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Today’s talk

Yesterday we saw how to pass to the mean-field limit and explored one of
the benefits of having a Fokker–Planck equation: characterising the long time
behaviour of the system.

Today we will explore how to use this for inference. Recall that we are consid-
ering the system

dX i
t = V ′

(
X i

t

)
dt +

1
N

∑
j 6=i

K
(

X i
t − X j

t

)
dt +

√
2σ dW i

t , X i
0 = x i

0.

Because of the interacting term, if we want to evaluate a MLE for a trajectory,
we need to know all the other trajectories!

If we consider the mean-field limit, we can avoid that by instead solving a
PDE for the density. I will show this for two applications, and finish with some
recent related work.
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Application 1: Pedestrian
dynamics

Joint work with Andrew Stuart (Caltech) and Marie-Therese
Wolfram (Warwick)

SNG, A.M. Stuart, M.-T. Wolfram, SIAM J. Appl. Math 79(4), 1475-1500 (2019)
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Crowd dynamics

Understanding the individual dynamics as well
as the evolution of a crowd is crucial in safety
and transportation management.

Challenges:

- Mathematical modelling: multi-scale
nature, microscopic interactions not
clearly defined.

- Analysis: highly nonlinear PDEs or
complicated SDEs.

- Simulations: high computational
complexity.
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Individual trajectories are obtained
...from overhead cameras, 1

... or from controlled experiments.2

1
Seer et al., Transportation Research Procedia, 2014

2
BaSiGo experiments (Forschungszentrum Jülich)
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Fundamental diagram3

The most widely used tool to characterize
pedestrian dynamics is the fundamental dia-
gram.

- Relates the experimentally observed
density of pedestrians to their velocity or
outflow.

- There is a general agreement on its
basic shape...

- ... but its parameterization depends on
measurement and averaging techniques,
and experimental setup.

Students vs Soldiers

Cars vs Pedestrians vs Bikes

3
Figures from Zhang and Seyfried, Procedia Engineering, 2013.
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Modelling approaches
Microscopic approach

Agent based models based on New-
ton’s laws.

dX i
t = V i

t dt
dV i

t = Fi
(
X 1

t , . . . ,X
N
t ,V

1
t , . . . ,V

N
t
)

dt
+G(X i

t ) dt + σi dB i
t ,

X i , V i : position and speed of i−th par-
ticle, F , G: forces, B i

t : white noise.

Examples include the Social force model4or the Cellular automata model5

Macroscopic approach

Usually nonlinear PDEs or conservation laws which describe an averaged
quantity (usually density of pedestrians ρ). These PDEs can also be coupled
with the eikonal equation.

Examples include the Fokker–Planck equation or the Hughes model.
4

Helbing and Molnar, Physical Review E, 1995, Moussaïd, Helbing and Theraulaz, PNAS, 2011
5

Burstedde et al, Physica A, 2001
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Our model

Each trajectory solves a McKean–Vlasov equation6:

dXt = F (ρ(Xt , t)) dt +
√

2Σ dWt .

(0,−`) (L,−`)

(0, `) (L, `)
ΓN

ΓN

Γin Γout
F (ρ(x, t))

Here, W (·) is a 2D Brownian motion with diffusion Σ = diag(σ2
x , σ

2
y ), and

F (ρ(x, t)) = vmax

(
1− ρ(x, t)

ρmax

)
e1.

Importantly, ρ(Xt , t) for x = (x , y), is the density of the process.

The corresponding Fokker–Planck equation is

ρt = ∇ · (Σ∇ρ− F (ρ)ρ e1) ,

with boundary conditions:

(−Σ∇ρ+ F (ρ)ρ) · n = −a (ρmax − ρ) , for x ∈ Γin,
(−Σ∇ρ+ F (ρ)ρ) · n = bρ, for x ∈ Γout ,
(−Σ∇ρ+ F (ρ)ρ) · n = 0, for x ∈ ΓN .

where n is the unit normal, a is the inflow rate and b the outflow rate.
6

We consider the mean-field limit, but can write this as IPS using K (x) = vmax (1− δ(x)/ρmax)
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The inverse problem

Given a set of J trajectories
{

Xj
t

}J

j=1
(either generated from the model, or

collected from experiments), estimate vmax (and ρmax).
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Parameter estimation - usual inverse problem setting

Goal: Given a set of J trajectories
{

Xj
t

}J

j=1
, estimate vmax.

Recall that Xt solves an SDE, and therefore we cannot solve the inverse
problem in the usual way, i.e. by minimising

Φ(v ; Xt ) =
1
4

∫ T

0
|Ẋt − F (ρ(Xt , t); v) |2Σ,

over all values of v , because it would be infinite almost surely.

Instead, we use the results from yesterday to show that it is equivalent to
minimise the log-likelihood function of the process:

Ψ(v ; Xt ) := L(Xt ; v) =
1
4

∫ T

0
( |F (ρ(Xt , t); v) |2Σdt − 2 〈F (ρ(Xt , t); v) , dXt〉Σ︸ ︷︷ ︸

stochastic integral!

).

Possible issue: No idea if Ψ is convex, differentiable, ...
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Including prior information and the Bayesian approach

Instead of minimising Ψ, we can include prior information and consider instead
the functional

J (v ; Xt ) = Ψ(v ; Xt ) +
1
2
|v −m|2c .

Using Bayes’ and Girsanov’s theorems, we can show that the function

e−J (v ;Xt )1(v>0),

is the posterior distribution P(v |X) of v given the observation X.

Summary

- Minimising Ψ over all possible v gives the maximum likelihood estimator
(MLE) for v , which is also the mean of the distribution P(v |Xt ).

- Minimising J gives the maximum a posteriori estimator (MAP) for v . This is
also the mode of P(v |Xt ).

- The full Bayesian approach involves sampling from P(v |Xt ) and provides
the whole posterior distribution.

12 / 29



Parameter estimation approaches

We use J = 20 trajectories
{

Xj
t

}j=1,...,20

t∈[0,T ]
to compute our estimate.

Optimisation approach: the
Nelder-Mead algorithm7

Bayesian approach: MCMC with
pCN algorithm8

+ Few function evaluations

+ Good improvement in objective
function in few iterations

+ Result can be used to identify
good initial guess for MCMC

+ Quick convergence (when it
does converge)

- Convergence only guaranteed
for 1d and strictly convex
functions

+ Provides posterior distribution

+ Allows for non-parametric
(functional) estimation

+ Has a single tuneable parameter
β - can be used to maximize
efficiency

+ Allows for uncertanty
quantification

+ Simple interpretation

- Requires many iterations

7
Nelder and Mead, The Computer Journal, 1965.

8
Cotter et al., Statistical Science, 2013.
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Bayesian methodology and Optimization
(maximal current) vmax = 1.5, a = 0.9, b = 0.975 and σ1 = σ2 = 0.05.

Left: Influence of the PDE time step on the posterior distribution.
Right: Comparison between Bayesian and optimisation approach for ∆t = 0.005.

MAP estimator obtained by derivative-free optimization coincides with posterior mean
for all test cases – suggests posterior distribution is Gaussian.

Estimates are independent of all model independent parameters (prior mean and vari-
ance, inital guess, parameters of MCMC methodology)
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Amount of information

Influence of number of trajectories for two influx limited regimes (i.e. inflow <
outflow)

A small (5) number of trajectories gives biased estimates, but for more than
10 trajectories the posterior distributions concentrate around the true value.
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What about real data?

We tested the methodology using data from the BaSiGo experiments9 (10× 5
corridor). We used experiment 5, corresponding to maximal current regime
(min(a, b) ≥ vmax/2).

9
https://ped.fz-juelich.de/db/doku.php?id=corridor5
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What about real data?

We tested the methodology using data from the BaSiGo experiments9 (10× 5
corridor). We used experiment 5, corresponding to maximal current regime
(min(a, b) ≥ vmax/2).

While it is not immediately clear that the method will work...

For example, the model generated trajectories do not look realistic:

data generated from our model data from experiments Video

9
https://ped.fz-juelich.de/db/doku.php?id=corridor5
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What about real data?

We tested the methodology using data from the BaSiGo experiments9 (10× 5
corridor). We used experiment 5, corresponding to maximal current regime
(min(a, b) ≥ vmax/2).

While it is not immediately clear that the method will work...
... and the observed density does not appear constant

9
https://ped.fz-juelich.de/db/doku.php?id=corridor5
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What about real data?

We tested the methodology using data from the BaSiGo experiments9 (10× 5
corridor). We used experiment 5, corresponding to maximal current regime
(min(a, b) ≥ vmax/2).

While it is not immediately clear that the method will work...

Preliminary results show consistent estimates!

9
https://ped.fz-juelich.de/db/doku.php?id=corridor5
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What about real data?

We tested the methodology using data from the BaSiGo experiments9 (10× 5
corridor). We used experiment 5, corresponding to maximal current regime
(min(a, b) ≥ vmax/2).

While it is not immediately clear that the method will work...

Preliminary results show consistent estimates!

But still a lot of work to do!

9
https://ped.fz-juelich.de/db/doku.php?id=corridor5
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Application 2: Cell population
dynamics

Joint work with José Carrillo (Oxford) and Gissell
Estrada-Rodriguez (Universitat Politècnica de Catalunya)

J.A. Carrillo, G. Estrada, SNG, in preparation
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Motivation from cell dynamics

Understanding how cell populations interact has several practical applications
such as tissue and organ formation.

One of the fundamental biological phenomena which explains how cells inter-
act with each other is the mechanism of cell–cell adhesion

Figure: Cell–cell adhesion experiments, taken from Murakawa and Togashi 2015.10

Depending on cell properties, when two populations meet, they can form a
barrier, or mix at the boundary, invading each other.

There are several experimental works showing this behaviour, and this has
recently attracted mathematical interest.11

10
H. Murakawa, H. Togashi, Journal of Theoretical Biology, 2015

11
see, e.g., J.A. Carrillo, H. Murakawa, M. Sato, H. Togashi, O. Trush, Journal of Theoretical Biology, 2019.
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A model for two-population cell dynamics

We consider two populations of cells x and z, where each cell interacts with
other cells both in its own population and outside it, acccording to certain rules:

dxi (t) = − 1
Nx

∑
i 6=j

∇F11(xi (t)− xj (t))dt − 1
Nz

∑
j

∇F12(xi (t)− zj (t))dt +
√

2Σx dWx,i
t ,

dzi (t) = − 1
Nz

∑
j 6=i

∇F22(zi (t)− zj (t))dt − 1
Nx

∑
j

∇F21(zi (t)− xj (t))dt +
√

2ΣzdWz,i
t .

Here, the function F encodes all interactions:

∇Fmn(y) = ∇Wmn(y) + ∇Mb,ε
mn (|y|)

= ∇

amn

 (|y| − `mn)2︸ ︷︷ ︸
short range repulsion

− (R − `mn)2︸ ︷︷ ︸
long range attraction


+

bmn

(4πε2
mn)1/2

∇e
− |y|2

4ε2
mn︸ ︷︷ ︸

local repulsuion (volume filling)
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Mean-field limit and corresponding PDE

The previous equations assume every cell can see every other cell. To over-
come this, we can pass to the mean-field limit, and instead consider

dxi (t) = −∇(F11 ∗ ρ1)(xi (t)) dt −∇(F12 ∗ ρ2)(xi (t)) dt +
√

2Σx dWx,i
t ,

dzi (t) = −∇(F22 ∗ ρ2)(zi (t)) dt −∇(F21 ∗ ρ1)(zi (t)) dt +
√

2ΣzdWz,i
t .

where ∗ denotes convolution, and ρ1 and ρ2 are the two populations of cells.

ρ1 and ρ2 solve the following aggregation-diffusion PDEs:

∂tρ1 = ∇ · (ρ1∇(b1(ρ1 + ρ2) + W11 ∗ ρ1 + W12 ∗ ρ2)) + Σ∆ρ1 ,
∂tρ2 = ∇ · (ρ2∇(b2(ρ1 + ρ2) + W22 ∗ ρ2 + W21 ∗ ρ1)) + Σ∆ρ2 .

In this case, we would like to estimate all parameters in the equations, i.e.,
θ = (b1, b2, amn, `mn, εmn).
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Inference framework

As before, we wish to minimise the negative log-likelihood function, which in
this case is

Ψ(θ; {x(t), z(t)}) :=
∑
i∈P1

1
4

∫ T

0
|(Fθ11 ∗ ρ1) (xi (t)) |2Σx dt

+
∑
i∈P1

1
4

∫ T

0
2〈(Fθ11 ∗ ρ1) (xi (t)) + (Fθ12 ∗ ρ2) (xi (t)) , dxt〉Σx

+
∑
i∈P2

1
4

∫ T

0
( |(Fθ22 ∗ ρ2) (zi (t)) |2Σz dt

+
∑
i∈P2

1
4

∫ T

0
2〈(Fθ22 ∗ ρ2) (zi (t)) + (Fθ21 ∗ ρ1) (zi (t)) , dzt〉Σz ,

where we sum over all available trajectories, P1 is the population of cells of
type x and P2 is the population of cells of type z.
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Results using generated data
Generated data for one population of cells, with true parameters a = 1,
` = 1.8, b = 0.4, ε = 0.0208.

Posterior distributions after 15000 interations of the MCMC algorithm.
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Results using generated data

Mean of each (marginal) posterior distribution as a function of iteration number for
15000 interations of the MCMC algorithm (full lines) and true value (dashed lines).
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What about real data?

Snapshot of dataset from Murakawa and Togashi, 2015.

Experiments from Murakawa and Togashi, 2015, with marked trajectories.

... But we are working on it!

Key message: Dialogue is important, before conducting experiments if
possible!
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Discussion
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Conclusions

Inverse problems when the model involves noise cannot be solved using stan-
dard techniques – I presented a likelihood based parameter estimation frame-
work for SDEs which depend on their density.

- Two examples: pedestrian dynamics and cell population dynamics,
where we also considered two-population models.

- Each model consists of SDEs for individual trajectories, coupled with
one (or two) PDEs for the density of a crowd or of cell populations.

- Using this methodology, we can estimate some parameters, while
others are not identifiable.

- Good estimates can be obtained both from generated data and
trajectories from experiments.

- Future work involves using real data and modifying the methodology to
estimate (if possible) parameters which were not identifiable so far.
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Recent related work

There is a lot of research activity surrounding these topics, both from the the-
oretical and the applications sides... Some examples (that I know of) include

- Inference specifically for McKean-Vlasov equations12

- Likelihood free inference, for when it is not possible to find likelihood
functions. This is the basis of Approximate Bayesian Computation
(ABC)13

- Sequential Monte Carlo techniques for when one has positions but not
trajectories14

- Modelling and inference for pedestrians and traffic flow models15

- Work on the mean-field approximations for cell dynamics models16

- Several other interesting research avenues (happy to discuss later)
12

see Sharrock et al, Stoch Proc Appl 2023, Pavliotis and Zanoni, SIAM J Appl Dyn Syst 2022, Amorino et al,
Stoch Proc Appl, 2023.

13
see Toni et al., Journal of the Royal Society Interface, 2009, or Lintusaari, et al., Systematic biology, 2017.

14
see Cheng, Wen and Li, Roy Soc Open Sci, 2023.

15
Wurth et al, Adv Comp Mat 2022, Corbetta and Toschi, Annual Review of Condensed Matter Physics, 2023,

Gödel et al, Safety Science 2022.
16

Morale, Capasso, Oelschläger, J Math Bio, 2005, Burger, Capasso, Morale, Nonlinear Analysis: Real World
Applications, 2007.
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Other activities

Working on these projects with clear applications opened a lot of other doors
for me too...

Me in the Houses of Parliament in London in 2019 (left) for the STEM for Britain compe-
tition, and in 2021 (right) after being shortlisted for the L’Oreal-UNESCO For Women In
Science Fellowship in 2020.
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Thank you for your attention!

Susana N. Gomes

https://warwick.ac.uk/fac/sci/maths/people/staff/gomes

susana.gomes@warwick.ac.uk
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