# Decumulation of Retirement Savings: The Nastiest, Hardest Problem in Finance Part I: Introduction and Results

Peter Forsyth<sup>1</sup>

<sup>1</sup>Cheriton School of Computer Science University of Waterloo

> Woudschoten September 27-29, 2023 Thursday 10:00

#### Motivation

Defined Benefit Plans (DB) are disappearing

ightarrow Corporations/governments no longer willing to take risk of DB plans

Recent survey<sup>1</sup> P7 countries<sup>2</sup>

- Defined Contribution (DC)<sup>3</sup> plan assets: 55% of all pension assets
- Some examples
  - → Australia 87% DC
  - → US 65% DC
  - → Canada 43% DC
  - $\rightarrow \cdots$
  - → Japan 5% DC

Netherlands  $\rightarrow$  *Collective* DC plan (2027)

<sup>&</sup>lt;sup>1</sup>Thinking Ahead Institute (2023)

<sup>&</sup>lt;sup>2</sup>Australia, Canada, Japan, Netherlands, Switzerland, UK, US

<sup>&</sup>lt;sup>3</sup>DC plan: retiree takes on all investment risk

## The retiree dilemma (Defined Contribution (DC))

A retiree with savings in a DC plan<sup>4</sup> <sup>5</sup> has to decide on

- An investment strategy (stocks vs. bonds)
- A decumulation schedule

The retiree now has two major sources of risk

- Investment risk
- Longevity risk (running out of cash before death)

William Sharpe (Nobel Laureate in Economics) calls this "The nastiest hardest problem in finance"

<sup>&</sup>lt;sup>4</sup>In a DC plan, the retiree is responsible for investment/decumulation <sup>5</sup>RRSP (Canada), SIPP (UK), 401(k)(US), Super Fund (Australia)

## The Four per Cent Rule

Based on rolling 30-year historical periods, Bengen (1994) showed:

#### A retiree who

- Invested in a portfolio of 50% bonds, 50% stocks (US), rebalanced annually
- Withdrew 4% of initial capital (adjusted for inflation) annually
  - ightarrow Would never have run out of cash, over any rolling 30-year period (from 1926)

#### Criticism

- Simplistic asset allocation strategy
- Simplistic withdrawal strategy
- Rolling 30 year periods contain large overlaps
  - → Underestimates risk of portfolio depletion

#### Bengen rule

"Play the long game. A retirement income plan should be based on planning to live, not planning to die. A long life will be expensive to support, and it should take precedence over death planning." Pfau (2018)

Note that Bengen rule is based on assumption that 65-year old will live to be 95

- Should we mortality weight the cash flows (as in an annuity)?
- ullet Example: median life expectancy of 65-year old male  $\simeq$  87.
  - ightarrow Effectively, mortality weighting will weight minimum cash flow of 87-year old by 1/2
  - $\rightarrow$  If I am 87, and alive, I need 100% of my minimum cash flows
  - → If I am dead, I need zero dollars
- We will consider an individual investor, not averaging over a population
  - → 30 year retirement, no mortality weighting
  - → Consistent with Bengen approach

## Fear of running out of cash

#### Recent survey<sup>6</sup>

 Majority of pre-retirees fear exhausting their savings in retirement more than death

In Canada, a 65-year old male

- Probability of 0.13 of living to be 95
- Probability of 0.02 of living to be 100

#### Conservative strategy:

 $\rightarrow$  Assume 30 year retirement (as in Bengen (1994)).

Other assets can be used to hedge extreme longevity<sup>7</sup>

 $<sup>^6</sup>$ 2017 Allianz Generations Ahead Study - Quick Facts #1. (2017), Allianz

<sup>&</sup>lt;sup>7</sup>Real estate

## Objective of this talk

Determine a decumulation strategy which has

- Variable withdrawals (minimum and maximum constraints)
- Minimizes risk of portfolio depletion
- Maximizes total expected withdrawals
- Allows for dynamic, non-deterministic asset allocation

We will treat this as a problem in optimal stochastic control

#### Formulation

Investor has access to two funds

- A broad stock market index fund
  - Amount in stock index  $S_t$
- A constant maturity bond index fund
  - Amount in bond index B<sub>t</sub>

Total Wealth 
$$W_t = S_t + B_t$$
 (1)

Model the returns of both indexes

- Parametric, jump diffusion
- Non-zero stock-bond correlation
- Fit parameters to market data 1926:1-2019:12
- → All returns adjusted for inflation

#### Notation

Withdraw/rebalance at discrete times  $t_i \in [0, T]$ The investor has two controls at each rebalancing time

$$q_i$$
 = Amount of withdrawal  $p_i$  = Fraction in stocks after withdrawal

At 
$$t_i$$
, the investor withdraws  $q_i$ 

$$W_i^- = S_i^- + B_i^ W_i^+ = W_i^- - q_i$$

Then, the investor rebalances the portfolio

$$S_i^+ = p_i W_i^+$$

$$B_i^+ = (1 - p_i)W_i^+$$

Can show that

$$q_i=q_i(W_i^-)$$
 ;  $p_i=p_i(W_i^+)$ 

(2)

(3)

(4)

#### Controls

#### Constraints on controls

$$q_i \in [q_{\mathsf{min}}, q_{\mathsf{max}}]$$
 ; withdrawal amount  $p_i \in [0,1]$  ; fraction in stocks  $\Rightarrow$  no shorting, no leverage

Set of controls

$$\mathcal{P} = \{(q_i(\cdot), p_i(\cdot))\} : i = 0, \dots, M\}$$
 (5)

#### Reward and Risk

Reward: Expected total (real) withdrawals (EW)

$$\mathsf{EW} = E \left[ \sum_{i}^{total} \underbrace{\sum_{i}^{withdrawals}}_{i} \right]$$

$$E[\cdot] = \mathsf{Expectation}$$

Risk measure: Expected Shortfall ES

$$ES(5\%) \equiv \left\{ \text{ Mean of worst 5\% of } W_T \right\}$$
 $W_T = \text{ terminal wealth at } t = T$ 

ES defined in terms of final wealth, not losses<sup>8</sup>

→ Larger is better

<sup>&</sup>lt;sup>8</sup>ES is basically the negative of CVAR

## **Objective Function**

Multi-objective problem  $\rightarrow$  scalarization approach for Pareto points

Find controls  $\mathcal{P}$  which maximize (scalarization parameter  $\kappa > 0$ )<sup>9</sup>

$$\sup_{\mathcal{P}} \left\{ EW + \kappa \ ES \right\}$$

$$\sup_{\mathcal{P}} \left\{ E_{\mathcal{P}}[\sum_{i} q_{i}] + \kappa \left( \frac{E_{\mathcal{P}}[W_{\mathcal{T}} \ 1_{W_{\mathcal{T}} \leq W^{*}}]}{.05} \right) \right\}$$
s.t.  $Prob[W_{\mathcal{T}} \leq W^{*}] = .05$ 

Varying  $\kappa$  traces out the efficient frontier in the (EW, ES) plane

 $<sup>{}^9</sup>E_{\mathcal{P}}[\cdot] \equiv$  expectation under control  $\mathcal{P}$ .

## **EW-ES Objective Function**

Given an expectation under control  $E_{\mathcal{P}}[\cdot]$  (Rockafellar and Uryasev, 2000 )

$$ES_{5\%} = \sup_{W^*} E_{\mathcal{P}} \left[ G(W_T, W^*) \right]$$

$$G(W_T, W^*) = \left( W^* + \frac{1}{.05} \left[ \min(W_T - W^*, 0) \right] \right)$$

Reformulate objective function:

$$\sup_{\mathcal{P}} \sup_{W^*} E_{\mathcal{P}} \left\{ \sum_{i}^{total \ withdrawals} + \kappa \underbrace{G(W_T, W^*)}_{G(W_T, W^*)} + \underbrace{\epsilon W_T}_{G(W_T, W^*)} \right\}$$

Why do we need the stabilization term?

 $\hookrightarrow$  More later

## Time Consistency

The EW-ES objective function is not formally time consistent

Time inconsistency

⇒ Investor has incentive to deviate from initial optimal policy at later times

EW-ES policy computed at time zero

 $\hookrightarrow$  Pre-commitment policy

### Induced time consistent policy

At  $t_0$  we compute the pre-commitment EW-ES control

- For t > t<sub>0</sub> we assume that the investor follows the induced time consistent control (Strub et al (2019))
- ullet This control is identical to the pre-commitment control at  $t_0$
- No incentive to deviate from this control at  $t > t_0$

Induced time consistent control determined from (fixed  $W^*$ )

$$\sup_{\mathcal{P}} E_{\mathcal{P}} \left\{ \sum_{i} q_{i} + \kappa G(W_{T}, W^{*}) + \epsilon W_{T} \right\}$$

 $W^*$  from pre-commitment solution at time zero

Alternative: equilibrium mean-ES control

 $\hookrightarrow$  Does not actually control tail risk! (Forsyth(2020))  $^{10}$ 

<sup>&</sup>lt;sup>10</sup>For more discussion of time consistency, induced time consistency, pre-commitment, see Bjork et al (2021), Vigna (2020, 2022), Strub et al (2019), Forsyth (2020)

## Withdrawal Control: limiting case

## Theorem 1 (Bang-bang withdrawal control: continuous limit)

Assume that

- the stock and bond indexes follow a parametric jump-diffusion
- the portfolio is continuously rebalanced, and withdrawals occur at the continuous (finite) rate  $\hat{q} \in [\hat{q}_{min}, \hat{q}_{max}]$

then the optimal control is bang-bang, i.e. the optimal withdrawal  $\hat{q}^*$  is either  $\hat{q}^* = \hat{q}_{min}$  or  $\hat{q}^* = \hat{q}_{max}$ .

#### Proof.

See Forsyth (North American Actuarial Journal (2022))

But of course, in real life, we do not withdraw/rebalance continuously.

#### Scenario: all amounts indexed to inflation

- DC account at t = 0 (age 65) \$1,000K (one million)
- Minimum withdrawal from DC account \$35K per year<sup>11</sup>
- Maximum withdrawal from DC \$60K per year
- No shorting, no leverage  $(p \in [0,1])$
- Annual rebalancing/withdrawals
- Retiree owns mortgage-free real estate worth \$400K

#### Investment Horizon

- T = 30 years, i.e. from age 65 to 95
  - → Plan to live long and prosper



 $<sup>^{11}</sup>$ Assume gov't benefits of 22K/year. Minimum income  $\simeq 22K + 35K = 57K/\text{year}.$ 

#### Scenario II

Why do we include real estate in the scenario?

Since  $q_{\min} = 35K$  per year,  $W_t$  can become negative

- When  $W_t < 0$ , assume retiree is borrowing, using a reverse mortgage<sup>12</sup>
  - Reverse mortgages allow borrowing of 50% of home value
  - In our case: \$200K
- Once  $W_t < 0$ 
  - All stocks are liquidated
  - Debt accumulates at borrowing rate
- If  $W_T > 0$ , then real-estate is a bequest
- Real estate is a hedge of last resort: not fungible with other wealth
  - This mental bucketing of real estate is a well-known behavioral finance result.<sup>13</sup>

<sup>&</sup>lt;sup>12</sup>See Pfeiffer et al, Journal of Financial Planning (2013)

 $<sup>^{\</sup>rm 13}\text{I}$  also observe this with my fellow retirees: real-estate is a separate bucket

#### Numerical Method I

Pre-commitment control at  $t_0$  (same as induced time consistent control)

Interchange sup sup(...)

$$\sup_{W^*} \sup_{\mathcal{P}} E_{\mathcal{P}} \left\{ \sum_{i} q_i + \kappa G(W_T, W^*) + \epsilon W_T \right\}$$

$$\max_{i} maximize over W^*$$

Solve inner DP problem using PIDE methods

#### Numerical Method II

Inner maximization: dynamic programming

- Conditional expectations at  $t_i^+$ 
  - Solve linear 2-d PIDE
  - Use  $\delta$ -monotone Fourier method (Forsyth and Labahn (2019))
- Optimal controls at each rebalancing time
  - Discretize controls
  - Find maximum by exhaustive search
- $\bullet$  Guaranteed to converge to the solution as discretization parameters  $\to 0$

Outer maximization over  $W^*$ 

- Discretize W\*, use coarse PIDE grid
  - ightarrow Find optimal  $W^*$  by exhaustive search
- Use coarse grid W\* as starting point for 1-d optimization on finer grids

#### Data

#### Center for Research in Security Prices (CRSP) US

- Cap weighted index, all stocks on all major US exchanges 1926:1-2019:12
- US 10 year Treasury index
- Monthly data, inflation adjusted by CPI

#### Synthetic Market

- Stock/bond returns driven by parametric jump-diffusion model, calibrated to data
- Optimal controls computed in the synthetic market

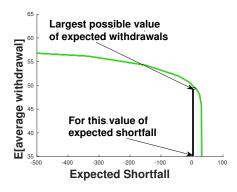
#### Historical market

- Stock/bond returns from stationary block bootstrap resampling of actual data<sup>14</sup>
- No assumptions about stock/bond processes
- Used to test control robustness computed in the synthetic market

<sup>&</sup>lt;sup>14</sup>Dichtl et al (2016, Appl. Econ.), Anarkulova et al (JFE,2022)

## Pareto optimal points (Units: Thousands)

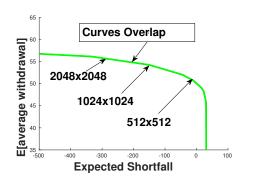




Varying scalarization parameter  $\kappa$ 

- → Traces out efficient frontier
  - y-axis is annual average expected withdrawals
  - ullet E.g.: 50K ( $W_0=1000K$ ) corresponds to 5% withdrawal rate
  - Recall ES is mean of worst 5%  $W_T \Rightarrow$  larger is better

## EW-ES efficient frontier (Units: thousands)

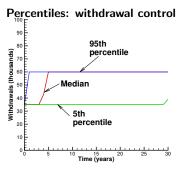


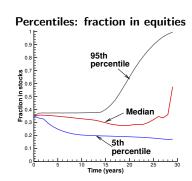
- Solutions with different PIDE grids
- ES is the mean of the worst 5% of outcomes
- ullet Each pt on curve, different  $\kappa$
- Reverse mortgage hedge
  - $\rightarrow$  Any point ES > -200K is acceptable

Note Efficient Frontier almost vertical at right hand end

- Base case: constant withdrawal 35K/year
- Tiny increase in risk (smaller ES)
  - ⇒ Average withdrawal 50K per year (never less than 35K)

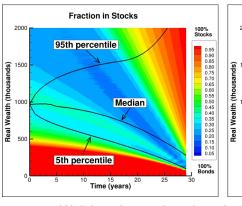
## Point on Frontier: (EW,ES) = (52K/year, -42K)

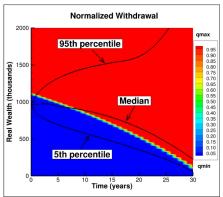




- $\rightarrow$  ES  $\simeq -42K$
- ightarrow 5th percentile wealth at  $t=30\simeq 58 {
  m K}$
- $\rightarrow$  Average withdrawal  $\simeq$ 52K/year

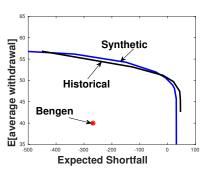
## Point on Frontier: (EW,ES) = (52K/year, -42K)





- Withdrawal controls  $\simeq$  bang-bang, i.e. only withdraw either  $q_{\min}$  or  $q_{\max}$ .
- Median  $W_t \simeq 1000K \rightarrow 300K$

## Robustness Check: Efficient Frontier (Units: thousands)



Bengen 4% rule: bootstrapped historical market<sup>a</sup>

- ⇒ very inefficient
- $\Rightarrow$  More risky than advertised, ES  $\simeq -270$ K

Controls computed and stored in the synthetic market

Parametric model calibrated to historical data

Controls tested<sup>15</sup> in the bootstrapped historical market

 $\,\rightarrow\,$  Controls are robust to parametric model misspecification

<sup>&</sup>lt;sup>a</sup>Bengen suggests 50% in stocks.

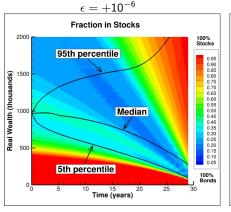
<sup>&</sup>lt;sup>b</sup>Experimentally, 40% in stocks maximized ES.

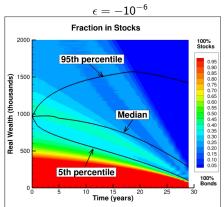
<sup>&</sup>lt;sup>15</sup> "Out-of-sample" test.

## Stabilization term (EW,ES) = (52K/year, -42K)

Recall objective function:

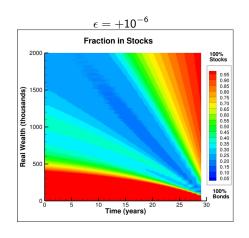
$$\sup_{\mathcal{P}} \sup_{W^*} \left\{ \overbrace{EW} + \overbrace{\kappa \ G(W_T, W^*)}^{\text{mean worst 5\% outcomes}} + \overbrace{\epsilon W_T}^{\text{Stabilization}} \right\}$$





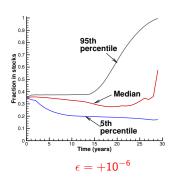
#### Stabilization term

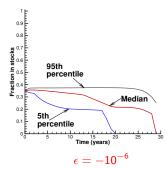
Plots of efficient EW-ES frontiers overlap for  $\epsilon=\pm 10^{-6}$  Recall that we are assuming the investor follows the induced time consistent strategy



- $W^* = 58K$
- Suppose that t = 25, i.e. 90 years old
- W = 2000K, you will never run out of cash with  $q_{max} = 60\text{K/year}$
- It does not matter whether you invest 100% in stocks or bonds

## If you are Warren Buffet, this problem is ill-posed





Fraction Stocks < 0.4 at 95th percentile

If you are rich and old, then it does not matter what you do

- $\epsilon = +10^{-6}$  invest 100% in stocks
- $\bullet$   $\epsilon = -10^{-6}$  invest 100% in bonds

But these lucky large wealth outcomes  $\Rightarrow$  no effect on (EW,ES) frontier

## Peter Ponzo: Canasta Strategy

Peter Ponzo (retired Applied Math Professor from Waterloo)

- Retired: 1993; passed away: 2020
- In 1993, took commuted value of his pension
  - One-half  $\rightarrow$  annuity (interest rate: 9.8%)
  - One-half  $\rightarrow$  self-directed investments
  - Wrote a blog about his attempts to "beat the market"
- It turned out that beating the market was not easy!

But: he summarized his withdrawal strategy: "Canasta Strategy" "If we have a good year, we take a trip to China,...,if we have a bad year, we stay home and play canasta."

This is a bang-bang control!

#### Conclusions

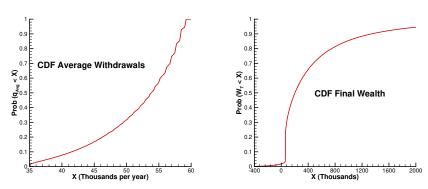
- Optimal strategy: flexible withdrawals, dynamic stock-bond allocation
  - $\rightarrow$  Less risk, higher average withdrawals<sup>16</sup> compared to 4% rule
  - $\rightarrow$  Bootstrap resampling  $\Rightarrow$  controls are robust
- In the continuous withdrawal limit
  - → Optimal withdrawals are bang-bang, i.e. only withdraw at either maximum or minimum rate
- Discrete rebalancing: withdrawal controls are very close to bang-bang
- Intuition: if you are lucky, and make money in stocks, take money off the table and go on a cruise
  - → Otherwise: sit tight

 $<sup>^{16}</sup>$ Optimal: 5% EW, with ES  $\simeq$  0; Bengen: 4% EW, with ES  $\simeq -270 K$ .

## Cumulative Distribution Functions: (EW,ES) = (52K/year, -42K)

Average withdrawal

Wealth at T = 30 years



Bootstrap resampled historical data (blksize = 3 months)

- > 94% probability: average withdrawals > 40K per year
- > 98% probability:  $W_T > 0$

## Decumulation of Retirement Savings: The Nastiest, Hardest Problem in Finance Part II: Numerical Algorithms

Peter Forsyth<sup>1</sup> Y. Li<sup>1</sup> M. Chen<sup>1</sup> M. Shirazi<sup>1</sup>

<sup>1</sup>Cheriton School of Computer Science University of Waterloo

Woudschoten September 27-29, 2023 Friday 9:00

## Decumulation of Retirement Savings

#### Recall from the first talk

- Retiree wants to maximize total withdrawals
- Minimize risk of running out of cash (30 year retirement)
- Can invest in a mix of stocks and bonds
- At each (yearly) rebalancing time
  - Choose amount to withdraw q
  - Fraction in stocks p
- No shorting/leverage for investments
- $q \in [q_{\min}, q_{\max}]$

#### Stochastic Process: Stock Index

Let  $S_t$  be the real (inflation adjusted) amount in a stock index  $S_t$  follows a jump diffusion process

$$\frac{dS_t}{S_{t^-}} = (\mu - \lambda \gamma) \ dt + \sigma \ dZ + d \left( \sum_{i=1}^{\pi_t^s} (\xi_i - 1) \right),$$

$$\sigma^s = \text{ volatility}$$

$$dZ = \text{ increment of Wiener process}$$

$$\pi_t^s = \text{ Poisson process with intensity } \lambda$$

$$S_{t^-} \to \xi_i S_t \text{ at jump times}$$

$$\gamma = E[\xi - 1]$$

$$\xi \simeq \text{ double exponential distribution} \tag{1}$$

#### Stochastic Process: Bond Index

Let  $B_t$  be the real (inflation adjusted) amount in a constant maturity bond index

Model real returns of the bond index directly as a stochastic process

- Common practitioner approach (Lin et al, IME (2015))
- Avoids modelling interest rates, inflation
- Easy to calibrate to historical data

 $B_t$  follows a jump diffusion process

$$\frac{dB_t}{B_{t-}} = \dots$$
 similar to stock process

(2)

Parameters for both processes calibrated to historical data

#### Recall

Withdraw/rebalance at discrete times  $t_i \in [0, T]$ The investor has two controls at each rebalancing time

$$q_i$$
 = Amount of withdrawal  $p_i$  = Fraction in stocks after withdrawal (3)

At  $t_i$ , the investor withdraws  $q_i$ 

$$W_i^- = S_i^- + B_i^ W_i^+ = W_i^- - q_i$$

Then, the investor rebalances the portfolio

$$S_i^+ = p_i W_i^+$$
  
 $B_i^+ = (1 - p_i) W_i^+$  (5)

Can show that

$$q_i = q_i(W_i^-)$$
 ;  $p_i = p_i(W_i^+)$ 

(4)

#### Controls

#### Constraints on controls

$$q_i \in [q_{\sf min}, q_{\sf max}]$$
 ; withdrawal amount  $p_i \in [0,1]$  ; fraction in stocks no shorting, no leverage

Set of controls

$$\mathcal{P} = \{(q_i(\cdot), p_i(\cdot))) : i = 0, \dots, M\}$$

$$\mathcal{P}_n = \{(q_i(\cdot), p_i(\cdot))) : i = n, \dots, M\}$$
tail of the controls (7)

## **EW-ES Objective Function**

#### Objective function:

$$\sup_{\mathcal{P}} \sup_{W^*} E_{\mathcal{P}} \left\{ \underbrace{\sum_{i}^{t} q_i}_{i} + \underbrace{\kappa \ G(W_T, W^*)}_{\kappa \ G(W_T, W^*)} + \underbrace{\epsilon W_T}_{\epsilon W_T} \right\}$$

#### Numerical Method I

Interchange sup sup(...)

$$\sup_{W^*} \sup_{\mathcal{P}} E_{\mathcal{P}} \left\{ \sum_{i} q_i + \kappa G(W_T, W^*) + \epsilon W_T \right\}$$

$$\max_{i} \sum_{maximize over W^*} |W^*| |W^*$$

Solve inner DP problem using PIDE methods

### Inner problem: value function

$$V(s, b, W^*, t_n^-) = \sup_{\mathcal{P}_n} \left\{ E_{\mathcal{P}_n}^{(S_n^-, B_n^-), t_n^-} \left[ \sum_{i=n}^M q_i + \kappa \left( W^* + \frac{1}{\alpha} \min((W_T - W^*), 0) \right) \middle| (S_n^-, B_n^-)) = (s, b) \right] \right\}.$$

Where:

Subject to 
$$\begin{cases} (S_t, B_t) \text{ follow processes (1) and (2);} \\ W_\ell^+ = S_\ell^- + B_\ell^- - q_\ell \\ S_\ell^+ = p_\ell(\cdot)W_\ell^+; \ B_\ell^+ = (1 - p_\ell(\cdot))W_\ell^+ \\ t_\ell = \text{ rebalancing times} \end{cases}$$

## Dynamic Programming Approach

Terminal condition at  $t_M = T$ 

$$V(s, b, W^*, T^+) = \kappa \left(W^* + \frac{\min((s + b - W^*), 0)}{.05}\right).$$

At any rebalancing time  $t_n$ 

 $\hookrightarrow$  Advance the solution backwards  $t_n^+ o t_n^-$ 

$$V(s, b, W^*, t_n^-) = \sup_{(p,q)} \left\{ q + \left[ V(w^+ p, w^+ (1-p), W^*, t_n^+) \right] \right\}$$

$$w^- = s + b$$

$$w^+ = w^- - q$$

$$t_n^+ = t_n + \epsilon$$
,  $t_n^- = t_n - \epsilon$ ,  $\epsilon \uparrow 0^+$ 

### Between rebalancing times

For 
$$t \in (t_{n-1}^+, t_n^-)$$

- $\hookrightarrow$  No cashflows, no discounting, for  $h \to 0$
- $\hookrightarrow$  Tower property

$$V(s,b,W^*,t) = E\Big[V(S(t+h),B(t+h),W^*,t+h)\Big]$$
  
 $\Big|S(t)=s,B(t)=b\Big]$ 

Apply Ito's Lemma for jump/diffusion processes

- → 2-D Partial Integro Differential Equation (PIDE)
- $\rightarrow$  Independent variables (s, b, t)

## Numerical Algorithm: Details

Discretize state space (s, b)  $\hookrightarrow$  2-D grid, with mesh parameter hSolve PIDE, using Fourier method

- Standard Fourier methods may not be monotone
- ullet Example: Two possible controls  $\mathcal{P}^A,\mathcal{P}^B$  are such that

$$\mathcal{P}^{\mathcal{A}} = \{(q_i(\cdot), p_i(\cdot))) : i = 0, \dots, M\} \in \mathcal{A}$$
  
 $\mathcal{P}^{\mathcal{B}} = \{(q_i(\cdot), p_i(\cdot))\} : i = 0, \dots, M\} \in \mathcal{B}$ 

• Assume  $\mathcal{A} \subset \mathcal{B}$ 

Then we should have the monotonicity property (optimal control maximizes V)

$$V^{\mathcal{A}}(s,b,t) \leq V^{\mathcal{B}}(s,b,t) \; ; \; \forall (s,b,t)$$

We use a  $\delta$ -monotone Fourier method  $\rightarrow$  guarantees

$$V^{\mathcal{A}}(s,b,t) \leq V^{\mathcal{B}}(s,b,t) + \delta$$

Given fixed h,  $\delta$  can be made arbitrarily small

#### Numerical Details II

At rebalancing times:

- Discretize the controls with spacing O(h)
- Find optimal (p, q) by exhaustive search
- For off-grid points
  - → Use linear interpolation of discretized value function

Actual value function  $\hat{V}(s_0, b_0, t_0)$ 

$$\hat{V}(s_0, b_0, t_0) = \sup_{W^*} \underbrace{V(s_0, b_0, W^*, t_0)}_{Inner PIDE Solve}$$

Solve problem on sequence of grids

- On coarse grid, discretize  $W^*$ , maximize by exhaustive search
- ullet On finer grids, use coarse grid estimate for  $W^*$  as starting point
  - ightarrow Find optimal  $W^*$  using 1-d optimization algorithm

#### Numerical Details III

### Solve control problem on grid

At each rebalancing time, store optimal controls

#### Determine statistical quantities

- Synthetic Market: use stored controls, do Monte Carlo simulations with parametric SDE model of stocks and bonds
- Historical Market: use stored controls, do bootstrap resampling of historical stock, bond returns

#### Bootstrap simulations

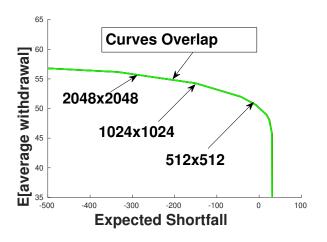
- Out of sample test
- No assumptions about market stochastic processes

### Numerical Example

- DC account at t = 0 (age 65) \$1,000K (one million)
- Minimum withdrawal from DC account \$35K per year<sup>2</sup>
- Maximum withdrawal from DC \$60K per year
- No shorting, no leverage  $(p \in [0,1])$
- Annual rebalancing/withdrawals
- Retiree owns mortgage-free real estate worth \$400K
  - $\rightarrow$  Hedge of last resort if account exhausted
- Investment horizon: age 65 to 95

 $<sup>^2</sup> Assume gov't benefits of 22K/year. Minimum income <math display="inline">\simeq 22K + 35K = 57K/year.$ 

## Convergence Check: Synthetic Market



 $\Rightarrow$  Even coarse grid gives good solution

## Alternative Approach: Machine Learning

- Does not use dynamic programming
  - Efficient in cases where performance criteria is high dimensional
    - → Control is low dimensional (see van Staden, Forsyth, Li, SIFIN (2023))
  - Can be used in cases where no dynamic programming principle exists (e.g. mean semi-variance)
- Does not require a parametric model of stochastic processes for stock and bond
- Can be extended to higher dimensional problems (e.g. more assets)

#### Basic idea <sup>3</sup>

- Go back to original problem formulation
- Approximate control directly using a Neural Network (NN)
- Approximate expectations by sampling paths
- Optimize w.r.t. NN parameters

<sup>&</sup>lt;sup>3</sup>See also Han (2016), Andersson, Oosterlee (2023).

#### NN Framework

#### Approximate controls

$$q_{i}(W_{i}^{-}, t_{i}^{-}) \simeq \hat{q}(W_{i}^{-}, t_{i}^{-}; \theta_{q})$$

$$p_{i}(W_{i}^{+}, t_{i}^{+}) \simeq \hat{p}(W_{i}^{+}, t_{i}^{+}; \theta_{p})$$

$$\mathcal{P} \simeq \hat{\mathcal{P}} = \{\hat{q}(\cdot), \hat{p}(\cdot)\}$$

$$\{\hat{q}(W_i^-, t_i^-; \theta_q), \hat{p}(W_i^+, t_i^+; \theta_p)\}$$

- ullet fully connected feedforward NNs, parameterized by  $( heta_q, heta_p)$
- Separate NN for  $\hat{q}$  and  $\hat{p}$ .
- Note that using time t as input
  - → recurrent network
- Wealth is only state variable needed in this case

Solve for control directly (Policy Function Approximation)

### Recall Objective function

$$\sup_{\mathcal{P}} \sup_{W^*} E_{\mathcal{P}} \left\{ \underbrace{\sum_{i}^{total \ withdrawals}}_{q_i} + \underbrace{\kappa \ G(W_T, W^*)}_{\kappa \ G(W_T, W^*)} + \underbrace{\epsilon W_T}_{\epsilon W_T} \right\}$$

Generate M sample paths (use stochastic model)

$$W_T^j$$
 = Final wealth along  $j^t h$  path  $q_i^j$  = Withdrawal at time  $t_i$  along  $j^t h$  path

Approximate  $E[\cdot]$  by mean of samples

$$\sup_{W^*,\theta_q,\theta_p} \frac{1}{M} \sum_{i=1}^{M} \left\{ \sum_{i} q_i^j + \kappa \ G(W_T^j, W^*) + \epsilon W_T^j \right\}$$

Simultaneously maximize over  $(W^*, \theta_p, \theta_q)$ 

### NN Method

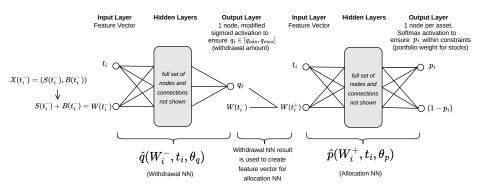
Each NN has output activation function that encodes constraints

→ Allows unconstrained optimization (i.e. SGD)

No need to have inner/outer optimization

- $ightarrow W^*$  maximized along with  $( heta_q, heta_p)$ 
  - A single network  $\hat{q}(W^-, t; \theta_q)$  approximates the q control for all t
  - Similarly for the p control
    - → Contrasts with stacked NN approach used previously
  - Note: we generate paths using parameterized SDEs
    - ightarrow We are agnostic to method used to generate paths

## NN Framework Diagram



### Output of $\hat{q}$ network

 $\Rightarrow$  Input to  $\hat{p}$  network

## Withdrawal Control Heatmaps

Withdrawal control is 'bang-bang': Switches abruptly between  $q_{min}$  and  $q_{max}$ .

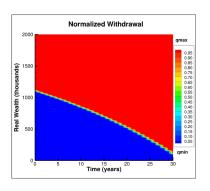


Figure: Withdrawal amount, PDE Control,  $\epsilon=10^{-6}$ 

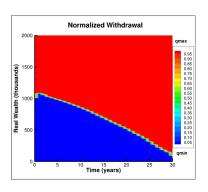
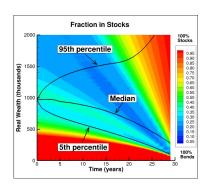


Figure: Withdrawal amount, NN Control,  $\epsilon=10^{-6}$ 

Units: thousands of dollars

# Stock Allocation Control Heatmaps (1)



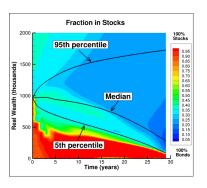
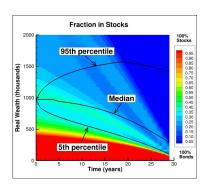


Figure: Fraction in stocks, PDE Control,  $\epsilon=10^{-6}$ 

Figure: Fraction in stocks, NN Control,  $\epsilon = 10^{-6}$ 

Effect of stabilization term clearly shown in PDE heatmap, but NN is not sensitive enough ( $\epsilon$  is tiny). *Units: thousands of dollars* 

# Stock Allocation Control Heatmaps (2)



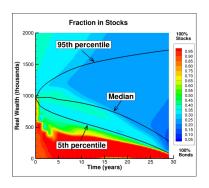


Figure: Fraction in stocks, PDE Control,  $\epsilon = -10^{-6}$ 

Figure: Fraction in stocks, NN Control,  $\epsilon = 10^{-6}$ 

Making **stabilization term negative** shows that NN control is somewhere in between +/- epsilon versions of PDE control. *Units:* thousands of dollars

### Efficient Frontier Comparison: Synthetic Market

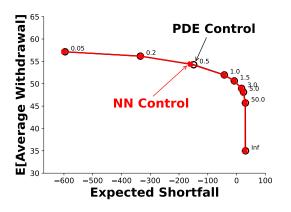


Figure: Comparison of EW-ES frontier for NN and PDE methods. Labels on nodes are the  $\kappa$  values. *Units: thousands of dollars* 

PDE frontier virtually the same,  $\epsilon = \pm 10^{-6}$ 

### Bootstrap Resampling

#### Stationary Block Bootstrap resampling

- Monthly historical data: 1926:1-2020:1
- Draw blocks of data (with replacement) from historical data
  - → Simultaneously draw stock and bond returns
  - $\rightarrow \ \, \text{Sampling in blocks preserves serial correlation}$
- Blocksizes are drawn from a geometric distribution
  - ightarrow Random blocksizes reduce edge effects, preserve stationarity
- Concatenate blocks to form a single path of T years
- Dubious algorithm available to determine expected blocksize

### Typical parameters

- 10<sup>5</sup> training samples, 10<sup>5</sup> test samples
- ullet Probability of a single identical train, test path  $< 10^{-29}$

The universe is 10<sup>18</sup> seconds old.

### Train on Synthetic Data, Test on Historical Data

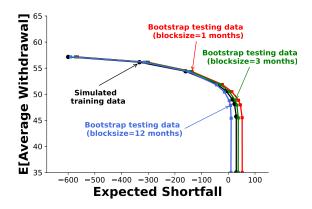


Figure: Comparison of EW-ES frontier for NN training performance vs. tests on resampled historical data. *Units: thousands of dollars* 

### Train with Historical Data, Test on Synthetic Data

Demonstrates NN framework's ability to use other datasets and still yield good results.

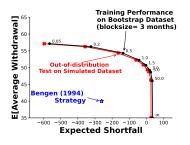


Figure: Historical training data, block size = 3 months



Figure: Historical training data, block size = 12 months

Labels on nodes:  $\kappa$  values. Units: thousands of dollars

### Conclusions

- ullet Train/test combinations o multi-period optimization is robust
- ullet NN method o accurate results compared to ground truth
  - $\rightarrow$  Even for bang-bang controls
- Advantages of NN
  - Does not depend on parametric SDE model (data driven)
  - Can solve high dimensional problems
  - Can be used for problems which do not have DP principle

#### But

CPU time for computing a single point on the efficient frontier

- PDE: medium grid (C++)  $\simeq$  400 sec (laptop)
- NN: 2 hours (Pytorch + GPUs)

Low dimensional problem, parametric model for stochastic processes

 $\rightarrow$  PDEs win