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Motivation

Defined Benefit Plans (DB) are disappearing

— Corporations/governments no longer willing to take risk of DB
plans

Recent survey! P7 countries®

o Defined Contribution (DC)3 plan assets: 55% of all pension
assets
@ Some examples

— Australia 87% DC
— US 65% DC

— Canada 43% DC
— Japan 5% DC

Netherlands — Collective DC plan (2027)

!Thinking Ahead Institute (2023)
2Australia, Canada, Japan, Netherlands, Switzerland, UK, US
3DC plan: retiree takes on all investment risk
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The retiree dilemma (Defined Contribution (DC))

A retiree with savings in a DC plan* ® has to decide on
@ An investment strategy (stocks vs. bonds)
@ A decumulation schedule
The retiree now has two major sources of risk
@ Investment risk
@ Longevity risk (running out of cash before death)

William Sharpe (Nobel Laureate in Economics) calls this
“The nastiest hardest problem in finance”

*In a DC plan, the retiree is responsible for investment/decumulation
®RRSP (Canada), SIPP (UK), 401(k)(US), Super Fund (Australia)
3/32



The Four per Cent Rule

Based on rolling 30-year historical periods, Bengen (1994) showed:

A retiree who

@ Invested in a portfolio of 50% bonds, 50% stocks (US),
rebalanced annually
e Withdrew 4% of initial capital (adjusted for inflation) annually

— Would never have run out of cash, over any rolling 30-year
period (from 1926)

Criticism
@ Simplistic asset allocation strategy
@ Simplistic withdrawal strategy

@ Rolling 30 year periods contain large overlaps
— Underestimates risk of portfolio depletion
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Bengen rule

“Play the long game. A retirement income plan should be based
on planning to live, not planning to die. A long life will be
expensive to support, and it should take precedence over death
planning.” Pfau (2018)

Note that Bengen rule is based on assumption that 65-year old will
live to be 95

@ Should we mortality weight the cash flows (as in an annuity)?

@ Example: median life expectancy of 65-year old male ~ 87.

— Effectively, mortality weighting will weight minimum cash flow
of 87-year old by 1/2

— If  am 87, and alive, | need 100% of my minimum cash flows

— If I am dead, | need zero dollars

@ We will consider an individual investor, not averaging over a
population

— 30 year retirement, no mortality weighting
— Consistent with Bengen approach
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Fear of running out of cash

Recent survey®

@ Majority of pre-retirees fear exhausting their savings in
retirement more than death

In Canada, a 65-year old male
@ Probability of 0.13 of living to be 95
@ Probability of 0.02 of living to be 100

Conservative strategy:

— Assume 30 year retirement (as in Bengen (1994)).

Other assets can be used to hedge extreme longevity’

62017 Allianz Generations Ahead Study - Quick Facts #1. (2017), Allianz

"Real estate
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Objective of this talk

Determine a decumulation strategy which has
e Variable withdrawals (minimum and maximum constraints)
@ Minimizes risk of portfolio depletion
@ Maximizes total expected withdrawals

@ Allows for dynamic, non-deterministic asset allocation

We will treat this as a problem in optimal stochastic control
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Formulation

Investor has access to two funds
@ A broad stock market index fund
e Amount in stock index S;

@ A constant maturity bond index fund
e Amount in bond index B;

Total Wealth W, = S;+ B;

Model the returns of both indexes
@ Parametric, jump diffusion
@ Non-zero stock-bond correlation

e Fit parameters to market data 1926:1-2019:12
— All returns adjusted for inflation
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Notation
Withdraw/rebalance at discrete times t; € [0, T
The investor has two controls at each rebalancing time
gi = Amount of withdrawal
pi = Fraction in stocks after withdrawal

At t;, the investor withdraws g;

wealth before withdrawal

—
w- = ST+ B

1

Wi = W7 —gq
Then, the investor rebalances the portfolio
St = pwt
B = (1- Pi)WiJr
Can show that
qi=aq(W7) : pi=pi(W")

(2)
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Controls

Constraints on controls

G € [Gmin,Gmax] withdrawal amount
pi € [0,1] ;  fraction in stocks

= no shorting, no leverage

Set of controls
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Reward and Risk

Reward: Expected total (real) withdrawals (EW)

total withdrawals

EW:E[i\;]

E[] = Expectation
Risk measure: Expected Shortfall ES

ES(5%) = { Mean of worst 5% of WT}

W+ = terminal wealth at t =T

ES defined in terms of final wealth, not losses®

— Larger is better

8ES is basically the negative of CVAR
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Objective Function

Multi-objective problem — scalarization approach for Pareto points

Find controls P which maximize (scalarization parameter x > 0)°

sup{EW + kK ES}
P

. mean worst 5% outcomes
total withdrawals 5%

o{ W o (FEp)

.05
s.t.  Prob[Wr < W*] = .05

Varying k traces out the efficient frontier in the (EW, ES) plane

°Ep[-] = expectation under control P.
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EW-ES Objective Function

Given an expectation under control Ep[:] (Rockafellar and Uryasev,
2000 )

ESs — supEp [G(WT, W*)}
W*
G(WT, W*) = <W4< + % [min(WT - W*,O)]>

Reformulate objective function:

total withdrawals mean worst 5% Wy  Stabilization

= —_—— A~
sup sup Ep{ E qi +x G(Wr,W*) + eWr
P W -

1

Why do we need the stabilization term?
— More later
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Time Consistency

The EW-ES objective function is not formally time consistent

Time inconsistency

=- Investor has incentive to deviate from initial optimal policy at
later times

EW-ES policy computed at time zero
— Pre-commitment policy
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Induced time consistent policy

At tg we compute the pre-commitment EW-ES control

@ For t > ty we assume that the investor follows the induced
time consistent control (Strub et al (2019))

@ This control is identical to the pre-commitment control at tg
@ No incentive to deviate from this control at t > tg

Induced time consistent control determined from (fixed W*)

sup E’p{ E gi + kG(Wr, W*) + eWT}
P -
1
W* from pre-commitment solution at time zero

Alternative: equilibrium mean-ES control
< Does not actually control tail risk! (Forsyth(2020)) 1°

OFor more discussion of time consistency, induced time consistency,
pre-commitment, see Bjork et al (2021), Vigna (2020, 2022), Strub et al

(2019), Forsyth (2020)
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Withdrawal Control: limiting case

Theorem 1 (Bang-bang withdrawal control: continuous limit)
Assume that
@ the stock and bond indexes follow a parametric jump-diffusion

@ the portfolio is continuously rebalanced, and withdrawals
occur at the continuous (finite) rate § € [Gmin, Gmax]

then the optimal control is bang-bang, i.e. the optimal withdrawal

G* is either §* = Gmin Or §° = Gmax-
Proof.
See Forsyth (North American Actuarial Journal (2022)) O

But of course, in real life, we do not withdraw/rebalance
continuously.
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Scenario: all amounts indexed to inflation

@ DC account at t = 0 (age 65) $1,000K (one million)
@ Minimum withdrawal from DC account $35K per year!!

@ Maximum withdrawal from DC $60K per year

No shorting, no leverage (p € [0,1])
@ Annual rebalancing/withdrawals

@ Retiree owns mortgage-free real estate worth $400K

Investment Horizon

@ T = 30 years, i.e. from age 65 to
95

= Plan to live long and
prosper

" Assume gov't benefits of 22K /year. Minimum income

~ 22K + 35K = 57K /year.
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Scenario |l
Why do we include real estate in the scenario?

Since gmin = 35K per year, W; can become negative
@ When W; < 0, assume retiree is borrowing, using a reverse
mortgage12
o Reverse mortgages allow borrowing of 50% of home value
o In our case: $200K
@ Once W; <0

o All stocks are liquidated
e Debt accumulates at borrowing rate

o If Wt > 0, then real-estate is a bequest
@ Real estate is a hedge of last resort: not fungible with other wealth

o This mental bucketing of real estate is a well-known behavioral
finance result.’®

2See Pfeiffer et al, Journal of Financial Planning (2013)
13] also observe this with my fellow retirees: real-estate is a separate bucket
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Numerical Method |

Pre-commitment control at tp (same as induced time consistent
control)

Interchange supsup(...)

Solve using Dynamic Programming (fixed W*)

sup  sup Ep{Zq;—I—HG(WT, W*)+6WT}
W P ;

maximize over W*

Solve inner DP problem using PIDE methods
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Numerical Method Il

Inner maximization: dynamic programming
o Conditional expectations at t;-

e Solve linear 2-d PIDE
e Use d-monotone Fourier method (Forsyth and Labahn (2019))

@ Optimal controls at each rebalancing time

o Discretize controls
e Find maximum by exhaustive search

@ Guaranteed to converge to the solution as discretization
parameters — 0
Outer maximization over W*
@ Discretize W*, use coarse PIDE grid
— Find optimal W* by exhaustive search

@ Use coarse grid W* as starting point for 1-d optimization on
finer grids
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Data
Center for Research in Security Prices (CRSP) US

o Cap weighted index, all stocks on all major US exchanges
1926:1-2019:12

@ US 10 year Treasury index

@ Monthly data, inflation adjusted by CPI
Synthetic Market

@ Stock/bond returns driven by parametric jump-diffusion model,
calibrated to data

@ Optimal controls computed in the synthetic market
Historical market

@ Stock/bond returns from stationary block bootstrap resampling of
actual data®*

@ No assumptions about stock/bond processes

@ Used to test control robustness computed in the synthetic market
“Dichtl et al (2016, Appl. Econ.), Anarkulova et al (JFE,2022)
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Pareto optimal points (Units: Thousands)
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65 -
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Varying scalarization parameter

— Traces out efficient frontier

@ y-axis is annual average expected withdrawals
e E.g.: 50K (W = 1000K) corresponds to 5% withdrawal rate

@ Recall ES is mean of worst 5% W7 = larger is better
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EW-ES efficient frontier (Units: thousands)

65

el ‘Curves Overlap ‘ @ Solutions with different PIDE

g i grids

5 .| 2048x2048 @ ES is the mean of the worst

Z ‘ 5% of outcomes

> 1024x1024 _

> @ Each pt on curve, different x

s | 512x512

% @ Reverse mortgage hedge

EB-5500 -4(‘)0 -360 -260 -160 6 10‘0 % Any pOInt ES > _200K Is
Expected Shortfall acceptable

Note Efficient Frontier almost vertical at right hand end
@ Base case: constant withdrawal 35K /year
@ Tiny increase in risk (smaller ES)

= Average withdrawal 50K per year (never less than 35K)
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Point on Frontier: (EW,ES) = (52K /year, -42K)

Percentiles: withdrawal control Percentiles: fraction in equities
E 1F
90; 09fF
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@ F 2 |
§ 60F Sos
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@ 50H Median o5
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g%r 5th “os
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0 5 25 30 0 5 T : 2 25 30

0 _ 15 20 15
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— ES ~ —42K
— bth percentile wealth at t = 30 ~ 58K

— Average withdrawal ~52K /year
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Point on Frontier: (EW,ES) = (52K /year, -42K)

2000
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@ Withdrawal controls ~ bang-bang, i.e. only withdraw either gm;, or

qmax-

@ Median W; ~ 1000K — 300K
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Robustness Check: Efficient Frontier (Units: thousands)

Bengen 4% rule: bootstrapped

i i ab
v Synthetic historical market

= very inefficient

=- More risky than advertised, ES
~ 270K

Historical

Bengen

s
&

?Bengen suggests 50% in stocks.
bExperimentally, 40% in stocks maximized ES.

E[average withdrawal]

Lw
PR
3
3

-400 -300 -200 -100 0 100

Expected Shortfall
Controls computed and stored in the synthetic market
@ Parametric model calibrated to historical data

Controls tested!® in the bootstrapped historical market

— Controls are robust to parametric model misspecification

15 4Qut-of-sample” test.
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Stabilization term (EW,ES) = (52K /year, -42K)

Recall objective function:

total withdrawals

~~
EwW

mean worst 5% outcomes

+ K G(WT, W*) + eWr

Stabilization

10 15 20
Time (years)

sup sup
P W
—6 —6
e =-+10 e=-10
Fraction in Stocks Fraction in Stocks
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B 1500 ol | @ 1500 om0
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; 0.30 ; 0.30
= 0.25 = 0.25
£ w0 2l & o
0.10 0.10
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Stabilization term

Plots of efficient EW-ES frontiers overlap for e = £107°
Recall that we are assuming the investor follows the induced time

consistent strategy

e=+10"°

Fraction in Stocks

Real Wealth (thousands)

a
=}
3

10 20

15
Time (years)

100%
Stocks

0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15

0.05

100%
Bonds

o W* =58K
@ Suppose that t = 25, i.e. 90
years old

o W = 2000K, you will never
run out of cash with gna.x =
60K /year

@ It does not matter whether
you invest 100% in stocks or
bonds
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If you are Warren Buffet, this problem is ill-posed

08fF 95th 08k
percentile
w07k w07k
$ s
g 06F 206fF
£ 95th
F 05F c OSF percentile

Median
_

5th
percentile percentile

25 30 5 10

15
Time (years)

Time‘(;ears) 0
e=+410"° e=-10"°
Fraction Stocks < 0.4 at 95th percentile

If you are rich and old, then it does not matter what you do
@ ¢ = +107° invest 100% in stocks
@ ¢ = —107% invest 100% in bonds

But these lucky large wealth outcomes = no effect on (EW,ES) frontier
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Peter Ponzo: Canasta Strategy

Peter Ponzo (retired Applied Math Professor from Waterloo)

@ Retired: 1993; passed away: 2020
@ In 1993, took commuted value of his pension

o One-half — annuity (interest rate: 9.8%)
o One-half — self-directed investments
e Wrote a blog about his attempts to “beat the market”

@ It turned out that beating the market was not easy!

But: he summarized his withdrawal strategy: “Canasta Strategy”
“If we have a good year, we take a trip to China,...,if we
have a bad year, we stay home and play canasta.”

This is a bang-bang control!
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Conclusions

Optimal strategy: flexible withdrawals, dynamic stock-bond
allocation
— Less risk, higher average withdrawals'® compared to 4% rule
— Bootstrap resampling = controls are robust

In the continuous withdrawal limit

— Optimal withdrawals are bang-bang, i.e. only withdraw at
either maximum or minimum rate

Discrete rebalancing: withdrawal controls are very close to
bang-bang

Intuition: if you are lucky, and make money in stocks, take
money off the table and go on a cruise

— Otherwise: sit tight

®Optimal: 5% EW, with ES ~ 0; Bengen: 4% EW, with ES ~ —270K.
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Cumulative Distribution Functions: (EW,ES) = (52K/year,

L42K)

Average withdrawal

CDF Average Withdrawals

e +
X (Thousands per year)
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Wealth at T = 30 years

CDF Final Wealth

TERTEE B R R BRI B
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X (Thousands)

Bootstrap resampled historical data (blksize = 3 months)

@ > 94% probability: average withdrawals > 40K per year

@ > 98% probability: W7 >0
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Decumulation of Retirement Savings

Recall from the first talk
@ Retiree wants to maximize total withdrawals
Minimize risk of running out of cash (30 year retirement)

°
@ Can invest in a mix of stocks and bonds
@ At each (yearly) rebalancing time

@ Choose amount to withdraw g
e Fraction in stocks p

No shorting/leverage for investments

qc [qmim qmax]
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Stochastic Process: Stock Index

Let S; be the real (inflation adjusted) amount in a stock index
S; follows a jump diffusion process

ds;
S,

S
Tt

(=) dt+odZ+d | Y (&-1)],
i=1
o® = volatility
dZ = increment of Wiener process
m; = Poisson process with intensity A
Si- = &;S; at jump times
¥ = E[g 1]
& ~ double exponential distribution (1)
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Stochastic Process: Bond Index

Let B; be the real (inflation adjusted) amount in a constant
maturity bond index

Model real returns of the bond index directly as a stochastic
process

e Common practitioner approach (Lin et al, IME (2015))
@ Avoids modelling interest rates, inflation
o Easy to calibrate to historical data
B; follows a jump diffusion process
dB;

5 = ... similar to stock process
-

Parameters for both processes calibrated to historical data

4/29



Recall
Withdraw/rebalance at discrete times t; € [0, T
The investor has two controls at each rebalancing time
gi = Amount of withdrawal
pi = Fraction in stocks after withdrawal

At t;, the investor withdraws g;

wealth before withdrawal

—
w- = ST+ B

1

Wi = W7 —gq
Then, the investor rebalances the portfolio
St = pwt
B = (1- Pi)WiJr
Can show that
qi=aq(W7) : pi=pi(W")

(3)
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Controls

Constraints on controls

G € [Gmin, Gmax] withdrawal amount
pi € [0,1] ;  fraction in stocks

no shorting, no leverage

Set of controls

P = {(qi(),pi(-)): 1 =0,...,M} (6)
Pn={(ai(-),pi(-))) i = n,..., M}
tail of the controls (7)
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EW-ES Objective Function

Objective function:

total withdrawals 0.0 \orst 5% outcomes  Stabilization

= —_— A~
sup sup Ep{ E qgi + k GWr,W*) + eWr
P owr ,

I
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Numerical Method |

Interchange supsup(...)

Solve using Dynamic Programming (fixed W*)

sup  sup E’p{ g qi + kG(Wr, W*)—i—eWT}
W P .
1

maximize over W*

Solve inner DP problem using PIDE methods
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Inner problem: value function

n

% 5,, B,
V(57b’W ,tn)—S;p{ [§ ai
1 _
H<W* + 2 min((Wr - W*),O))‘(Sn B)) = (s, b)]} .

Where:

(S¢, Bt) follow processes (1) and (2);
W) =5 +6;

S¢=p( W5 B = (1= pu(-))W,
ty = rebalancing times

Subject to
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Dynamic Programming Approach

Terminal condition at tyy = T

V(s, b W*, TH) = /<a<W* N min((s + b — W*)jo)) |

.05

At any rebalancing time t,
< Advance the solution backwards t — t-

Vb wt) = sidas Vvt wra-pwe ) |
(p,q)
w- =s+b
wt=w"—gq

th=ty+e€ t, =t,—e €10
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Between rebalancing times

Forte (tf |, t)
— No cashflows, no discounting, for h — 0
— Tower property

V(s, b, W*,t) = E|V(S(t+ h), B(t+ h), W*, t+ h)
|S(t) =s,B(t) =b

Apply Ito’s Lemma for jump/diffusion processes
— 2-D Partial Integro Differential Equation (PIDE)
— Independent variables (s, b, t)
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Numerical Algorithm: Details

Discretize state space (s, b)
— 2-D grid, with mesh parameter h
Solve PIDE, using Fourier method

@ Standard Fourier methods may not be monotone
@ Example: Two possible controls P#, P8 are such that

PA = {(q(-),pi(-):i=0,....,M} € A
PP = {(a(),pi(:)):i=0,....M}€B

@ Assume A C B

Then we should have the monotonicity property (optimal control
maximizes V)

VA(s, b, t) < VB(s,b,t) ; ¥(s, b, t)
We use a J-monotone Fourier method — guarantees
VA(s, b, t) < VB(s,b,t) +6

Given fixed h, 6 can be made arbitrarily small
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Numerical Details Il

At rebalancing times:
@ Discretize the controls with spacing O(h)

e Find optimal (p, g) by exhaustive search
@ For off-grid points
— Use linear interpolation of discretized value function

Actual value function \7(50, bo, to)

Inner PIDE Solve
V(50> bOa tO) = sup V(507 b07 W*> tO)
W*

Solve problem on sequence of grids

@ On coarse grid, discretize W*, maximize by exhaustive search

@ On finer grids, use coarse grid estimate for W™ as starting
point
— Find optimal W* using 1-d optimization algorithm
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Numerical Details |l

Solve control problem on grid
@ At each rebalancing time, store optimal controls
Determine statistical quantities

@ Synthetic Market: use stored controls, do Monte Carlo
simulations with parametric SDE model of stocks and bonds

@ Historical Market: use stored controls, do bootstrap
resampling of historical stock, bond returns

Bootstrap simulations
@ Out of sample test

@ No assumptions about market stochastic processes
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Numerical Example

DC account at t = 0 (age 65) $1,000K (one million)
Minimum withdrawal from DC account $35K per year?
Maximum withdrawal from DC $60K per year

No shorting, no leverage (p € [0,1])

Annual rebalancing/withdrawals

Retiree owns mortgage-free real estate worth $400K
— Hedge of last resort if account exhausted

Investment horizon: age 65 to 95

2Assume gov't benefits of 22K /year. Minimum income

~ 22K + 35K = 57K /year.
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Convergence Check: Synthetic Market

o2}
a

Curves Overlap

— o s s s s s |
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g, 2048x2048 /
S

3 10241024
s 512x512
2]

>

(1]

L

= Even coarse grid gives good solution
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Alternative Approach: Machine Learning

@ Does not use dynamic programming

o Efficient in cases where performance criteria is high
dimensional

— Control is low dimensional (see van Staden, Forsyth, Li, SIFIN
(2023))

e Can be used in cases where no dynamic programming principle
exists (e.g. mean semi-variance)

@ Does not require a parametric model of stochastic processes
for stock and bond

@ Can be extended to higher dimensional problems (e.g. more
assets)

Basic idea 3
@ Go back to original problem formulation
e Approximate control directly using a Neural Network (NN)
@ Approximate expectations by sampling paths

@ Optimize w.r.t. NN parameters
3See also Han (2016), Andersson, Oosterlee (2023).
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NN Framework

Approximate controls

(W ,t7) ~ §

pi(VVi+’ti+) ~ p
P ~ P

{a(W;", t730q), BW;, £7:0)}
o fully connected feedforward NNs, parameterized by (64,6,)
@ Separate NN for g and p.
@ Note that using time t as input
— recurrent network
@ Wealth is only state variable needed in this case

Solve for control directly (Policy Function Approximation)
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Recall Objective function

total withdrawals mean worst 5% outcomes Stabilization

= —_— P
sup sup Ep{ E qgi + k GWr,W*) + eWr
P W :

1

Generate M sample paths (use stochastic model)

WJT = Final wealth along j*h path
g, = Withdrawal at time t; along j*h path

Approximate E[-] by mean of samples

1M . . .

sup Z{Z ¢ +r G(W, W*) + veT}
1

W 0q.0, M=

Simultaneously maximize over (W*,0,,04)
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NN Method

Each NN has output activation function that encodes constraints
— Allows unconstrained optimization (i.e. SGD)
No need to have inner/outer optimization
— W™ maximized along with (6, 6,)
e A single network (W™, t;04) approximates the g control for
all t

@ Similarly for the p control
— Contrasts with stacked NN approach used previously

@ Note: we generate paths using parameterized SDEs
— We are agnostic to method used to generate paths
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NN Framework Diagram

Output Layer
1 node, modified
sigmoid activation to
ensure g; € [qmimqmu]
(withdrawal amount)

Input Layer
Feature Vector

Hidden Layers

t; ti
full set of
X(t;) = (@), B(t;)) nodes and
connections
not shown

S(t;) + B(t;) =w(t;)

.
é(“@_’tiaaq)

(Withdrawal NN)

Withdrawal NN result
is used to create
feature vector for

allocation NN

Output of § network
= Input to p network

Input Layer
Feature Vector

Output Layer
1 node per asset,
Softmax activation to
ensure Pi within constraints

ﬂ (portfolio weight for stocks)
pi

Hidden Layers

full set of
nodes and
connections
not shown

(1-pi)

-
jj(Wj+a ti7 917)

(Allocation NN)
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Withdrawal Control Heatmaps

Withdrawal control is ‘bang-bang’: Switches abruptly between g, and

qmax .

Normalized Withdrawal Normalized Withdrawal

2000 2000

qmax

@ 1500 » 1500
) 080 0) 080
2 075 2 075
& 070 s 070
a8 065 2 065
° 060 ] 060
£ 055 £ 0.55
= 1000 050 = 1000 050
£ 045 £ 045
H 040 ] 040
035 035
= 030 = 030
3 a2 3 e
@ 500 ote @« 500 022

10 20 10 20

15 15
Time (years) Time (years)

Figure: Withdrawal amount, Figure: Withdrawal amount, NN
PDE Control, e = 10~° Control, e = 107°

Units: thousands of dollars
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Stock Allocation Control Heatmaps (1)
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Effect of stabilization term clearly shown in PDE heatmap, but NN is not
sensitive enough (e is tiny). Units: thousands of dollars
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Stock Allocation Control Heatmaps (2)
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Making stabilization term negative shows that NN control is
somewhere in between +/- epsilon versions of PDE control. Units:
thousands of dollars
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Efficient Frontier Comparison: Synthetic Market
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Figure: Comparison of EW-ES frontier for NN and PDE methods. Labels
on nodes are the k values. Units: thousands of dollars

PDE frontier virtually the same, ¢ = £107°
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Bootstrap Resampling

Stationary Block Bootstrap resampling
@ Monthly historical data: 1926:1-2020:1

@ Draw blocks of data (with replacement) from historical data

— Simultaneously draw stock and bond returns
— Sampling in blocks preserves serial correlation

@ Blocksizes are drawn from a geometric distribution
— Random blocksizes reduce edge effects, preserve stationarity

Concatenate blocks to form a single path of T years

Dubious algorithm available to determine expected blocksize

Typical parameters

@ 10° training samples, 10° test samples

o Probability of a single identical train, test path < 10729

The universe is 10'® seconds old.
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Train on Synthetic Data, Test on Historical Data
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Figure: Comparison of EW-ES frontier for NN training performance vs.
tests on resampled historical data. Units: thousands of dollars
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Train with Historical Data, Test on Synthetic Data

Demonstrates NN framework's ability to use other datasets and
still yield good results.
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Figure: Historical training data, Figure: Historical training data,
block size = 3 months block size = 12 months

Labels on nodes: k values. Units: thousands of dollars
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Conclusions

@ Train/test combinations — multi-period optimization is robust
@ NN method — accurate results compared to ground truth

— Even for bang-bang controls
@ Advantages of NN

o Does not depend on parametric SDE model (data driven)
e Can solve high dimensional problems
e Can be used for problems which do not have DP principle

But
CPU time for computing a single point on the efficient frontier

e PDE: medium grid (C++) ~ 400 sec (laptop)
@ NN: 2 hours (Pytorch + GPUs)

Low dimensional problem, parametric model for stochastic
processes
— PDEs win
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