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Motivation

Defined Benefit Plans (DB) are disappearing

→ Corporations/governments no longer willing to take risk of DB
plans

Recent survey1 P7 countries2

Defined Contribution (DC)3 plan assets: 55% of all pension
assets

Some examples

→ Australia 87% DC
→ US 65% DC
→ Canada 43% DC
→ · · ·
→ Japan 5% DC

Netherlands → Collective DC plan (2027)

1Thinking Ahead Institute (2023)
2Australia, Canada, Japan, Netherlands, Switzerland, UK, US
3DC plan: retiree takes on all investment risk
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The retiree dilemma (Defined Contribution (DC))

A retiree with savings in a DC plan4 5 has to decide on

An investment strategy (stocks vs. bonds)

A decumulation schedule

The retiree now has two major sources of risk

Investment risk

Longevity risk (running out of cash before death)

William Sharpe (Nobel Laureate in Economics) calls this

“The nastiest hardest problem in finance”

4In a DC plan, the retiree is responsible for investment/decumulation
5RRSP (Canada), SIPP (UK), 401(k)(US), Super Fund (Australia)
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The Four per Cent Rule

Based on rolling 30-year historical periods, Bengen (1994) showed:

A retiree who

Invested in a portfolio of 50% bonds, 50% stocks (US),
rebalanced annually

Withdrew 4% of initial capital (adjusted for inflation) annually

→ Would never have run out of cash, over any rolling 30-year
period (from 1926)

Criticism

Simplistic asset allocation strategy

Simplistic withdrawal strategy

Rolling 30 year periods contain large overlaps

→ Underestimates risk of portfolio depletion
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Bengen rule
“Play the long game. A retirement income plan should be based
on planning to live, not planning to die. A long life will be
expensive to support, and it should take precedence over death
planning.” Pfau (2018)

Note that Bengen rule is based on assumption that 65-year old will
live to be 95

Should we mortality weight the cash flows (as in an annuity)?

Example: median life expectancy of 65-year old male ' 87.

→ Effectively, mortality weighting will weight minimum cash flow
of 87-year old by 1/2

→ If I am 87, and alive, I need 100% of my minimum cash flows
→ If I am dead, I need zero dollars

We will consider an individual investor, not averaging over a
population

→ 30 year retirement, no mortality weighting
→ Consistent with Bengen approach
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Fear of running out of cash

Recent survey6

Majority of pre-retirees fear exhausting their savings in
retirement more than death

In Canada, a 65-year old male

Probability of 0.13 of living to be 95

Probability of 0.02 of living to be 100

Conservative strategy:

→ Assume 30 year retirement (as in Bengen (1994)).

Other assets can be used to hedge extreme longevity7

62017 Allianz Generations Ahead Study - Quick Facts #1. (2017), Allianz
7Real estate
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Objective of this talk

Determine a decumulation strategy which has

Variable withdrawals (minimum and maximum constraints)

Minimizes risk of portfolio depletion

Maximizes total expected withdrawals

Allows for dynamic, non-deterministic asset allocation

We will treat this as a problem in optimal stochastic control
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Formulation

Investor has access to two funds

A broad stock market index fund

Amount in stock index St

A constant maturity bond index fund

Amount in bond index Bt

Total Wealth Wt = St + Bt (1)

Model the returns of both indexes

Parametric, jump diffusion

Non-zero stock-bond correlation

• Fit parameters to market data 1926:1-2019:12
↪→ All returns adjusted for inflation
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Notation
Withdraw/rebalance at discrete times ti ∈ [0,T ]
The investor has two controls at each rebalancing time

qi = Amount of withdrawal

pi = Fraction in stocks after withdrawal (2)

At ti , the investor withdraws qi

W−
i =

wealth before withdrawal︷ ︸︸ ︷
S−i + B−i

W+
i = W−

i − qi

(3)

Then, the investor rebalances the portfolio

S+
i = piW

+
i

B+
i = (1− pi )W

+
i (4)

Can show that

qi = qi (W
−
i ) ; pi = pi (W

+
i )
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Controls

Constraints on controls

qi ∈ [qmin, qmax] ; withdrawal amount

pi ∈ [0, 1] ; fraction in stocks

⇒ no shorting, no leverage

Set of controls

P = {(qi (·), pi (·))) : i = 0, . . . ,M} (5)
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Reward and Risk

Reward: Expected total (real) withdrawals (EW)

EW = E

[total withdrawals︷ ︸︸ ︷∑
i

qi

]
E [·] = Expectation

Risk measure: Expected Shortfall ES

ES(5%) ≡
{

Mean of worst 5% of WT

}
WT = terminal wealth at t = T

ES defined in terms of final wealth, not losses8

→ Larger is better

8ES is basically the negative of CVAR
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Objective Function

Multi-objective problem → scalarization approach for Pareto points

Find controls P which maximize (scalarization parameter κ > 0)9

sup
P

{
EW + κ ES

}

sup
P

{total withdrawals︷ ︸︸ ︷
EP [
∑

i

qi ] +κ

mean worst 5% outcomes︷ ︸︸ ︷(
EP [WT 1WT≤W ∗ ]

.05

)}
s.t. Prob[WT ≤W ∗] = .05

Varying κ traces out the efficient frontier in the (EW ,ES) plane

9EP [·] ≡ expectation under control P.
12 / 32



EW-ES Objective Function

Given an expectation under control EP [·] (Rockafellar and Uryasev,
2000 )

ES5% = sup
W ∗

EP

[
G (WT ,W

∗)

]
G (WT ,W

∗) =

(
W ∗ +

1

.05
[min(WT −W ∗, 0)]

)
Reformulate objective function:

sup
P

sup
W ∗

EP

{total withdrawals︷ ︸︸ ︷∑
i

qi +κ

mean worst 5% WT︷ ︸︸ ︷
G (WT ,W

∗) +

Stabilization︷︸︸︷
εWT

}
Why do we need the stabilization term?
↪→ More later
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Time Consistency

The EW-ES objective function is not formally time consistent

Time inconsistency

⇒ Investor has incentive to deviate from initial optimal policy at
later times

EW-ES policy computed at time zero
↪→ Pre-commitment policy
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Induced time consistent policy

At t0 we compute the pre-commitment EW-ES control

For t > t0 we assume that the investor follows the induced
time consistent control (Strub et al (2019))

This control is identical to the pre-commitment control at t0

No incentive to deviate from this control at t > t0

Induced time consistent control determined from (fixed W ∗)

sup
P

EP

{∑
i

qi + κG (WT ,W
∗) + εWT

}
W ∗ from pre-commitment solution at time zero

Alternative: equilibrium mean-ES control
↪→ Does not actually control tail risk! (Forsyth(2020)) 10

10For more discussion of time consistency, induced time consistency,
pre-commitment, see Bjork et al (2021), Vigna (2020, 2022), Strub et al
(2019), Forsyth (2020)
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Withdrawal Control: limiting case

Theorem 1 (Bang-bang withdrawal control: continuous limit)

Assume that

the stock and bond indexes follow a parametric jump-diffusion

the portfolio is continuously rebalanced, and withdrawals
occur at the continuous (finite) rate q̂ ∈ [q̂min, q̂max]

then the optimal control is bang-bang, i.e. the optimal withdrawal
q̂∗ is either q̂∗ = q̂min or q̂∗ = q̂max.

Proof.
See Forsyth (North American Actuarial Journal (2022))

But of course, in real life, we do not withdraw/rebalance
continuously.
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Scenario: all amounts indexed to inflation

DC account at t = 0 (age 65) $1,000K (one million)

Minimum withdrawal from DC account $35K per year11

Maximum withdrawal from DC $60K per year

No shorting, no leverage (p ∈ [0, 1])

Annual rebalancing/withdrawals

Retiree owns mortgage-free real estate worth $400K

Investment Horizon

T = 30 years, i.e. from age 65 to
95

⇒ Plan to live long and
prosper

11Assume gov’t benefits of 22K/year. Minimum income
' 22K + 35K = 57K/year.
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Scenario II
Why do we include real estate in the scenario?

Since qmin = 35K per year, Wt can become negative

When Wt < 0, assume retiree is borrowing, using a reverse
mortgage12

Reverse mortgages allow borrowing of 50% of home value
In our case: $200K

Once Wt < 0

All stocks are liquidated
Debt accumulates at borrowing rate

If WT > 0, then real-estate is a bequest

Real estate is a hedge of last resort: not fungible with other wealth

This mental bucketing of real estate is a well-known behavioral
finance result.13

12See Pfeiffer et al, Journal of Financial Planning (2013)
13I also observe this with my fellow retirees: real-estate is a separate bucket
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Numerical Method I

Pre-commitment control at t0 (same as induced time consistent
control)

Interchange sup sup(. . .)

sup
W ∗

Solve using Dynamic Programming (fixed W ∗)︷ ︸︸ ︷
sup
P

EP

{∑
i

qi + κG (WT ,W
∗) + εWT

}
︸ ︷︷ ︸

maximize over W ∗

Solve inner DP problem using PIDE methods
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Numerical Method II

Inner maximization: dynamic programming

Conditional expectations at t+i
Solve linear 2-d PIDE
Use δ-monotone Fourier method (Forsyth and Labahn (2019))

Optimal controls at each rebalancing time

Discretize controls
Find maximum by exhaustive search

Guaranteed to converge to the solution as discretization
parameters → 0

Outer maximization over W ∗

Discretize W ∗, use coarse PIDE grid

→ Find optimal W ∗ by exhaustive search

Use coarse grid W ∗ as starting point for 1-d optimization on
finer grids
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Data
Center for Research in Security Prices (CRSP) US

Cap weighted index, all stocks on all major US exchanges
1926:1-2019:12

US 10 year Treasury index

Monthly data, inflation adjusted by CPI

Synthetic Market

Stock/bond returns driven by parametric jump-diffusion model,
calibrated to data

Optimal controls computed in the synthetic market

Historical market

Stock/bond returns from stationary block bootstrap resampling of
actual data14

No assumptions about stock/bond processes

Used to test control robustness computed in the synthetic market
14Dichtl et al (2016, Appl. Econ.), Anarkulova et al (JFE,2022)
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Pareto optimal points (Units: Thousands)
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Varying scalarization parameter κ

→ Traces out efficient frontier

y-axis is annual average expected withdrawals

E.g.: 50K (W0 = 1000K ) corresponds to 5% withdrawal rate

Recall ES is mean of worst 5% WT ⇒ larger is better
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EW-ES efficient frontier (Units: thousands)
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Solutions with different PIDE
grids

ES is the mean of the worst
5% of outcomes

Each pt on curve, different κ

Reverse mortgage hedge

→ Any point ES > −200K is
acceptable

Note Efficient Frontier almost vertical at right hand end

Base case: constant withdrawal 35K/year

Tiny increase in risk (smaller ES)

⇒ Average withdrawal 50K per year (never less than 35K)
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Point on Frontier: (EW,ES) = (52K/year, -42K)

Percentiles: withdrawal control
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→ ES ' −42K

→ 5th percentile wealth at t = 30 ' 58K

→ Average withdrawal '52K/year
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Point on Frontier: (EW,ES) = (52K/year, -42K)

Withdrawal controls ' bang-bang, i.e. only withdraw either qmin or
qmax.

Median Wt ' 1000K → 300K
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Robustness Check: Efficient Frontier (Units: thousands)
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Bengen 4% rule: bootstrapped
historical marketa b

⇒ very inefficient

⇒ More risky than advertised, ES
' -270K

aBengen suggests 50% in stocks.
bExperimentally, 40% in stocks maximized ES.

Controls computed and stored in the synthetic market

Parametric model calibrated to historical data

Controls tested15 in the bootstrapped historical market

→ Controls are robust to parametric model misspecification

15“Out-of-sample” test.
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Stabilization term (EW,ES) = (52K/year, -42K)

Recall objective function:

sup
P

sup
W ∗

{total withdrawals︷︸︸︷
EW +

mean worst 5% outcomes︷ ︸︸ ︷
κ G (WT ,W

∗) +

Stabilization︷︸︸︷
εWT

}
ε = +10−6 ε = −10−6
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Stabilization term

Plots of efficient EW-ES frontiers overlap for ε = ±10−6

Recall that we are assuming the investor follows the induced time
consistent strategy

ε = +10−6

W ∗ = 58K

Suppose that t = 25, i.e. 90
years old

W = 2000K, you will never
run out of cash with qmax =
60K/year

It does not matter whether
you invest 100% in stocks or
bonds
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If you are Warren Buffet, this problem is ill-posed
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ε = −10−6

Fraction Stocks < 0.4 at 95th percentile

If you are rich and old, then it does not matter what you do

ε = +10−6 invest 100% in stocks

ε = −10−6 invest 100% in bonds

But these lucky large wealth outcomes ⇒ no effect on (EW,ES) frontier
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Peter Ponzo: Canasta Strategy

Peter Ponzo (retired Applied Math Professor from Waterloo)

Retired: 1993; passed away: 2020

In 1993, took commuted value of his pension

One-half → annuity (interest rate: 9.8%)
One-half → self-directed investments
Wrote a blog about his attempts to “beat the market”

It turned out that beating the market was not easy!

But: he summarized his withdrawal strategy: “Canasta Strategy”
“If we have a good year, we take a trip to China,...,if we
have a bad year, we stay home and play canasta.”

This is a bang-bang control!
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Conclusions

Optimal strategy: flexible withdrawals, dynamic stock-bond
allocation

→ Less risk, higher average withdrawals16 compared to 4% rule
→ Bootstrap resampling ⇒ controls are robust

In the continuous withdrawal limit

→ Optimal withdrawals are bang-bang, i.e. only withdraw at
either maximum or minimum rate

Discrete rebalancing: withdrawal controls are very close to
bang-bang

Intuition: if you are lucky, and make money in stocks, take
money off the table and go on a cruise

→ Otherwise: sit tight

16Optimal: 5% EW, with ES ' 0; Bengen: 4% EW, with ES ' −270K .
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Cumulative Distribution Functions: (EW,ES) = (52K/year,
-42K)

Average withdrawal
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Bootstrap resampled historical data (blksize = 3 months)

> 94% probability: average withdrawals > 40K per year

> 98% probability: WT > 0
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Decumulation of Retirement Savings

Recall from the first talk

Retiree wants to maximize total withdrawals

Minimize risk of running out of cash (30 year retirement)

Can invest in a mix of stocks and bonds

At each (yearly) rebalancing time

Choose amount to withdraw q
Fraction in stocks p

No shorting/leverage for investments

q ∈ [qmin, qmax]
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Stochastic Process: Stock Index

Let St be the real (inflation adjusted) amount in a stock index
St follows a jump diffusion process

dSt

St−
= (µ− λγ) dt + σ dZ + d

 πs
t∑

i=1

(ξi − 1)

 ,

σs = volatility

dZ = increment of Wiener process

πs
t = Poisson process with intensity λ

St− → ξiSt at jump times

γ = E [ξ − 1]

ξ ' double exponential distribution (1)
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Stochastic Process: Bond Index

Let Bt be the real (inflation adjusted) amount in a constant
maturity bond index
Model real returns of the bond index directly as a stochastic
process

Common practitioner approach (Lin et al, IME (2015))

Avoids modelling interest rates, inflation

Easy to calibrate to historical data

Bt follows a jump diffusion process

dBt

Bt−
= . . . similar to stock process

(2)

Parameters for both processes calibrated to historical data
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Recall
Withdraw/rebalance at discrete times ti ∈ [0,T ]
The investor has two controls at each rebalancing time

qi = Amount of withdrawal

pi = Fraction in stocks after withdrawal (3)

At ti , the investor withdraws qi

W−
i =

wealth before withdrawal︷ ︸︸ ︷
S−i + B−i

W+
i = W−

i − qi

(4)

Then, the investor rebalances the portfolio

S+
i = piW

+
i

B+
i = (1− pi )W

+
i (5)

Can show that

qi = qi (W
−
i ) ; pi = pi (W

+
i )
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Controls

Constraints on controls

qi ∈ [qmin, qmax] ; withdrawal amount

pi ∈ [0, 1] ; fraction in stocks

no shorting, no leverage

Set of controls

P = {(qi (·), pi (·))) : i = 0, . . . ,M} (6)

Pn = {(qi (·), pi (·))) : i = n, . . . ,M}
tail of the controls (7)

6 / 29



EW-ES Objective Function

Objective function:

sup
P

sup
W ∗

EP

{total withdrawals︷ ︸︸ ︷∑
i

qi +

mean worst 5% outcomes︷ ︸︸ ︷
κ G (WT ,W

∗) +

Stabilization︷︸︸︷
εWT

}
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Numerical Method I

Interchange sup sup(. . .)

sup
W ∗

Solve using Dynamic Programming (fixed W ∗)︷ ︸︸ ︷
sup
P

EP

{∑
i

qi + κG (WT ,W
∗) + εWT

}
︸ ︷︷ ︸

maximize over W ∗

Solve inner DP problem using PIDE methods
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Inner problem: value function

V (s, b,W ∗, t−n ) = sup
Pn

{
E
(S−

n ,B
−
n ),t−n

Pn

[
M∑

i=n

qi

+ κ

(
W ∗ +

1

α
min((WT −W ∗), 0)

)∣∣∣∣(S−n ,B−n )) = (s, b)

]}
.

Where:

Subject to


(St ,Bt) follow processes (1) and (2);

W+
` = S−` + B−` − q`

S+
` = p`(·)W+

` ; B+
` = (1− p`(·))W+

`

t` = rebalancing times

.

9 / 29



Dynamic Programming Approach

Terminal condition at tM = T

V (s, b,W ∗,T+) = κ

(
W ∗ +

min((s + b −W ∗), 0)

.05

)
.

At any rebalancing time tn

↪→ Advance the solution backwards t+n → t−n

V (s, b,W ∗, t−n ) = sup
(p,q)

{
q +

[
V (w+p , w+(1− p),W ∗, t+n )

]}
w− = s + b

w+ = w− − q

t+n = tn + ε, t−n = tn − ε, ε ↑ 0+
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Between rebalancing times

For t ∈ (t+n−1, t
−
n )

↪→ No cashflows, no discounting, for h→ 0
↪→ Tower property

V (s, b,W ∗, t) = E

[
V (S(t + h),B(t + h),W ∗, t + h)

∣∣S(t) = s,B(t) = b

]
Apply Ito’s Lemma for jump/diffusion processes

→ 2-D Partial Integro Differential Equation (PIDE)

→ Independent variables (s, b, t)

11 / 29



Numerical Algorithm: Details
Discretize state space (s, b)
↪→ 2-D grid, with mesh parameter h
Solve PIDE, using Fourier method

Standard Fourier methods may not be monotone
Example: Two possible controls PA,PB are such that

PA = {(qi (·), pi (·))) : i = 0, . . . ,M} ∈ A
PB = {(qi (·), pi (·))) : i = 0, . . . ,M} ∈ B

Assume A ⊂ B
Then we should have the monotonicity property (optimal control
maximizes V )

VA(s, b, t) ≤ V B(s, b, t) ; ∀(s, b, t)

We use a δ-monotone Fourier method → guarantees

VA(s, b, t) ≤ V B(s, b, t) + δ

Given fixed h, δ can be made arbitrarily small
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Numerical Details II

At rebalancing times:

Discretize the controls with spacing O(h)

Find optimal (p, q) by exhaustive search

For off-grid points

→ Use linear interpolation of discretized value function

Actual value function V̂ (s0, b0, t0)

V̂ (s0, b0, t0) = sup
W ∗

Inner PIDE Solve︷ ︸︸ ︷
V (s0, b0,W

∗, t0)

Solve problem on sequence of grids

On coarse grid, discretize W ∗, maximize by exhaustive search

On finer grids, use coarse grid estimate for W ∗ as starting
point

→ Find optimal W ∗ using 1-d optimization algorithm
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Numerical Details III

Solve control problem on grid

At each rebalancing time, store optimal controls

Determine statistical quantities

Synthetic Market: use stored controls, do Monte Carlo
simulations with parametric SDE model of stocks and bonds

Historical Market: use stored controls, do bootstrap
resampling of historical stock, bond returns

Bootstrap simulations

Out of sample test

No assumptions about market stochastic processes

14 / 29



Numerical Example

DC account at t = 0 (age 65) $1,000K (one million)

Minimum withdrawal from DC account $35K per year2

Maximum withdrawal from DC $60K per year

No shorting, no leverage (p ∈ [0, 1])

Annual rebalancing/withdrawals

Retiree owns mortgage-free real estate worth $400K

→ Hedge of last resort if account exhausted

Investment horizon: age 65 to 95

2Assume gov’t benefits of 22K/year. Minimum income
' 22K + 35K = 57K/year.
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Convergence Check: Synthetic Market
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⇒ Even coarse grid gives good solution
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Alternative Approach: Machine Learning
Does not use dynamic programming

Efficient in cases where performance criteria is high
dimensional
→ Control is low dimensional (see van Staden, Forsyth, Li, SIFIN

(2023))

Can be used in cases where no dynamic programming principle
exists (e.g. mean semi-variance)

Does not require a parametric model of stochastic processes
for stock and bond

Can be extended to higher dimensional problems (e.g. more
assets)

Basic idea 3

Go back to original problem formulation

Approximate control directly using a Neural Network (NN)

Approximate expectations by sampling paths

Optimize w.r.t. NN parameters
3See also Han (2016), Andersson, Oosterlee (2023).
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NN Framework

Approximate controls

qi (W
−
i , t

−
i ) ' q̂(W−

i , t
−
i ; θq)

pi (W
+
i , t

+
i ) ' p̂(W+

i , t
+
i ; θp)

P ' P̂ = {q̂(·), p̂(·)}

{q̂(W−
i , t

−
i ; θq), p̂(W+

i , t
+
i ; θp)}

fully connected feedforward NNs, parameterized by (θq, θp)

Separate NN for q̂ and p̂.

Note that using time t as input

→ recurrent network

Wealth is only state variable needed in this case

Solve for control directly (Policy Function Approximation)
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Recall Objective function

sup
P

sup
W ∗

EP

{total withdrawals︷ ︸︸ ︷∑
i

qi +

mean worst 5% outcomes︷ ︸︸ ︷
κ G (WT ,W

∗) +

Stabilization︷︸︸︷
εWT

}
Generate M sample paths (use stochastic model)

W j
T = Final wealth along j th path

qj
i = Withdrawal at time ti along j th path

Approximate E [·] by mean of samples

sup
W ∗,θq ,θp

1

M

M∑
j=1

{∑
i

qj
i + κ G (W j

T ,W
∗) + εW j

T

}
Simultaneously maximize over (W ∗, θp, θq)
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NN Method

Each NN has output activation function that encodes constraints

→ Allows unconstrained optimization (i.e. SGD)

No need to have inner/outer optimization

→ W ∗ maximized along with (θq, θp)

A single network q̂(W−, t; θq) approximates the q control for
all t

Similarly for the p control

→ Contrasts with stacked NN approach used previously

Note: we generate paths using parameterized SDEs

→ We are agnostic to method used to generate paths
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NN Framework Diagram

Input Layer

Feature Vector








Hidden Layers




















Input Layer

Feature Vector


Hidden Layers



full set of
nodes and

connections
not shown

 full set of
nodes and

connections
not shown

Withdrawal NN result
is used to create
feature vector for

allocation NN

Output Layer
1 node, modified

sigmoid activation to  

ensure

(withdrawal amount)

Output Layer
1 node per asset,

Softmax activation to  

ensure
(portfolio weight for stocks)

within constraints

(Withdrawal NN) (Allocation NN)

Output of q̂ network

⇒ Input to p̂ network
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Withdrawal Control Heatmaps

Withdrawal control is ‘bang-bang’: Switches abruptly between qmin and
qmax .

Figure: Withdrawal amount,
PDE Control, ε = 10−6

Figure: Withdrawal amount, NN
Control, ε = 10−6

Units: thousands of dollars
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Stock Allocation Control Heatmaps (1)

Figure: Fraction in stocks, PDE
Control, ε = 10−6

Figure: Fraction in stocks, NN
Control, ε = 10−6

Effect of stabilization term clearly shown in PDE heatmap, but NN is not
sensitive enough (ε is tiny). Units: thousands of dollars
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Stock Allocation Control Heatmaps (2)

Figure: Fraction in stocks, PDE
Control, ε = −10−6

Figure: Fraction in stocks, NN
Control, ε = 10−6

Making stabilization term negative shows that NN control is
somewhere in between +/- epsilon versions of PDE control. Units:
thousands of dollars
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Efficient Frontier Comparison: Synthetic Market
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Figure: Comparison of EW-ES frontier for NN and PDE methods. Labels
on nodes are the κ values. Units: thousands of dollars

PDE frontier virtually the same, ε = ±10−6
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Bootstrap Resampling

Stationary Block Bootstrap resampling

Monthly historical data: 1926:1-2020:1

Draw blocks of data (with replacement) from historical data

→ Simultaneously draw stock and bond returns
→ Sampling in blocks preserves serial correlation

Blocksizes are drawn from a geometric distribution

→ Random blocksizes reduce edge effects, preserve stationarity

Concatenate blocks to form a single path of T years

Dubious algorithm available to determine expected blocksize

Typical parameters

105 training samples, 105 test samples

Probability of a single identical train, test path < 10−29

The universe is 1018 seconds old.
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Train on Synthetic Data, Test on Historical Data
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Bootstrap testing data 
 (blocksize=3 months)

Bootstrap testing data 
 (blocksize=12 months)

Figure: Comparison of EW-ES frontier for NN training performance vs.
tests on resampled historical data. Units: thousands of dollars
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Train with Historical Data, Test on Synthetic Data

Demonstrates NN framework’s ability to use other datasets and
still yield good results.
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Figure: Historical training data,
block size = 3 months
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Figure: Historical training data,
block size = 12 months

Labels on nodes: κ values. Units: thousands of dollars
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Conclusions

Train/test combinations → multi-period optimization is robust

NN method → accurate results compared to ground truth

→ Even for bang-bang controls

Advantages of NN

Does not depend on parametric SDE model (data driven)
Can solve high dimensional problems
Can be used for problems which do not have DP principle

But
CPU time for computing a single point on the efficient frontier

PDE: medium grid (C++) ' 400 sec (laptop)

NN: 2 hours (Pytorch + GPUs)

Low dimensional problem, parametric model for stochastic
processes
→ PDEs win
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