

Friedrich-Alexander-Universität Erlangen-Nürnberg

Application Knowledge Required: Analytical Performance Modeling and its application to SpMV

Georg Hager and Gerhard Wellein

Erlangen National High Performance Computing Center (NHR@FAU)

Department of Computer Science

Friedrich-Alexander-Universität Erlangen-Nürnberg

1. Analytical, resource-based, first-principles performance models

2. Performance Modelling of Sparse Matrix Vector Multiplication (SpMV)

A "simple" mathematical formula predicting the performance or runtime of a program using various input data

Analytical, Resource-Based Performance Model?

A "simple" mathematical formula predicting the performance or runtime of a program using hardware resource limits and code requirements

Analytical, Resource-Based, First-Principles Performance Model?

a.k.a. white-box models

A mathematical representation of hardware-software interaction based on simplified machine and application models, which predicts the performance or runtime of a program using hardware resource limits and code requirements

Typical Solver Structure – General runtime model

Resource bottlenecks – simplified model

What is the maximum performance when limited by a bottleneck?

- Resource bottleneck i delivers resources at maximum rate R_i^{max}
- *W_i* = needed amount of resources

Resource bottlenecks

Minimum runtime due to bottleneck *i*:

$$T_i = \frac{W_i}{R_i^{max}} + \lambda_i$$

Multiple bottlenecks? → multiple minimum runtimes: $T_{\min} = f(T_1, ..., T_n)$ Overall performance: $P_{\max} = \frac{W}{T_{\min}}$

Simple two-bottleneck models for single loops

$$T_{flops} = \frac{2 \times 10^7 \text{ flops}}{192 \frac{\text{Gflops}}{\text{s}}} = 104 \,\mu\text{s} \qquad T_{BW} = \frac{2.4 \times 10^8 \text{ bytes}}{40 \frac{\text{Gbyte}}{\text{s}}} = 6.0 \text{ ms}$$

!!! Note: $\lambda_1 = \lambda_2 = 0$!!!

Bottleneck models for single loops

How do we reconcile the multiple bottlenecks? I.e., what is the functional form of $f(T_1, ..., T_n)$?

→ pessimistic (no overlap): $f(T_1, ..., T_n) = \sum_i T_i$ $\rightarrow \text{ optimistic (full overlap):} \quad f(T_1, ..., T_n) = \max(T_1, ..., T_n)$

Our example (two bottlenecks: flops + data transfer; $\lambda_i = 0$): $T_{\min} = max(T_{flops}, T_{BW}) = 6 \text{ ms}$

Maximum performance ("light speed"): $P_{upper} = \frac{2 \times 10^7}{6.0 \times 10^{-3}} \frac{\text{flops}}{\text{s}} = 3.3 \text{ Gflop/s}$

Roofline Performance Model (RLM)

•
$$T_{\min} = max(T_{flops}, T_{BW}) (\leftrightarrow P_{\max} = \frac{\#Flops}{T_{min}})$$

 $\mathsf{P}_{\mathsf{peak}}$

- Roofline Model: $P_{\max} = \min(P_{peak}, I * b_S)$
 - Peak Performance:
 - Memory bandwidth: b_S [Byte/s]
 - Computational Intensity: I [Flop/Byte]
- Single chip or compute node!!!

R.W. Hockney and I.J. Curington. Parallel Computing 10, 277-286 (1989).S. Williams. UCB Tech. Report No. UCB/EECS-2008-164. PhD thesis (2008)S. Williams, A. Waterman, and D. Patterson. 2009. Commun. ACM 52, 4 (April 2009)

Roofline Model – Characteristic behaviour

Analytic modelling – where we are: Examples

S. Williams, A. Waterman, D. Patterson (2009) DOI:10.1145/1498765.1498785

Energy: J. W. Choi, D. Bedard, R. Fowler, R. Vuduc (2013) DOI: 10.1109/IPDPS.2013.77.

Cache-Aware:

A. Ilic, F. Pratas, L. Sousa (2014) DOI: 10.1109/L-CA.2013.6.

Communication models LogP and variants

Execution Cache Memory

Model

Hager, Treibig, Habich, Wellein (2016) DOI: 10.1002/cpe.3180.

Power/Energy: Hofmann, Hager, Fey (2018). https://doi.org/10.1007/978-3-319-92040-5_2

Proven/useful for

- CPU-type
- GPU-type
- Vector-type

Data + Flops/Instructions – Throughputs / Latencies

W

 $f(T_1, \ldots, T_n)$

RLM / Analytical modelling – Use Cases

- Typical code / application structures
 - "Streaming kernels" consecutive data access
 - Dense Matrix Kernels (incl. Tensor Operations & Tall&Skinny)
 - Stencil Kernels

• • • •

- Insights:
 - Hardware bottleneck
 - Code quality is there room for performance improvement? How much?
 - Estimating code optimization parameters, e.g. layer conditions, tiling sizes

· · · ·

Friedrich-Alexander-Universität Erlangen-Nürnberg

Performance Modelling of Sparse Matrix Vector Multiplication (SpMV)

RLM Performance Modelling? Optimal Performance of SpMV?

Motivation

Algorithm 2. HPCG

- 1: while $k \leq iter \& r_{norm}/r_0 > tol \mathbf{do}$
- z = MG(A,r)2:
- 3: oldrtz = rtz
- 4: $rtz = \langle r, z \rangle$
- 5: $\beta = rtz/oldrtz$

6:
$$p = \beta * p + z$$

- Ap = A * p $pAp = \langle p, Ap \rangle$ 7: 8:

9:
$$\alpha = rtz/pAp$$

10:
$$x = x + \alpha * p$$

11:
$$r = r - \alpha * Ap$$

- 12: $r_{norm} = \langle r, r \rangle$
- 13: $r_{norm} = sqrt(r_{norm})$
- 14:k + +

Assume memory bound: $P_{max} = I * b_s$

How much data is (at least) loaded from main memory? \rightarrow Intensity

Sparse Matrix Vector Multiplication (SpMV)

- Key ingredient in numerous sparse linear algebra solvers
- Store only N_{nz} nonzero elements of matrix and RHS, LHS vectors with N_r (number of matrix rows) entries
- "Sparse": N_{nz} ~ N_r
- Average number of nonzeros per row: N_{nzr} = N_{nz}/N_r

SpMV characteristics

- For large problems, SpMV is inevitably memory-bound
 - Intra-socket saturation effect on modern multicores

- SpMV is easily parallelizable in shared and distributed memory
 - Load balancing
 - Communication overhead
- Data storage format is crucial for performance properties
 - Most useful general format on CPUs: Compressed Row Storage (CRS)
 - Depending on compute architecture

CRS matrix storage scheme

- val[] stores all the nonzeros (length N_{nz})
- col_idx[] stores the column index of each nonzero (length N_{nz})
- row_ptr[] stores the starting index of each new row in val[] (length: N_r)

Case study: Sparse matrix-vector multiply

- Strongly memory-bound for large data sets
 - Mainly streaming data access mixed with partially indirect access:

```
!$OMP parallel do
do i = 1,Nr
do j = row_ptr(i), row_ptr(i+1) - 1
C(i) = C(i) + val(j) * B(col_idx(j))
enddo
enddo
!$OMP end parallel do
```

- Usually many spMVs required to solve a problem
- Irregular data access to B(col_idx(j))
- What is the computation intensity I (or comp. balance B_C = I⁻¹)??

SpMV node performance model – CRS (1)

do i = 1, N_r	real*8	val(N _{nz})
do $j = row_ptr(i)$, $row_ptr(i+1) - 1$	<pre>integer*4</pre>	$col_idx(N_{nz})$
$C(i) = C(i) + val(j) * B(col_idx(j))$	<pre>integer*4</pre>	$row_ptr(N_r)$
enddo	real*8	C (N _r)
enddo	real*8	B (N _c)

Min. load traffic [B]:
$$(8 + 4) N_{nz} + (4 + 8)N_r + 8 N_c$$

Min. store traffic [B]: $8 N_r$
Total FLOP count [F]: $2 N_{nz}$

$$B_{C,min} = \frac{12 N_{nz} + 20 N_r + 8 N_c}{2 N_{nz}} \frac{B}{F} = \frac{12 + 20/N_{nzr} + 8/N_{nzc}}{2} \frac{B}{F}$$
Nonzeros per row $(N_{nzr} = \frac{N_{nz}}{N_r})$ or column $(N_{nzc} = \frac{N_{nz}}{N_c})$
Lower bound for code balance: $B_{C,min} \ge 6 \frac{B}{F} \rightarrow I_{max} \le \frac{1}{6} \frac{F}{B}$

SpMV node performance model – CRS (2)

$$B_{C,min} = \frac{12 + 20/N_{nzr} + 8/N_{nzc}}{2} \frac{B}{F}$$
$$B_{C}(\alpha) = \frac{12 + 20/N_{nzr} + 8\alpha}{2} \frac{B}{F}$$

Consider square matrices: $N_{nzc} = N_{nzr}$ and $N_c = N_r$ Note: $B_c (1/N_{nzr}) = B_{c,min}$

Parameter (α) quantifies additional traffic for **B**(:) (irregular access):

$$\alpha \geq \frac{1}{N_{nzc}}$$

$$\alpha N_{nzc} \geq 1$$

The " α effect"

CRS code balance

• α quantifies the traffic for loading the Right Hand Side (RHS) vector

- $\alpha = 0$ \rightarrow RHS is in cache (RHS << cache size)
- $\alpha = 1/N_{nzr} \rightarrow \text{RHS}$ loaded once
- $\alpha = 1 \rightarrow \text{no cache}$
- $\alpha > 1$ \rightarrow Houston, we have a problem!

$$\rightarrow \alpha * N_{nzr} \leftarrow \rightarrow \#$$
times RHS vector is loaded from main memory

Can we predict α ?

- Not in general
- Simple cases (banded, block-structured): Similar to layer condition analysis

→ Determine α by measuring the actual memory traffic (→ measured code balance B_C^{meas})

 $B_{C}(\alpha) = \frac{12 + 20/N_{nzr} + 8\alpha}{2} \frac{B}{F}$

 $= \left(6 + 4 \alpha + \frac{10}{N_{max}}\right) \frac{B}{F}$

SpMV node performance model – CLX-AP

SpMV node performance model – more data

CRS

SELL-32-128 [1]

SpMV node performance model – GPU

¹M. Kreutzer et al, SIAM SISC 2014, DOI: <u>10.1137/130930352</u>

scai2

Summary & Outlook

- Qualitative modelling of SpMV kernels on node level
- CPU and GPU
- Impact of irregular access can be quanitfied
- Consequences:
 - Large $\alpha \rightarrow$ try bandwidth reduction for matrix (e.g. RCM)
 - Core bottlenecks can be identified, e.g. CRS on GPU or A64FX
 - Quality of black box libraries can be tested
 - Whenever you do SpMV: check $B_{C,min} \ge 6 \frac{B}{F}$
- Tomorrow: Improving code balance of SpMV based algorithms some old and a new idea