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Joint works with Quentin Mérigot, Jocelyn Meyron, Anatole Gallouet



2 - 1

Nonimaging optics: motivations
Goal: design components that transfer a prescribed source light

to a prescribed target distribution



2 - 2

Nonimaging optics: motivations
Goal: design components that transfer a prescribed source light

to a prescribed target distribution

Motivations / applications

I Car beam design

I Public lighting

I Reduction of light pollution
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Imaging optics: mirror case

We are given a one-to-one map f : X ! Y .
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Imaging optics: mirror case

We are given a one-to-one map f : X ! Y .

Goal: Find a surface S such that the reflection of X onto Y preserves f .

fS

~nS

x

f(x)
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Non-imaging optics: mirror case

No one-to-one map givenInput: Source light with intensity µ

Target light with intensity ⌫

µ

⌫
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Non-imaging optics: mirror case

No one-to-one map given

Goal: Find a surface S such that reflects µ to the ⌫ by Snell’s law

S

Input: Source light with intensity µ

Target light with intensity ⌫

µ

⌫
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Outline

I Case 1: mirror for point light source

I Semi-discrete optimal transport
I Damped Newton algorithm

I Case 2: mirror for collimated source light
I Case 3: other cases

I Non-imaging optics: Far-Field target
I Non-imaging optics: Near-Field target
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Mirror / Point light source

S21
Punctual light at origin o, µ measure on S2

o

Prescribed far-field: ⌫ on S21

S2
o

o

µ

⌫



6 - 2

Mirror / Point light source

S21
Punctual light at origin o, µ measure on S2

o

Prescribed far-field: ⌫ on S21

S2
o

Goal: Find a surface R which sends (S2
o
, µ) to

(S1, ⌫) under reflection by Snell’s law.o

R

µ

⌫



6 - 3

Mirror / Point light source
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Punctual light at origin o, µ measure on S2
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Goal: Find a surface R which sends (S2
o
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I R is parameterized by x 2 S20 7! xu(x)
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Mirror / Point light source

S21
Punctual light at origin o, µ measure on S2
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Mirror / Point light source

S21
Punctual light at origin o, µ measure on S2

o

Prescribed far-field: ⌫ on S21

S2
o

Goal: Find a surface R which sends (S2
o
, µ) to

(S1, ⌫) under reflection by Snell’s law.oo

R

I R is parameterized by x 2 S20 7! xu(x)

I Snell’s law
T : x 2 S20 7! y = x� 2hx|nin

Brenier formulation

i.e. for every borelian B

T]µ = ⌫

µ(T�1
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where u : S20 ! R+ radial distance

x
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Mirror / Point light source

S21
Punctual light at origin o, µ measure on S2

o

Prescribed far-field: ⌫ on S21

S2
o

Goal: Find a surface R which sends (S2
o
, µ) to

(S1, ⌫) under reflection by Snell’s law.oo

R

I R is parameterized by x 2 S20 7! xu(x)

I Snell’s law
T : x 2 S20 7! y = x� 2hx|nin

Brenier formulation

i.e. for every borelian B

Change of variable

g(T (x)) det(DT (x)) = f(x)

T]µ = ⌫

µ(T�1
(B)) = ⌫(B)

If µ(x) = f(x)dx and ⌫(y) = g(y)dy

µ

⌫
where u : S20 ! R+ radial distance

x

xu(x)

B

T
�1(B)
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Monge-Ampère equation: Find u : S20 ! R+ vérifiant8
><

>:

f⌫(T (x)) det(DT (x)) = fµ(x)
T (x) = x� hx|n(x)in(x)

n(x) = ru(x)�u(x)x
p

kru(x)k2+u(x)2

,

o

R

u(x)
x

Monge Ampère

Designing the mirror R amounts to solving

µ

⌫

Mirror / Point light source
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Monge-Ampère equation: Find u : S20 ! R+ vérifiant8
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Monge-Ampère equation: Find u : S20 ! R+ vérifiant8
><

>:

f⌫(T (x)) det(DT (x)) = fµ(x)
T (x) = x� hx|n(x)in(x)

n(x) = ru(x)�u(x)x
p

kru(x)k2+u(x)2

,

o

R

u(x)
x

Monge Ampère Ca↵arelli Oliker
1994 : existence de solutions

Designing the mirror R amounts to solving

µ

⌫

Mirror / Point light source
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Mirror / Point light source: semi-discrete

S21
Punctual light at origin o, µ measure on S2

o

S2
o

o
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Mirror / Point light source: semi-discrete

S21
Punctual light at origin o, µ measure on S2

o

Prescribed far-field: ⌫ = ⌫1�y1 on S21

S2
o

o

y1
µ
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Mirror / Point light source: semi-discrete

S21
Punctual light at origin o, µ measure on S2

o

Prescribed far-field: ⌫ = ⌫1�y1 on S21

S2
o

o

R

y1 R : paraboloid of direction y1 and focal O
µ
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Mirror / Point light source: semi-discrete

S21

y1

y2

y3

Punctual light at origin o, µ measure on S2
o

S2
o

o

Prescribed far-field: ⌫ =
P

i
⌫i�yi on S

2
1
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Mirror / Point light source: semi-discrete
y1

y2

y3

Punctual light at origin o, µ measure on S2
o

Pi(i) = solid paraboloid of revolution with focal o,

direction yi and focal distance i

R(~) = @
�
\
N

i=1Pi(i)
�

o

P3

P2

µ

P1

Prescribed far-field: ⌫ =
P

i
⌫i�yi on S

2
1
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Mirror / Point light source: semi-discrete
y1

y2

y3

Punctual light at origin o, µ measure on S2
o

Pi(i) = solid paraboloid of revolution with focal o,

direction yi and focal distance i

R(~) = @
�
\
N

i=1Pi(i)
�

Decomposition of S2
o
: Vi(~) = ⇡S2

o
(R(~) \ @Pi(i))

R(~) \ @P3(3)
V3(~)

o

P3

P2

µ

= directions that are reflected towards yi.

Prescribed far-field: ⌫ =
P

i
⌫i�yi on S

2
1
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Mirror / Point light source: semi-discrete
y1

y2

y3

Punctual light at origin o, µ measure on S2
o

Pi(i) = solid paraboloid of revolution with focal o,

direction yi and focal distance i

R(~) = @
�
\
N

i=1Pi(i)
�

Decomposition of S2
o
: Vi(~) = ⇡S2

o
(R(~) \ @Pi(i))

Problem (FF): Find 1, . . . ,N such that for every i, µ(Vi(~)) = ⌫i.

R(~) \ @P3(3)
V3(~)

amount of light reflected in direction yi.

o

P3

P2

µ

= directions that are reflected towards yi.

Prescribed far-field: ⌫ =
P

i
⌫i�yi on S

2
1
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Mirror / Point light source: Optimal Transport

Lemma: With c(x, y) = � log(1� hx|yi), and  i := log(i),

Lag
i
( ) := Vi(~) = {x 2 S20, c(x, yi) +  i  c(x, yj) +  j 8j}.

P1

V3(~)

o

P3

P2

Ca↵arelli-Oliker ’94
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Mirror / Point light source: Optimal Transport

Lemma: With c(x, y) = � log(1� hx|yi), and  i := log(i),

Lag
i
( ) := Vi(~) = {x 2 S20, c(x, yi) +  i  c(x, yj) +  j 8j}.

P1

V3(~)

o

P3

P2

Ca↵arelli-Oliker ’94

 An optimal transport problem on S2
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Mirror / Point light source: Optimal Transport

Problem (FF): Find  2 RN such that

where Lag
i
( ) = {x 2 S20, c(x, yi) +  i  c(x, yj) +  j 8j},

8i 2 {1, · · ·N} µ(Lagi( )) = ⌫i.

 We have to solve an OT problem

 i := log(i), and c(x, y) = � log(1� hx|yi).
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Mirror / Point light source: Optimal Transport

Problem (FF): Find  2 RN such that

where Lag
i
( ) = {x 2 S20, c(x, yi) +  i  c(x, yj) +  j 8j},

8i 2 {1, · · ·N} µ(Lagi( )) = ⌫i.

 We have to solve an OT problem

 i := log(i), and c(x, y) = � log(1� hx|yi).

 The mirror is parametrized by

Sd�1
! Rd

x 7!

⇣
mini

e
 i

1�hx|yii

⌘
x
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Mirror / Point light source: Optimal Transport

Problem (FF): Find  2 RN such that

where Lag
i
( ) = {x 2 S20, c(x, yi) +  i  c(x, yj) +  j 8j},

8i 2 {1, · · ·N} µ(Lagi( )) = ⌫i.

 We have to solve an OT problem

 i := log(i), and c(x, y) = � log(1� hx|yi).

 The mirror is parametrized by

Sd�1
! Rd

x 7!

⇣
mini

e
 i

1�hx|yii

⌘
x

emini c(x,yi)+ i = e 
c(x)

where  c
(x) = minyi c(x, y)�  (yi)

is the c-conjugate function of  .
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Mirror / Point light source: Optimal Transport

Problem (FF): Find  2 RN such that

where Lag
i
( ) = {x 2 S20, c(x, yi) +  i  c(x, yj) +  j 8j},

8i 2 {1, · · ·N} µ(Lagi( )) = ⌫i.

 We have to solve an OT problem

 i := log(i), and c(x, y) = � log(1� hx|yi).

 The mirror is parametrized by

Sd�1
! Rd

x 7!

⇣
mini

e
 i

1�hx|yii

⌘
x

emini c(x,yi)+ i = e 
c(x)

where  c
(x) = minyi c(x, y)�  (yi)

ccl : x 2 S20 7! e 
c(x)x parametrizes the mirror.

is the c-conjugate function of  .

e 
c(x)

x
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Outline

I Case 1: mirror for point light source

I Semi-discrete optimal transport
I Damped Newton algorithm

I Case 2: mirror for collimated source light
I Case 3: other cases

I Non-imaging optics: Far-Field target
I Non-imaging optics: Near-Field target



12 - 1

Mirror / Collimated source light

S2
Ta
rge

t l
igh
t

Mirror R

Collimated source

⌦

Collimated light µ measure on ⌦ ⇢ R2
⇥ {0}

Prescribed far-field: ⌫ on S2

Goal: Find a surface R which sends (⌦, µ) to
(S2, ⌫) under reflection by Snell’s law.

⌫µ
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Mirror / Collimated source light
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⌦
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Prescribed far-field: ⌫ on S2

Goal: Find a surface R which sends (⌦, µ) to
(S2, ⌫) under reflection by Snell’s law.

I R param. by x 2 ⌦ 7! (x, u(x))

I Snell’s law: the ray ez coming from x

is reflected in direction F (ru(x)).

where u : ⌦! R height function⌫µ
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Mirror / Collimated source light
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Collimated source

⌦

Collimated light µ measure on ⌦ ⇢ R2
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where u : ⌦! R height function

Brenier formulation (F � ru)]µ = ⌫

, 8B µ((ru)�1
(B)) = ⌫̃(B)

, 8A µ((F � ru)�1
(A)) = ⌫(A)

, det(r
2u(x))g(ru(x)) = f(x) if µ(x) = f(x)dx and ⌫̃(x) = g(x)dx

with B = F�1
(A) ⇢ R2
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Mirror / Collimated source light

S2
Ta
rge

t l
igh
t

Mirror R

Collimated source

⌦

Collimated light µ measure on ⌦ ⇢ R2
⇥ {0}

Prescribed far-field: ⌫ on S2

Goal: Find a surface R which sends (⌦, µ) to
(S2, ⌫) under reflection by Snell’s law.

I R param. by x 2 ⌦ 7! (x, u(x))

I Snell’s law: the ray ez coming from x

is reflected in direction F (ru(x)).

where u : ⌦! R height function

Monge-Ampère equation in R2

Find u : ⌦! R2 such that det(r2u(x))g(ru(x)) = f(x)

⌫µ
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Mirror / Collimated source light: semi-discrete

mirror S

light source

yix

(x, hx|pii �  i)

Collimated light µ measure on ⌦ ⇢ R2
⇥ {0}

Prescribed far-field: ⌫ =
P

i
⌫i�yi on S2

S2

Ta
rge

t l
igh
tVi(~ ) ⌫

µ
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Mirror / Collimated source light: semi-discrete

mirror S

light source

yix

(x, hx|pii �  i)

Collimated light µ measure on ⌦ ⇢ R2
⇥ {0}

Prescribed far-field: ⌫ =
P

i
⌫i�yi on S2

S2

Ta
rge

t l
igh
tWe choose to parameterize R by

x 2 ⌦ 7! (x,maxihx|pii �  i)

Vi(~ ) ⌫

µ
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Mirror / Collimated source light: semi-discrete

mirror S

light source

yix

(x, hx|pii �  i)

Collimated light µ measure on ⌦ ⇢ R2
⇥ {0}

Prescribed far-field: ⌫ =
P

i
⌫i�yi on S2

S2

Ta
rge

t l
igh
tWe choose to parameterize R by

x 2 ⌦ 7! (x,maxihx|pii �  i)

Problem (FF): Find  1, . . . , N such that for every i, µ(Vi(
~ )) = ⌫i.

amount of light reflected in direction yi.

Vi(~ ) ⌫

µ
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Mirror / Collimated source: Optimal Transport

Lemma: With c(x, y) = �hx|yi

Vi(
~ ) = {x 2 R2, c(x, yi) +  i  c(x, yj) +  j 8j}.

mirror S

light source

yix

(x, hx|p(y)i �  i)

Vi(~ )
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Mirror / Collimated source: Optimal Transport

Lemma: With c(x, y) = �hx|yi

Vi(
~ ) = {x 2 R2, c(x, yi) +  i  c(x, yj) +  j 8j}.

mirror S

light source

yix

(x, hx|p(y)i �  i)

Vi(~ )

 Optimal transport problem in R2

Problem (FF): Find  1, . . . , N such that for every i, µ(Vi(
~ )) = ⌫i.
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Outline

I Case 1: mirror for point light source

I Semi-discrete optimal transport
I Damped Newton algorithm

I Case 2: mirror for collimated source light
I Case 3: other cases

I Non-imaging optics: Far-Field target
I Non-imaging optics: Near-Field target
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Four inverse problems
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Point source

R2
⇥ {0}

Collimated source

S2 Target light

Lens R

S2
Ta
rge

t l
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t

Mirror R

0

Point source

S2 Target light

Lens R

0

S2
Ta
rge

t l
igh
t

Mirror R

Collimated source

R2 ⇥ {0}

concave too

Four inverse problems Optimal Transport Formulation
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Outline

I Case 1: mirror for point light source

I Semi-discrete optimal transport
I Damped Newton algorithm

I Case 2: mirror for collimated source light
I Case 3: other cases

I Non-imaging optics: Far-Field target
I Non-imaging optics: Near-Field target
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Monge problem (1781)
How to optimally move sand ?
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Monge problem (1781)

X, µ

Y, ⌫

Let c : X ⇥ Y ! R be a cost function

How to optimally move sand ?

e.g. c(x, y) = kx� yk2
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Monge problem (1781)

X, µ

Y, ⌫
T ?

Let c : X ⇥ Y ! R be a cost function

Find a map T : X ! Y such thatMonge problem.

I T preserves the mass, i.e. ⌫(A) = µ(T�1
(A))

I T minimizes the total cost

min
R
X
c(x, T (x))dµ(x)

How to optimally move sand ?

e.g. c(x, y) = kx� yk2

The minimizer does not always exist; Constraint not linear

A

T�1
(A)
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Monge problem (1781)

X, µ

Y, ⌫

Let c : X ⇥ Y ! R be a cost function

How to optimally move sand ?

e.g. c(x, y) = kx� yk2

Kantorovitch relaxation – 1940’s

Minimise
R
c(x, y)d⇡(x, y)

where ⇡ is a transport plan, i.e

⇡(A⇥ Y ) = µ(A)

⇡(X ⇥B) = ⌫(B)

⇡ is a probability measure on X ⇥ Y
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linear programming

Discrete source and target

Bertsekas’ auction algorithm

µi ⌫j

Sinkhorn/IPFP

Numerical optimal transport
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linear programming

Discrete source and target

Bertsekas’ auction algorithm

µi ⌫j

Source and target with density (PDE):

Benamou-Brenier formulation

Stencil methods for Monge Ampère equations

Sinkhorn/IPFP

Numerical optimal transport
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linear programming

Discrete source and target

Bertsekas’ auction algorithm

µi ⌫j

Source with density, discrete target:

Kitagawa ’12

Source and target with density (PDE):

Benamou-Brenier formulation

Stencil methods for Monge Ampère equations

Sinkhorn/IPFP

Aurenhammer, Ho↵mann, Aronov ’98

Oliker-Prussner ’89 Ca↵arelli-Kochengin-Oliker ’97

Mérigot ’11, Levy’15, Kitagawa-Mérigot-T.’17, etc.

Numerical optimal transport

Coordinate-wise increment

Newton and quasi-Newton methods
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Semi-discrete optimal transport
µ(x) = ⇢(x)dx probability measure on X
⌫ =

P
i
⌫i�yi prob. measure on finite Y = {y1, · · · , yN}

c : X ⇥ Y ! R cost function

YX
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Semi-discrete optimal transport
µ(x) = ⇢(x)dx probability measure on X
⌫ =

P
i
⌫i�yi prob. measure on finite Y = {y1, · · · , yN}

Transport map: T : X ! Y s.t. 8i, µ(T�1
({yi})) = ⌫i (i.e. T#µ = ⌫)

c : X ⇥ Y ! R cost function

YX y1
T�1(y1)
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Semi-discrete optimal transport
µ(x) = ⇢(x)dx probability measure on X
⌫ =

P
i
⌫i�yi prob. measure on finite Y = {y1, · · · , yN}

R
X
c(x, T (x)) dµ(x)

Transport map: T : X ! Y s.t. 8i, µ(T�1
({yi})) = ⌫i (i.e. T#µ = ⌫)

c : X ⇥ Y ! R cost function

Monge problem: Find a transport map T : X ! Y that minimizes

YX y1
T�1(y1)
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⇢ : X ! R density of population

Y = location of bakeries

c(x, yi) := kx� yik2 Y
X

Semi-discrete optimal transport
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⇢ : X ! R density of population

Y = location of bakeries

c(x, yi) := kx� yik2

Vor(yi) = {x 2 X; 8j, c(x, yi)  c(x, yj)}

I If the price of bread is uniform, people go the closest bakery:

Y
X

Semi-discrete optimal transport
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⇢ : X ! R density of population

Y = location of bakeries

c(x, yi) := kx� yik2

I If prices are given by  1, · · · , N , people make a compromise:

Lag
i
( ) = {x 2 X; 8j, c(x, yi) +  i  c(x, yj) +  j}

Y
X

Semi-discrete optimal transport
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⇢ : X ! R density of population

Y = location of bakeries

c(x, yi) := kx� yik2

I If prices are given by  1, · · · , N , people make a compromise:

Lag
i
( ) = {x 2 X; 8j, c(x, yi) +  i  c(x, yj) +  j}

Y
X

x
T (x)

Semi-discrete optimal transport

I We define the function “number of people”
H : Rn

! Rn

( i)1in 7! (
R
Lagi

⇢(x)dx)1in
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⇢ : X ! R density of population

Y = location of bakeries

c(x, yi) := kx� yik2

I If prices are given by  1, · · · , N , people make a compromise:

Lag
i
( ) = {x 2 X; 8j, c(x, yi) +  i  c(x, yj) +  j}

Y
X

x
T (x)

Semi-discrete optimal transport

I We define the function “number of people”
H : Rn

! Rn

( i)1in 7! (
R
Lagi

⇢(x)dx)1in

Trouver  2 Rn tel que H( ) = ⌫

Monge-Ampère equation :
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⇢ : X ! R density of population

Y = location of bakeries

c(x, yi) := kx� yik2

I If prices are given by  1, · · · , N , people make a compromise:

Lag
i
( ) = {x 2 X; 8j, c(x, yi) +  i  c(x, yj) +  j}

Y
X

x
T (x)

Semi-discrete optimal transport

I We define the function “number of people”
H : Rn

! Rn

( i)1in 7! (
R
Lagi

⇢(x)dx)1in

Trouver  2 Rn tel que H( ) = ⌫

Monge-Ampère equation : T : X ! Y
x 7! yi si x 2 Lag

i
( )

T is a transport map
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Theorem (variational formulation)

Concave optimisation problem

H = r�

where � : Rn
! R is concave
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Theorem (variational formulation)

Concave optimisation problem

H = r�

where � : Rn
! R is concave

Kantorovitch duality
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Theorem (variational formulation)

Concave optimisation problem

Graph of �

 
⇤Rn

R

Everyone living in Vi has bread in yi (and all the bread is sold)
() H( 

⇤
) = ⌫ (Monge-Ampère equation)

()  
⇤ is a maximum of �

H = r�

where � : Rn
! R is concave

Corollary. Let  ⇤
= ( 1, · · · , n) prices of breads in y1, · · · , yn

y1

y2

y3

y4y5

V5
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Theorem (variational formulation)

Concave optimisation problem

Graph of �

Rn

R

Everyone living in Vi has bread in yi (and all the bread is sold)
() H( 

⇤
) = ⌫ (Monge-Ampère equation)

()  
⇤ is a maximum of �

H = r�

where � : Rn
! R is concave

Corollary. Let  ⇤
= ( 1, · · · , n) prices of breads in y1, · · · , yn

y1

y2

y3

y4y5

V5

Algorithms.

I Quasi Newton methods for c(x, y) = kx� yk2 on R2/R3 S2
[Mérigot. ’11] [Lévy ’14] [de Goes et al ’12] [Machado, Mérigot, Thibert ’16]

I Oliker Prussner: coordinate-wise increment with minimum step,
with complexity O(

N
3

"
log(N)), " = precision.

I Newton method in R2, R3, when µ supported on a triangulation.

No analysis
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Outline

I Case 1: mirror for point light source

I Semi-discrete optimal transport
I Damped Newton algorithm

I Case 2: mirror for collimated source light
I Case 3: other cases

I Non-imaging optics: Far-Field target
I Non-imaging optics: Near-Field target
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Newton Algorithm

YX
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Newton Algorithm

where H : RN
! RN by H( ) = (⇢(Lag

i
( )))1iN

Equation H( ) = ⌫

Remark: H is invariant by addition of a vector �(1, · · · , 1).

YX
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Loop: �! Calculate d
k
s.t. DH( k)dk = H( k)� ⌫ and

P
i d

k
i = 0

Newton algorithm: for solving H( ) = ⌫

Input:  
0 2 RN

s.t. " := 1
2 mini min(H( 0)i, ⌫i) > 0

�!  
k+1 :=  

k � d
k

Newton Algorithm

where H : RN
! RN by H( ) = (⇢(Lag

i
( )))1iN

Equation H( ) = ⌫

Remark: H is invariant by addition of a vector �(1, · · · , 1).

YX
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Loop: �! Calculate d
k
s.t. DH( k)dk = H( k)� ⌫ and

P
i d

k
i = 0

Newton algorithm: for solving H( ) = ⌫

Input:  
0 2 RN

s.t. " := 1
2 mini min(H( 0)i, ⌫i) > 0

�!  
k+1 :=  

k � d
k

Newton Algorithm

where H : RN
! RN by H( ) = (⇢(Lag

i
( )))1iN

Equation H( ) = ⌫

Remark: H is invariant by addition of a vector �(1, · · · , 1).

Local convergence : if  0 is close to a solution  ⇤, then it converges.

YX
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Equation H( ) = ⌫

Admissible domain: E" := { 2 RN ; 8i, ⇢(Lagi( )) � "}

⇢(Lagi( )) � "

Damped Newton Algorithm
where H( ) = (⇢(Lag

i
( )))1iN

[Kitagawa, Mérigot, Thibert]
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Loop: ! Calculate d
k
s.t. DH( k)dk = H( k)� ⌫ and

P
i d

k
i = 0

Damped Newton algorithm: for solving H( ) = ⌫

Equation H( ) = ⌫

! ⌧
k = max{⌧ 2 2�N |  k⌧ 2 E" and kH( k⌧ )� ⌫k  (1� ⌧

2 )kH( k)� ⌫k}

Input:  
0 2 RN

s.t. " := 1
2 mini min(H( 0)i, ⌫i) > 0

Admissible domain: E" := { 2 RN ; 8i, ⇢(Lagi( )) � "}

⇢(Lagi( )) � "

!  k+1 :=  
⌧k
k

Damped Newton Algorithm
where H( ) = (⇢(Lag

i
( )))1iN

! Define  
k,⌧ =  

k � ⌧d
k

[Kitagawa, Mérigot, Thibert]
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Loop: ! Calculate d
k
s.t. DH( k)dk = H( k)� ⌫ and

P
i d

k
i = 0

Damped Newton algorithm: for solving H( ) = ⌫

Remark: The damped Newton’s algorithm converges globally provided that:

(Smoothness): H is C1
on E".

Equation H( ) = ⌫

! ⌧
k = max{⌧ 2 2�N |  k⌧ 2 E" and kH( k⌧ )� ⌫k  (1� ⌧

2 )kH( k)� ⌫k}

Input:  
0 2 RN

s.t. " := 1
2 mini min(H( 0)i, ⌫i) > 0

Admissible domain: E" := { 2 RN ; 8i, ⇢(Lagi( )) � "}

⇢(Lagi( )) � "

!  k+1 :=  
⌧k
k

Damped Newton Algorithm
where H( ) = (⇢(Lag

i
( )))1iN

! Define  
k,⌧ =  

k � ⌧d
k

[Kitagawa, Mérigot, Thibert]



25 - 4

Loop: ! Calculate d
k
s.t. DH( k)dk = H( k)� ⌫ and

P
i d

k
i = 0

Damped Newton algorithm: for solving H( ) = ⌫

Remark: The damped Newton’s algorithm converges globally provided that:

(Strict monotonicity): 8 2 E", DH( ) is neg. definite on E" \ {cst}?
(Smoothness): H is C1

on E".

Equation H( ) = ⌫

cf [Mirebeau ’15]

! ⌧
k = max{⌧ 2 2�N |  k⌧ 2 E" and kH( k⌧ )� ⌫k  (1� ⌧

2 )kH( k)� ⌫k}

Input:  
0 2 RN

s.t. " := 1
2 mini min(H( 0)i, ⌫i) > 0

Admissible domain: E" := { 2 RN ; 8i, ⇢(Lagi( )) � "}

⇢(Lagi( )) � "

!  k+1 :=  
⌧k
k

Damped Newton Algorithm
where H( ) = (⇢(Lag

i
( )))1iN

! Define  
k,⌧ =  

k � ⌧d
k

[Kitagawa, Mérigot, Thibert]
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Loop: ! Calculate d
k
s.t. DH( k)dk = H( k)� ⌫ and

P
i d

k
i = 0

Damped Newton algorithm: for solving H( ) = ⌫

Remark: The damped Newton’s algorithm converges globally provided that:

(Strict monotonicity): 8 2 E", DH( ) is neg. definite on E" \ {cst}?
(Smoothness): H is C1

on E".

Equation H( ) = ⌫

cf [Mirebeau ’15]

! ⌧
k = max{⌧ 2 2�N |  k⌧ 2 E" and kH( k⌧ )� ⌫k  (1� ⌧

2 )kH( k)� ⌫k}

Input:  
0 2 RN

s.t. " := 1
2 mini min(H( 0)i, ⌫i) > 0

Admissible domain: E" := { 2 RN ; 8i, ⇢(Lagi( )) � "}

⇢(Lagi( )) � "

!  k+1 :=  
⌧k
k

Damped Newton Algorithm

) We have to show smoothness and strict monotonicity

where H( ) = (⇢(Lag
i
( )))1iN

! Define  
k,⌧ =  

k � ⌧d
k

[Kitagawa, Mérigot, Thibert]
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Proposition: For  2 E", and assuming that ⇢ 2 C
0
c
(Rd

) one has

(A) @Hi
@ j

( ) = 1
2kyi�yjk

R
Lagij( )

⇢(x) dx

we have Hi( ) = ⇢(Lagi( ))

Lagij( ) := Lagi( ) \ Lagj( )

(B) @Hi
@ i

( ) = �
P

j 6=i

@Gi
@ j

( )
j 6= i

Quadratic cost : smoothness of G
c(x, y) := kx� yk2



26 - 2

Proposition: For  2 E", and assuming that ⇢ 2 C
0
c
(Rd

) one has

(A) @Hi
@ j

( ) = 1
2kyi�yjk

R
Lagij( )

⇢(x) dx

we have Hi( ) = ⇢(Lagi( ))

Lagij( ) := Lagi( ) \ Lagj( )

(B) @Hi
@ i

( ) = �
P

j 6=i

@Gi
@ j

( )
j 6= i

Quadratic cost : smoothness of G
c(x, y) := kx� yk2

sketch of proof:

yjyi

Hi( )

yjyi

Hi( +✏ej)�Hi( )
"

yjyi

@Hi
@ j

( )
"! 0
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Proposition: For  2 E", and assuming that ⇢ 2 C
0
c
(Rd

) one has

(A) @Hi
@ j

( ) = 1
2kyi�yjk

R
Lagij( )

⇢(x) dx

we have Hi( ) = ⇢(Lagi( ))

Lagij( ) := Lagi( ) \ Lagj( )

(B) @Hi
@ i

( ) = �
P

j 6=i

@Gi
@ j

( )
j 6= i

When t varies, @Hi
@ j

( t) increases ...

Quadratic cost : smoothness of G
c(x, y) := kx� yk2

Continuity of @Hi
@ j

( )
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and then suddenly vanishes.
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and then suddenly vanishes.

 we require � ⇢(Lag
i
( )) > 0 at all times

Proposition: For  2 E", and assuming that ⇢ 2 C
0
c
(Rd

) one has

(A) @Hi
@ j

( ) = 1
2kyi�yjk

R
Lagij( )

⇢(x) dx

we have Hi( ) = ⇢(Lagi( ))

Lagij( ) := Lagi( ) \ Lagj( )

(B) @Hi
@ i

( ) = �
P

j 6=i

@Gi
@ j

( )
j 6= i

When t varies, @Hi
@ j

( t) increases ...

Quadratic cost : smoothness of G
c(x, y) := kx� yk2

� or a genericity condition (three points not aligned)

Continuity of @Hi
@ j

( )
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Recall: @Hi
@ j

( ) =
R
Lagij( )

⇢(x) d x

2kyi�yjk
@Hi
@ i

( ) = �
P

j 6=i

@Gi
@ j

( )

Lagij( ) := Lagi( ) \ Lagj( )

Quadratic cost: strict monotonicity of H
we have Hi( ) = ⇢(Lagi( ))
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Recall: @Hi
@ j

( ) =
R
Lagij( )

⇢(x) d x

2kyi�yjk
@Hi
@ i

( ) = �
P

j 6=i

@Gi
@ j

( )

(yi, yj) 2 G ()
@Hi
@ j

( ) > 0 () Lag
ij
( ) \ {⇢ > 0} 6= ;.

Lagij( ) := Lagi( ) \ Lagj( )

I Consider the matrix of DH := (
@Hi
@ j

( )) and the graph G:

Quadratic cost: strict monotonicity of H
we have Hi( ) = ⇢(Lagi( ))
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Recall: @Hi
@ j

( ) =
R
Lagij( )

⇢(x) d x

2kyi�yjk
@Hi
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( ) = �
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@Gi
@ j

( )

(yi, yj) 2 G ()
@Hi
@ j

( ) > 0 () Lag
ij
( ) \ {⇢ > 0} 6= ;.

Lagij( ) := Lagi( ) \ Lagj( )

I Consider the matrix of DH := (
@Hi
@ j

( )) and the graph G:

I Assume {⇢ > 0} is connected and  2 E"

Quadratic cost: strict monotonicity of H
we have Hi( ) = ⇢(Lagi( ))

) G is connected.
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Recall: @Hi
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( ) \ {⇢ > 0} 6= ;.

Lagij( ) := Lagi( ) \ Lagj( )

I Consider the matrix of DH := (
@Hi
@ j

( )) and the graph G:

I Assume {⇢ > 0} is connected and  2 E"

) Ker(DH( )) = {cst} = R
 

1

.

.

.
1

!

Quadratic cost: strict monotonicity of H
we have Hi( ) = ⇢(Lagi( ))

) G is connected.
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Recall: @Hi
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I Consider the matrix of DH := (
@Hi
@ j

( )) and the graph G:

I Assume {⇢ > 0} is connected and  2 E"

) Ker(DH( )) = {cst} = R
 

1

.

.

.
1

!

Quadratic cost: strict monotonicity of H
we have Hi( ) = ⇢(Lagi( ))

) monotonicity

) G is connected.
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Convergence in the quadratic case

Theorem: Let X be a (closed) convex bounded domain of Rd with

Y ⇢ Rd be a finite set, ⇢ of class C1 and {⇢ > 0} connected.

Then, the damped Newton algorithm for SD-OT converges globally with
linear rate and locally with quadratic rate.

[Kitagawa, Mérigot, T., JEMS 2019]

kH( k+1
)� ⌫k 

⇣
1�

⌧
⇤

2

⌘2
kH( k

)� ⌫k
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Convergence in the quadratic case

Theorem: Let X be a (closed) convex bounded domain of Rd with

Y ⇢ Rd be a finite set, ⇢ of class C1 and {⇢ > 0} connected.

Then, the damped Newton algorithm for SD-OT converges globally with
linear rate and locally with quadratic rate.

[Kitagawa, Mérigot, T., JEMS 2019]

kH( k+1
)� ⌫k 

⇣
1�

⌧
⇤

2

⌘2
kH( k

)� ⌫k

I Holds when X ⇢ Rd, c satistifes Twist.

I Holds when X ⇢ M Riemannian manifold, c 2 C2 satistifes Twist, MTW.

No convexity assumption but genericity conditions [Mérigot, T., 2020]
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Quadratic cost: numerics
Exemple: ⇢ uniform on X = [0, 1]2; ⌫ =

1
N

P
i
�yi
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Quadratic cost: numerics
Exemple: ⇢ uniform on X = [0, 1]2; ⌫ =

1
N

P
i
�yi diagramme de Laguerre

kH( 0
)� ⌫k1

' 1.8
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Quadratic cost: numerics
Exemple: ⇢ uniform on X = [0, 1]2; ⌫ =

1
N

P
i
�yi diagramme de Laguerre

kH( 0
)� ⌫k1

' 1.8

kH( 1
)� ⌫k1

' 0.6
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Quadratic cost: numerics
Exemple: ⇢ uniform on X = [0, 1]2; ⌫ =

1
N

P
i
�yi diagramme de Laguerre

kH( 0
)� ⌫k1

' 1.8

kH( 3
)� ⌫k1

' 10
�9

kH( 1
)� ⌫k1

' 0.6
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Outline

I Case 1: mirror for point light source

I Semi-discrete optimal transport
I Damped Newton algorithm

I Case 2: mirror for collimated source light
I Case 3: other cases

I Non-imaging optics: Far-Field target
I Non-imaging optics: Near-Field target
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Mirror for point source light: algorithm

µ

R

⌫
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Mirror for point source light: algorithm

R
Lagi

dµ(x) and
R
Lagi,j

dµ(x)

 Computation of Newton direction at each time step

I Damped Newton algorithm:

 Evaluation of H and DH:

Computation of Laguerre cells
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Mirror for point source light: algorithm

R
Lagi

dµ(x) and
R
Lagi,j

dµ(x)

 Computation of Newton direction at each time step

I Damped Newton algorithm:

 Evaluation of H and DH:

I Power diagrams:

Definition: Given P = {pi}1iN ✓ Rd and (!i)1iN 2 RN

Pow
!

P
(pi) := {x 2 Rd

; i = argminj kx� pjk2 + !j}

CGAL

Computation of Laguerre cells
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Mirror for point source light: algorithm

R
Lagi

dµ(x) and
R
Lagi,j

dµ(x)

 Computation of Newton direction at each time step

I Damped Newton algorithm:

 Evaluation of H and DH:

I Power diagrams:

Lemma: Lag
i
() = Pow

!

P
(pi) \ S2

Definition: Given P = {pi}1iN ✓ Rd and (!i)1iN 2 RN

Pow
!

P
(pi) := {x 2 Rd

; i = argminj kx� pjk2 + !j}

with pi := �
eiyj

2dikyik and !i := �
e
2
i

4+d
2
i
�

1
di
,

CGAL

Computation of Laguerre cells
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Mirror for point source light: algorithm
⌫ =

PN
i=1 ⌫i�xi obtained by discretizing a picture of Cameraman.

µ = uniform measure on half-sphere S2
+

µ ⌫

R

N = 4002
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Mirror for point source light: algorithm
⌫ =

PN
i=1 ⌫i�xi obtained by discretizing a picture of Cameraman.

µ = uniform measure on half-sphere S2
+

µ ⌫

R

N = 4002

Vi( ) = Pow(pi) \ S2
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Collimated source / Far Field Target
targeted image N = 400⇥ 480

S2
Ta
rge

t l
igh
t

Mirror R

Collimated source

R2 ⇥ {0}
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Collimated source / Far Field Target
targeted image N = 400⇥ 480

Vi( ) = Pow(pi) \ (R2
⇥ {0})

S2
Ta
rge

t l
igh
t

Mirror R

Collimated source

R2 ⇥ {0}

light source

Mirror R
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Collimated source / Far Field Target
targeted image N = 400⇥ 480

S2
Ta
rge

t l
igh
t

Mirror R

Collimated source

R2 ⇥ {0}
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Lenses

We solve 8 optical problems with one program

 Vi( ) = Pow(pi) \X where X = S2,R2
⇥ {0}

 Automatic di↵erentiation
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Conclusion

We solved 4 inverse problems arising in nonimaging optics
using semi-discrete approach and optimal transport

I Each problem is a Monge-Ampère equation

I For far-field target, OT problem on R2 or S2  Newton algorithm
I Iterative procedure for real-life light target
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Conclusion

Thank you!

We solved 4 inverse problems arising in nonimaging optics
using semi-discrete approach and optimal transport

 Generalization to generated jacobian equations (application to optics,

I Each problem is a Monge-Ampère equation

I For far-field target, OT problem on R2 or S2  Newton algorithm

near field target)

 Stability results

I Iterative procedure for real-life light target

Tomorrow


