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Motivation

Interacting particle systems are ubiq-
uitous in the real-world, appearing in
several application areas:

- Biology/Life sciences (flocks of birds,
schools of fish, herds of sheep,...)

- Social sciences (crowd dynamics,
opinion dynamics, ...)

- Cell dynamics

- Engineering (drones, robots, ...)

- Physics (molecular dynamics,
movement of galaxies, ...)
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Modelling approaches

There are several ways of modelling these types of systems. Today I will focus
on (stochastic) interacting particle systems:

- Simple models for each particle (usually based on Newton’s Laws).

- In common applications, we would have a very large number of
particles.

- Analytically and computationally hard to tackle.

- To tackle this, it is common to consider macroscopic limits: model the
density of agents as the number of particles N →∞ using a
mean-field approach.

There are alternative models, e.g. deterministic models, rational agents
(common in social sciences), lattice based models (common in biology, e.g.
total exclusion or contact processes).
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(Stochastic) Interacting Particle
Systems

and their mean field limit
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Basic Model

I will consider a class of first-order weakly interacting particle systems in one
dimension:1

dX i
t = V ′

(
X i

t

)
dt+

1
N

∑
j 6=i

K
(

X i
t − X j

t

)
dt+
√

2σ dW i
t , X i

0 = x i
0, i, j = 1, . . . ,N,

where

- X i
t denotes the position of particle i at time t

- V (·) is a confining potential

- K (·) is an interaction potential, such that K (0) = 0 and K ′(0) = 0.

- W i
t are independent Brownian motions and σ is the strength of noise

(sometimes I’ll write β−1, which is more common in physics contexts)

- x i
0 are initial positions which can be deterministic or stochastic

(independently distributed with some chosen law)

- The scaling 1
N is the mean-field scaling and is critical for us, as it

keeps the strength of interactions of order 1.
1

This is for simplicity – similar results can be obtained in higher dimensions, and for second-order systems of
the type dX i

t = V i
t , dV i

t = K (X i
t − X j

t ) dt +
√

2σdW i
t . Alternatively, one can also solve this SDE on a torus, and

exclude the potential V , see Carrillo, Gvalani, Pavliotis and Schlichting, ARMA 2018.
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Some examples

There are several examples of potentials, which depend on the application.

- aggregation potentials (attraction/repulsion) for
interactions (common for cells, animals)

- Lennard-Jones interaction potentials (common
in chemistry for molecular interactions)

- Protein folding examples (confining potentials)

In rational agents, the potentials can be, e.g., utility functions.
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Empirical measure and N-particle distribution
To pass to the mean-field limit, it is important to define two measures:

- The empirical measure

µN(t , x) =
1
N

N∑
i=1

δ(x − X i
t ).

? contains all the information about the solution (X 1
t , . . . ,X

N
t ).

? is a random probability measure2

? The stochastic behaviour only vanishes as N → ∞ ⇒ important to
quantify fluctuations if N remains finite3 (we will discuss this later)

- The N−particle or joint distribution

F N(t , x1, . . . , xn) = Law(X 1
t , . . . ,X

N
t )

? not experimentaly measurable, but
? its marginals contain statistical information on the process

F N
k (t , x1, . . . , xk ) =

∫
RN−k

F N(t , x1, . . . , xN)dxk+1 · · · dxN

2
In the deterministic case (no noise, σ = 0), this is a deterministic probability measure

3
See [J. Worsfold, T. Rogers, P. Milewski, SIAM J. Appl. Math (2023)]
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N Particle dynamics

Using Itô’s formula, one can write a PDE for the evolution of F N :

∂tF N = −
N∑

i=1

∂xi

V ′(xi )F N +
N∑

i=1

∑
j 6=i

K (xi − xj )F N

+ σ

N∑
i=1

∆xi F
N .

Recall Itô’s formula (for our case):

Let (Xt : t ≥ 0) solve

dXt = a(Xt , t) dt +
√

2σ dWt .

Then, for a smooth function f , we have

df (Xt ) = a(Xt , t)f ′(Xt )dt + σf ′′(Xt )dt +
√

2σf ′(Xt )dWt .

To obtain the above PDE, we apply Itô’s formula to a general function f and
then compute expectations with respect to the law of the process, F N .
The last term vanishes because it is an Itô integral of a deterministic function.
the relevant points.
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The mean-field limit

To formally4 pass to the limit, we use the mean field ansatz, i.e., that

F N(t , x1, . . . , xN) =
N∏

i=1

ρ(t , xi ), and F N(0, x1, . . . , xN) =
N∏

i=1

ρ0(xi ).

Using this ansatz in the PDE for the evolution of the N-particle distribution, we
can then integrate out N − 1 variables x1, . . . , xi−1, xi+1, . . . , xN and obtain a
PDE for the evolution of xi :

∂tρ = − ∂

∂xi

(
V ′(xi )ρ+

N − 1
N

ρ

∫
R

K (xi − y) dy
)

+ σ∂2
xiρ.

Sending N to infinity, we obtain the Fokker-Planck equation

∂tρ = − ∂

∂xi

(
V ′(xi )ρ+ (K ∗ ρ)ρ

)
+ σ∂2

xiρ,

where ∗ denotes convolution.

4
Passing rigorously to this limit can be done using martingale techniques or other classical stochastic analysis

results, see [P.-E. Jabin and Z. Wang, Mean Field Limits for Stochastic Particle Systems, Active Particles Volume 1,
(2017)] and references therein. This formal derivation follows Urbain Vaes’ PhD Thesis, 2019
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Some relevant results

An alternative method consists of considering initial data X i
0 = x i

0 i.i.d. with
Law(x i

0) = f0, and constructing a particle system coupled to the original SDE:

dX̄ i
t = V ′(X̄ i

t ) dt + (K ∗ ft )(X̄ i
t ) dt +

√
2σdW i

t , , X i
0 = x i

0, i, j = 1, . . . ,N,

where the W i
t are the same Brownian motions as before, and ft is the law of

X̄t .
This is known as the McKean-Vlasov equation (and is no longer an SDE
because it depends on the law of the process).

One can check that ft solves the Fokker–Planck equation on the previous
page, and show that the empirical measure µN converges in law to ; solv-
ing the Fokker–Planck equation.

Under appropriate conditions on K and V , it can be shown5 that solutions to
the McKean-Vlasov equation are close to the solutions of the original SDE,
and use this to obtain bounds on the difference |X i

t − X̄ i
t |2, as well as quantify

large deviations.

5
See [P.-E. Jabin and Z. Wang (2017)]
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Long time behaviour
Example of a multi-well interacting potential

SNG, G.A. Pavliotis, J. Nonlinear Sci 28, 905-941, 2018
SNG, S. Kalliadasis, G.A. Pavliotis, P. Yatsyshin, Phys Rev E 99, 032109, 2019
(not discussed - 2nd order problem) SNG, G.A. Pavliotis, U. Vaes, Multiscale Modelling and Simulation, 2020
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A system of interacting particles

We consider a particular case of N weakly interacting particles given by:

dX i
t =

−V ′(X i
t )− θ

X i
t −

1
N

N∑
j=1

X j
t

 dt +
√

2σ dW i
t .

Here, the particles interact via their mean, with strength θ, i.e., in a quadratic
Currie-Weiss potential K (x) = x2

2 .

We also consider multi-well confining potentials. For example:

V (x) =
x4

4
− x2

2
.

V8(x) = h
(
x8 − 14x6 + 49x4 − 36x2)

= hx2(x2 − 1)(x2 − 4)(x2 − 9),

V ε(x) = V0(x) + δ
x2

2
cos
(x
ε

)
.
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1
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N →∞ and the McKean-Vlasov equation

Using the previous arguments and using the Law of Large Numbers, we can
formally study the mean field limit::

lim
N→∞

1
N

N∑
j=1

X j
t = EXt ,

where E is taking with respect to the one-particle distribution. We pass to the
limit N →∞ and obtain the McKean-Vlasov SDE for Xt

dXt = −V ′(Xt ) dt − θ(Xt − EXt ) dt +
√

2β−1 dWt .

This SDE has a corresponding nonlinear Fokker-Planck equation:

∂p
∂t

=
∂

∂x

(
V ′(x)p + θ

(
x −

∫
R

xp(x , t) dx
)

p + β−1 ∂p
∂x

)
.

Its steady states allow us to investigate the long-time behaviour of this system.
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Multiple invariant measures

Invariant measures of the McKean-Vlasov SDE are steady states of the Fokker-
Planck equation:

∂

∂x

(
V ′(x)p∞ + θ

(
x −

∫
R

xp∞(x) dx
)

p∞ + β−1 ∂p∞
∂x

)
= 0.

This admits a one-parameter family of solutions:

p∞(x ; θ, β,m) =
e−β(V (x)+θ( 1

2 x2−xm))

Z (θ, β; m)
, Z (θ, β; m) =

∫
R

e−β(V (x)+θ( 1
2 x2−xm)) dx ,

subject to the constraint that they provide us with the correct formula for the
first moment:

The selfconsistency equation

m =

∫
R

xp∞(x ; θ, β,m) dx =: R(m; θ, β).
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Critical temperature

To find invariant measure(s) of the McKean-Vlasov dynamics we need to solve
the following:

The selfconsistency equation

m =

∫
R

xp∞(x ; θ, β,m) dx =: R(m; θ, β).

For sufficiently small β, m = 0 is the only solution of the selfconsistency equa-
tion. However, for nonconvex confining potentials, there exists a critical tem-
perature, βC , at which this is no longer true.6

To find βC , one can differentiate the selfconsistency equation at m = 0, and
conclude that βC is the solution of

Varp∞(θ, β; m = 0) :=

∫
R

x2p∞(x ; θ, β,m = 0) dx =
1
βθ
.

6
[Dawson, J. Stat.Phys 1983, Tamura,J. Fac.Sci. Univ. Tokyo 1984, Shiino, Phys. Rev. A 1987, Tugaut,

Stochastics 2013]
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Numerical results: Bistable potential7

The simplest example we can consider is the bistable potential,

V (x) =
x4

4
− x2

2
.

For sufficiently large β, the selfconsistency equation has two solutions
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R(m; 0.5, 10) against y = x (left), bifurcation diagram of m as a function of β for
θ = 0.5 (middle), and free energy surface as a function of β and m (right).

7
See, e.g., [Dawson, J. Stat. Phys 1983] for a detailed study of this case.
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Numerical results: Multi-well potentials
Phase diagrams for the potential V8(x) for h = 0.001, and (left) θ = 1.5, (right) θ = 2.5.
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Critical temperature βC as a function of θ for (left) V6(x) and (right) V8(x).
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Numerical results: Multiscale potentials

In this case, we need to distinguish between ε small but finite, and ε → 0. It
also matters when we pass to the mean-field limit N →∞.

One can use homogenisation techniques to obtain an homogenised SDE (first
ε→ 0 then N →∞), or first pass to the mean field limit and then send ε→ 0.

We can show8 that if the oscillations are additive, then the two limits commute.
Otherwise, we obtain different long-time behaviour.

This can be seen from the self-consistency equation

ε→ 0 first

m =

∫
R

xe−β(Veff (x)+ψ(x)) dx
Z

N →∞ first

m =

∫ L

0

∫
R

x e−β(Veff (x)+V1(x,y)) dx dy
Z̄

8
see [SNG, G.A. Pavliotis, J. Nonlinear Sci 2018]
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Numerical illustration
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Plot of R(m; θ, β) = m and R(mε; θ, β) for θ = 5, β = 30, δ = 1 and various values of

ε for separable fluctuations (left) and multiplicative fluctiations (right).
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Numerical illustration
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Homogenised bistable potential

The bistable potential maintains its two extra solutions... But now the ho-
mogenised potential depends on β.
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Finite ε: bistable potential, θ = 5, δ = 1, ε = 0.1

Additive fluctuations
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Inference for SDEs
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Parameter estimation - usual inverse problem setting
In several problems, one wants to estimate parameters present in our models
(SDEs).
Consider an SDE that depends on a parameter, θ

dXt = b(Xt ; θ) dt + dWt ,

where we assume we know the diffusion coefficient and σ = 1.

Intuitively, one would want to find the best value of θ given an observation of a
trajectory Xt . This would correspond to minimising the function

Φ(θ; Xt ) =

∫ T

0
|Ẋt − b (Xt ; θ) |2.

However, Xt solves an SDE, so computing Φ(θ; Xt ) is equivalent to integrating
the square of the derivative of a Brownian motion!

Recall that...

The Brownian motion has unbounded variation - this means that it is not
differentiable anywhere. In particular,

P
(
∀t > 0 : lim sup

∆t→0

∣∣∣∣Wt+∆t −Wt

∆t

∣∣∣∣ =∞
)

= 1.

For this reason, Φ(θ; ·) is almost surely infinite, and one can’t solve this inverse
problem in the usual way. 24 / 30



Maximum likelihood inference
If the problem we are modelling involves noise, we need to do something
better. We can fix this by defining the maximum likelihood estimator9.

Assume we have a random variable X with
probability distribution function f (x ; θ), known
up to parameters θ that we want to estimate
from observations.

Suppose that we have J independent observa-
tions of X. We define the likelihood function

L({xj}J
j=1 ; θ) =

J∏
j=1

f (xj ; θ).

The maximum likelihood estimator (MLE) is

θ̂ = arg max L({xj}J
j=1 ; θ)

Example: X ∼ N (µ, σ2)

The parameters are the mean
and variance, θ = (µ, σ). f is

f (x ; θ) =
1

σ
√

2π
e−

(x−µ)2

2σ2 .

The likelihood function is

L({xj}J
j=1 ; θ) =

e−
∑J

j=1
(xj−µ)2

2σ2

(2πσ)J/2 .

We maximise w.r.t. µ and σ2

µ̂ =
1
J

J∑
j=1

xj , σ̂2 =
1
J

J∑
j=1

(xj−µ̂)2

9
Casella and Berger, Statistical inference, 2002.
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Maximum likelihood inference for SDEs

In our case, the observations are a series of discrete observations of a stochas-
tic process: {Xi∆t}N

i=1 which solves an SDE.

dXt = b(Xt ; θ) dt + dWt , ←→ X(i+1)∆t = Xi∆t + b(Xi∆t ; θ)∆t + ∆Wi∆t .

Using the fact that ∆Wi∆t ∼ N (0,∆t), we can see that

P(X(i+1)∆t |Xi∆t ) ∼ N (Xi∆t + b(Xi∆t ; θ)∆t ,∆t),

and therefore, writing fi = f (Xi∆t ; θ) we can write the law of the process Xt

pN
X =

1
(
√

2π∆t)N
exp

(
−

N−1∑
i=0

(
1

2∆t
(∆Xi )

2 +
1
2

(bi )
2∆t − bi ∆Xi

))
.

Similarly, the distribution function for Brownian motion is

pN
W =

N−1∏
i=0

1√
2π∆t

exp

(
− 1

2∆t
(∆Wi )

2
)

=
1

(
√

2π∆t)N
exp

(
− 1

2∆t

N−1∑
i=0

(∆Wi )
2

)
.
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MLE for SDEs (continued)

Now we can calculate the ratio of the laws of the two processes, evaluated at
the path {Xn}N−1

n=0 :

pN
X

pN
W

= exp

(
−1

2

N−1∑
i=0

b2
i ∆t +

N−1∑
i=0

bi ∆Xi

)
.

Taking the limit as N →∞, we get the likelihood:

L
(
{Xt}t∈[0,T ]; θ,T

)
:= exp

(∫ T

0
b(Xs; θ) dXs −

1
2

∫ T

0
b(Xs; θ)2 ds

)
.

Rigorously, this can be done using Girsanov’s theorem: one can show that
PX is absolutely continuous with respect to the law of the Brownian motion
PW ,10 and therefore the likelihood function is defined by the Radon-Nikodym
derivative of PX w.r.t. PW , i.e. dPX

dPW , which is given by the above expression.

The maximum likelihood estimator given the observed path (Xt )t∈[0,T ] is given
by

θ̂ = arg max
θ∈Θ

L({Xt}t∈[0,T ]; θ).

10
See Sørensen, International Statistical Review, 2004 or Pavliotis, Stochastic processes and applications, 2014

for a justification, or Liptser and Shiryaev, Statistics of random processes: I. General theory. Vol. 1., 2001 for a proof.
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Example

Consider the stationary Ornstein-Uhlenbeck process

dXt = −αXt dt + dWt ,

with X0 ∼ N
(
0, 1

2α

)
. The log-likelihood function is

log L = −α
∫ T

0
Xt dXt −

α2

2

∫ T

0
X 2

t dt .

From this, the Maximum Likelihood estimator is

α̂ = −
∫ T

0 Xt dXt∫ T
0 X 2

t dt
.

To evaluate this estimator, we use a trajectory: given a set of discrete equidis-
tant observations {Xj}J

j=0, we have, for Xj = Xj∆t and ∆Xj = Xj+1 − Xj ,

α̂ = −
∑J−1

j=0 Xj ∆Xj∑J−1
j=0 |Xj |2∆t

.

One can show that this Maximum Likelihood estimator becomes asymptoti-
cally unbiased in the large sample limit J → +∞, for ∆t fixed.
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Discussion, and what to expect tomorrow
- Systems of interacting particles are ubiquitous in applications such as

physics, biology, chemistry, life and social sciences. Other
(non-discussed) applications include particle swarm optimisation or
more recently consensus optimisation

- Their behaviour can be characterised by McKean–Vlasov or
Fokker–Planck equations.

- The latter can be used to, e.g. explore long time behaviour and phase
transitions of solutions.

? we saw examples of multi-well and multiscale potentials exhibiting phase
transitions

? depending on the parameters, we also observe topology changes in the
bifurcation diagrams.

- We also explored inference (parameter estimation) for SDEs (not
dependent on law of the process)

Tomorrow:

We will look at inference for McKean–Vlasov equations (and/or the
corresponding Fokker–Planck equation) in connection to two different
applications.
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Thank you for your attention!

Susana N. Gomes

https://warwick.ac.uk/fac/sci/maths/people/staff/gomes

susana.gomes@warwick.ac.uk
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