ — R Is concave

Kantorovitch duality
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Concave optimisation problem

Theorem (variational formulation)
H=Vo Vs

where ® : R™ — R Is concave

Corollary. Let U* = (vq,--- .1, ) prices of breads in y1,- -+ ,yn
Everyone living in V; has bread in y; (and all the bread is sold)

<~ H(V") =v (Monge-Ampére equation)
<= U™ is a maximum of ¢

Graph of ®

-----------------------------
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Concave optimisation problem

Theorem (variational formulation)

H=Vo Vs
where ® : R™ — IR Is concave

Corollary. Let U* = (vq,--- .1, ) prices of breads in y1,- -+ ,yn
Everyone living in V; has bread in y; (and all the bread is sold)

<~ H(V") =v (Monge-Ampére equation)

<= WU" is a maximum of ®

Algorithms.

» Oliker Prussner: coorglinate—wise increment with minimum step,
with complexity O(2=log(NN)), e = precision.

? .
» Quasi Newton methods for c(x,y) = ||z — y||* on R?/R3 S? No analysis

[Mérigot. '11] [Lévy '14] [de Goes et al '12] [Machado, Mérigot, Thibert '16]

» Newton method in R?, R?, when u supported on a triangulation.
22 -
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Semi-discrete optimal transport
Damped Newton algorithm

Non-imaging optics: Far-Field target
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Newton Algorithm

Equation H(vy) = v

where H : RY — R"Y by H(¢) = (p(Lag;(¥)))1<i<n

Remark: H is invariant by addition of a vector A(1,---,1).
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Newton Algorithm

Equation H(v) = v

where H : RY — RY by H(¢) = (p(Lag;(¥)))1<i<n

Remark: H is invariant by addition of a vector A(1,---,1).
Newton algorithm: for solving H () = v

Elnput: P e RY sit. e := %minf,; miH(H(wo)i’V’i) >0
éLoop: — Calculate d” s.t. DH(¢*)d" = H(¢"*) — v and

— PP =gt — "
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Newton Algorithm

Equation H(vy) = v

where H : RY — RY by H(¢) = (p(Lag;(¥)))1<i<n

Remark: H is invariant by addition of a vector A(1,---,1).

Newton algorithm: for solving H () = v

Elnput: P e RY sit. e := %minf,; miH(H(wo)i’V’i) >0
éLoop: — Calculate d” s.t. DH(¢*)d" = H(¢"*) — v and

N wk—kl P — wk . dk

Local convergence : if 1Y is close to a solution ¢*, then it converges.

24 - 4



Dam pECI Newton AlgOrith M [Kitagawa, Mérigot, Thibert]

Equation H(y) =v where H(¢) = (p(Lag;(¥)))1<i<n
Admissible domain: F. := {¢) € R";Vi, p(Lag, () > €}
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Dam pECI Newton AlgOrith M [Kitagawa, Mérigot, Thibert]

Equation H(y) =v where H(¢) = (p(Lag;(¥)))1<i<n
Admissible domain: F. := {¢) € R";Vi, p(Lag, () > €}

Damped Newton algorithm: for solving H () = v

Input: ¢° € RY s.t. € := £ min; min(H (¥°);, v;) > 0
;Loop: — Calculate d* s.t. DH(¢*)d* = H(¢*) —v and >, d¥ =0
E — Define ¢ = ¢* — 7d"

-+ 7t = max(r € 27 | € B and () - I < (- IHW) -]

— Yrg1 = YF

25 - 2



Dam ped Newton AlgOrith M [Kitagawa, Mérigot, Thibert]

Equation H(y) =v where H(¢) = (p(Lag;(¥)))1<i<n
Admissible domain: F. := {¢) € R";Vi, p(Lag, () > €}

Damped Newton algorithm: for solving H () = v

Input: ¢° € RY s.t. € := £ min; min(H (¥°);, v;) > 0
;Loop: — Calculate d* s.t. DH(¢*)d* = H(¢*) —v and >, d¥ =0
: — Define ™ = ¢ — 7d*

-+ 7t = max(r € 27 | € B and () - I < (- IHW) -]

— Yrt1 = Pt

Remark: The damped Newton's algorithm converges globally provided that:
(Smoothness): H is C' on F..
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E — Define ¢ = ¢* — 7d"

-+ 7t = max(r € 27 | € B and () - I < (- IHW) -]
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Remark: The damped Newton's algorithm converges globally provided that:
(Smoothness): H is C' on F..
(Strict monotonicity): Vi € E., DH(v) is neg. definite on E. N {cst}+

cf [Mirebeau '15]
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Equation H(y) =v where H(¢) = (p(Lag;(¥)))1<i<n
Admissible domain: F. := {¢) € R";Vi, p(Lag, () > €}

Damped Newton algorithm: for solving H () = v

Input: ¢° € RY s.t. € := £ min; min(H (¥°);, v;) > 0
;Loop: — Calculate d* s.t. DH(¢*)d* = H(¢*) —v and >, d¥ =0
E — Define ¢ = ¢* — 7d"

-+ 7t = max(r € 27 | € B and () - I < (- IHW) -]

— Y1 = PF

Remark: The damped Newton's algorithm converges globally provided that:
(Smoothness): H is C' on F..
(Strict monotonicity): Vi € E., DH(v) is neg. definite on E. N {cst}+

cf [Mirebeau '15]
o5 _ § = We have to show smoothness and strict monotonicity



Quadratic cost : smoothness of &G

we have H;(¢) = p(Lag;(¥)) c(z,y) := ||z — y|?

Proposition: For ¢y € E_, and assuming that p € C?(R%) one has

(A)
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Quadratic cost : smoothness of &G
we have H;(¢)) = p(Lag;(¥)) c(z,y) = ||z — y||?

Proposition: For ¢y € E_, and assuming that p € C?(R%) one has

(A) g—ﬁ(iﬂ) = 2||y7;1—yj| fLangﬂp(aﬁ) d z(B) g—%(tb) - = Zj;éq; g—g;’(w)
J 7

Lagij (¥) := Lag,(¢) N Lagj (¥)

sketch of proof:
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Quadratic cost : smoothness of &G
we have H;(¢)) = p(Lag;(¥)) c(z,y) = ||z — y||?

Proposition: For ¢y € E_, and assuming that p € C?(R%) one has

(A) g—ﬁ(iﬂ) = 2||y7;1—yj| fLangﬂp(aﬁ) dz(B) g—%(tb) = = Zj;éq; g—g;’(w)

JFe
Lagij (¢) := Lag,(y) N Lagj (¥)
. . Continuity of g{jﬂ (1)
When ¢ varies, g—f(wt) increases ...
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Quadratic cost : smoothness of &G

we have H;(¢) = p(Lag;(¥)) c(z,y) := ||z — y|?

Proposition: For ¢y € E_, and assuming that p € C?(R%) one has

0H;

(A) g_%(w) ~ 2||y7;1—yj|
JF
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Quadratic cost : smoothness of &G

we have H;(y) = p(Lag,(v))

c(z,y) = llz —y|*

Proposition: For ¢y € E_, and assuming that p € C?(R%) one has
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Quadratic cost : smoothness of &G
we have H;(¢)) = p(Lag;(¥)) c(z,y) = ||z — y||?

Proposition: For ¢y € E_, and assuming that p € C?(R%) one has

(A) g—ﬁ(iﬂ) — 2||y7;1—yj| fLangﬂp(aﬁ) dLE(B) ggj (w) = = Zj;éq; ggj (¢)
i

Lagz’j (¥) := Lag,;(¢) N Lagj (¥)

\/ Continuity of ‘g{jﬂ ()
OH;

0P
~+ we require — p(Lag; (1)) > 0 at all times

When t varies, (1¢) increases ...

and then suddenly vanishes.

26 - 6 — or a genericity condition (three points not aligned)
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we have H;(¢) = p(Lag,(¢))

Recall: 9H;
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Quadratic cost: strict monotonicity of H

we have H;(¢) = p(Lag,(¢))

Recall: 9dH; (1) = ple)dx %(?ﬁ)

[ _ 0G;
Lag,, () 2Ty: —v; 1 gor (W) = =254 5y ()
Lagij (¢) := Lag, () N Lagj (¥)

0

» Consider the matrix of DH := (25? (¢)) and the graph G:

(i, yj) € G == G5+ (¥) > 0 <= Lag;;(¥) N {p > 0} # 0.
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= ( 1s connected.
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Quadratic cost: strict monotonicity of H

we have H;(¢) = p(Lag,(¢))

Recall: 9dH; (1) = ple)dx %(?ﬁ)

[ _ 0G;
Lag,, () 2Ty: —v; 1 gor (W) = =254 5y ()
Lagij (¢) := Lag, () N Lagj (¥)

0

» Consider the matrix of DH := (ggj (¢)) and the graph G:

(i, yj) € G == G5+ (¥) > 0 <= Lag;;(¥) N {p > 0} # 0.

L —

» Assume {p > 0} is connected and ¢ € E.

= ( 1s connected.

= Ker(DH(v)) ={cst} = R( | )

= monotonicity



Convergence in the quadratic case

Theorem: Let X be a (closed) convex bounded domain of R? with
Y C R? be a finite set, p of class C* and@> 0} connec@

hen, the damped Newton algorithm for SD-OT converges globally with
Inear rate and locally with quadratic rate.

>k

2
[H @) —v) < (1= 5 ) [ H@R) - v
[Kitagawa, Mérigot, T., JEMS 2019]
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Convergence in the quadratic case

Theorem: Let X be a (closed) convex bounded domain of R? with

Y C R? be a finite set, p of class C* and@> 0} connec@

hen, the damped Newton algorithm for SD-O
Inear rate and locally with quadratic rate.

converges globally with

<\ 2
[H @) —v) < (1= 5 ) [ H@R) - v
[Kitagawa, Mérigot, T., JEMS 2019]

» Holds when X C M Riemannian manifold, ¢ € C? satistifes Twist, MTW.

» Holds when X C R¢ ¢ satistifes Twist.

No convexity assumption but genericity conditions [Mérigot, T., 2020]
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Quadratic cost: numerics

Exemple: p uniformon X = [0,1]%; v =
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Quadratic cost: numerics

Exemple: p uniform on X = [0,1]% v = & 2 0y, diagramme de Laguerre

IH (%) — vl
~ 1.8
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Quadratic cost: numerics

Exemple: p uniform on X = [0,1]%; v =
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Quadratic cost: numerics

Exemple: p uniform on X = [0,1]%; v =

29 - 4

diagramme de Laguerre

IH (%) — vl
~ 1.8

IH (%) — v
~ 1077
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Outline

Case 1: mirror for point light source
Case 2: mirror for collimated source light
Case 3: other cases

Semi-discrete optimal transport
Damped Newton algorithm

Non-imaging optics: Far-Field target
Non-imaging optics: Near-Field target



Mirror for point source light: algorithm

__pe
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Mirror for point source light: algorithm

» Damped Newton algorithm:

~» Computation of Newton direction at each time step
~+ Evaluation of H and DH:

Jeagyd () and d p(z)

Computation of Laguerre cells
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Mirror for point source light: algorithm

» Damped Newton algorithm:

~» Computation of Newton direction at each time step
~+ Evaluation of H and DH:

Jeagyd () and d p(z)

_ Computation of Laguerre cells
» Power diagrams:

Definition: Given P = {p;}1<;<nx C R? and (w;)1<i<ny € RN | CGAL
Pow% (p;) := {x € R% i = argmin; |z — p;||* + w;}
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Mirror for point source light: algorithm

» Damped Newton algorithm:

~» Computation of Newton direction at each time step
~+ Evaluation of H and DH:

Jeagyd () and d p(z)

_ Computation of Laguerre cells
» Power diagrams:

Definition: Given P = {p;}1<;<nx C R? and (w;)1<i<ny € RN | CGAL
Pow% (p;) := {x € R% i = argmin; |z — p;||* + w;}

Lemma: Lag, (k) = Pow%(p;) N'S?

e? 1

4—|—d3 d;’

€Y
2d; ||y

with p; 1= || and w; :=
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Mirror for point source light: algorithm

v = Z,ﬁil vi0,, obtained by discretizing a picture of Cameraman.

1+ = uniform measure on half-sphere Si N = 40072

N\

—p UV
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Mirror for point source light: algorithm

v = Zfll V;i0,, obtained by discretizing a picture of Cameraman.

1+ = uniform measure on half-sphere Si N = 40072

N\

—p UV

Vi(v) = Pow(p;) N S?

32 -2



Collimated source

Mirror R |
o
ANV
\ )
(%é' S2
R? x {0} 2

Collimated source

33-1

Far Field Target

~targeted image N = 400 X 480




Collimated source / Far Field Target

Mirror R _ targejced imﬂge N = 400 x 480
X,
\\1 i \\‘5\0(\
(cﬁoé& S2
R? x {0} \Z

Collimated source

Mirror R

.\ Vi(v) = Pow(p;) N (R? x {0})

light source
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Collimated source / Far Field Target
Mirror K |
\\é\o(\

\ < -

(
R? x {0} \Z
Collimated source

targeted image N = 400 X 480

\
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| enses

We solve 8 optical problems with one program
~ V(1) = Pow(p;) N X where X = S% R? x {0}
~» Automatic differentiation



Conclusion

We solved 4 inverse problems arising in nonimaging optics
using semi-discrete approach and optimal transport

» Each problem is a Monge-Ampere equation

» For far-field target, OT problem on R? or S* ~» Newton algorithm
» lterative procedure for real-life light target
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Conclusion

We solved 4 inverse problems arising in nonimaging optics
using semi-discrete approach and optimal transport

» Each problem is a Monge-Ampere equation

» For far-field target, OT problem on R? or S* ~» Newton algorithm
» lterative procedure for real-life light target
Tomorrow

~~ Generalization to generated jacobian equations (application to optics,
near field target)

~ Stability results

Thank youl
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