Decumulation of Retirement Savings: The Nastiest, Hardest Problem in Finance Part I: Introduction and Results

Peter Forsyth¹

¹Cheriton School of Computer Science University of Waterloo

> Woudschoten September 27-29, 2023 Thursday 10:00

Motivation

Defined Benefit Plans (DB) are disappearing

ightarrow Corporations/governments no longer willing to take risk of DB plans

Recent survey¹ P7 countries²

- Defined Contribution (DC)³ plan assets: 55% of all pension assets
- Some examples
 - → Australia 87% DC
 - → US 65% DC
 - → Canada 43% DC
 - $\rightarrow \cdots$
 - → Japan 5% DC

Netherlands \rightarrow *Collective* DC plan (2027)

¹Thinking Ahead Institute (2023)

²Australia, Canada, Japan, Netherlands, Switzerland, UK, US

³DC plan: retiree takes on all investment risk

The retiree dilemma (Defined Contribution (DC))

A retiree with savings in a DC plan⁴ ⁵ has to decide on

- An investment strategy (stocks vs. bonds)
- A decumulation schedule

The retiree now has two major sources of risk

- Investment risk
- Longevity risk (running out of cash before death)

William Sharpe (Nobel Laureate in Economics) calls this "The nastiest hardest problem in finance"

⁴In a DC plan, the retiree is responsible for investment/decumulation ⁵RRSP (Canada), SIPP (UK), 401(k)(US), Super Fund (Australia)

The Four per Cent Rule

Based on rolling 30-year historical periods, Bengen (1994) showed:

A retiree who

- Invested in a portfolio of 50% bonds, 50% stocks (US), rebalanced annually
- Withdrew 4% of initial capital (adjusted for inflation) annually
 - ightarrow Would never have run out of cash, over any rolling 30-year period (from 1926)

Criticism

- Simplistic asset allocation strategy
- Simplistic withdrawal strategy
- Rolling 30 year periods contain large overlaps
 - → Underestimates risk of portfolio depletion

Bengen rule

"Play the long game. A retirement income plan should be based on planning to live, not planning to die. A long life will be expensive to support, and it should take precedence over death planning." Pfau (2018)

Note that Bengen rule is based on assumption that 65-year old will live to be 95

- Should we mortality weight the cash flows (as in an annuity)?
- ullet Example: median life expectancy of 65-year old male \simeq 87.
 - ightarrow Effectively, mortality weighting will weight minimum cash flow of 87-year old by 1/2
 - \rightarrow If I am 87, and alive, I need 100% of my minimum cash flows
 - → If I am dead, I need zero dollars
- We will consider an individual investor, not averaging over a population
 - → 30 year retirement, no mortality weighting
 - → Consistent with Bengen approach

Fear of running out of cash

Recent survey⁶

 Majority of pre-retirees fear exhausting their savings in retirement more than death

In Canada, a 65-year old male

- Probability of 0.13 of living to be 95
- Probability of 0.02 of living to be 100

Conservative strategy:

 \rightarrow Assume 30 year retirement (as in Bengen (1994)).

Other assets can be used to hedge extreme longevity⁷

 $^{^6}$ 2017 Allianz Generations Ahead Study - Quick Facts #1. (2017), Allianz

⁷Real estate

Objective of this talk

Determine a decumulation strategy which has

- Variable withdrawals (minimum and maximum constraints)
- Minimizes risk of portfolio depletion
- Maximizes total expected withdrawals
- Allows for dynamic, non-deterministic asset allocation

We will treat this as a problem in optimal stochastic control

Formulation

Investor has access to two funds

- A broad stock market index fund
 - Amount in stock index S_t
- A constant maturity bond index fund
 - Amount in bond index B_t

Total Wealth
$$W_t = S_t + B_t$$
 (1)

Model the returns of both indexes

- Parametric, jump diffusion
- Non-zero stock-bond correlation
- Fit parameters to market data 1926:1-2019:12
- → All returns adjusted for inflation

Notation

Withdraw/rebalance at discrete times $t_i \in [0, T]$ The investor has two controls at each rebalancing time

$$q_i$$
 = Amount of withdrawal p_i = Fraction in stocks after withdrawal

At
$$t_i$$
, the investor withdraws q_i

$$W_i^- = S_i^- + B_i^ W_i^+ = W_i^- - q_i$$

Then, the investor rebalances the portfolio

$$S_i^+ = p_i W_i^+$$

$$B_i^+ = (1 - p_i)W_i^+$$

Can show that

$$q_i=q_i(W_i^-)$$
 ; $p_i=p_i(W_i^+)$

(2)

(3)

(4)

Controls

Constraints on controls

$$q_i \in [q_{\mathsf{min}}, q_{\mathsf{max}}]$$
 ; withdrawal amount $p_i \in [0,1]$; fraction in stocks \Rightarrow no shorting, no leverage

Set of controls

$$\mathcal{P} = \{(q_i(\cdot), p_i(\cdot))\} : i = 0, \dots, M\}$$
 (5)

Reward and Risk

Reward: Expected total (real) withdrawals (EW)

$$\mathsf{EW} = E \left[\sum_{i}^{total} \underbrace{\sum_{i}^{withdrawals}}_{i} \right]$$

$$E[\cdot] = \mathsf{Expectation}$$

Risk measure: Expected Shortfall ES

$$ES(5\%) \equiv \left\{ \text{ Mean of worst 5\% of } W_T \right\}$$
 $W_T = \text{ terminal wealth at } t = T$

ES defined in terms of final wealth, not losses⁸

→ Larger is better

⁸ES is basically the negative of CVAR

Objective Function

Multi-objective problem \rightarrow scalarization approach for Pareto points

Find controls \mathcal{P} which maximize (scalarization parameter $\kappa > 0$)⁹

$$\sup_{\mathcal{P}} \left\{ EW + \kappa \ ES \right\}$$

$$\sup_{\mathcal{P}} \left\{ E_{\mathcal{P}}[\sum_{i} q_{i}] + \kappa \left(\frac{E_{\mathcal{P}}[W_{\mathcal{T}} \ 1_{W_{\mathcal{T}} \leq W^{*}}]}{.05} \right) \right\}$$
s.t. $Prob[W_{\mathcal{T}} \leq W^{*}] = .05$

Varying κ traces out the efficient frontier in the (EW, ES) plane

 $^{{}^9}E_{\mathcal{P}}[\cdot] \equiv$ expectation under control \mathcal{P} .

EW-ES Objective Function

Given an expectation under control $E_{\mathcal{P}}[\cdot]$ (Rockafellar and Uryasev, 2000)

$$ES_{5\%} = \sup_{W^*} E_{\mathcal{P}} \left[G(W_T, W^*) \right]$$

$$G(W_T, W^*) = \left(W^* + \frac{1}{.05} \left[\min(W_T - W^*, 0) \right] \right)$$

Reformulate objective function:

$$\sup_{\mathcal{P}} \sup_{W^*} E_{\mathcal{P}} \left\{ \sum_{i}^{total \ withdrawals} + \kappa \underbrace{G(W_T, W^*)}_{G(W_T, W^*)} + \underbrace{\epsilon W_T}_{G(W_T, W^*)} \right\}$$

Why do we need the stabilization term?

 \hookrightarrow More later

Time Consistency

The EW-ES objective function is not formally time consistent

Time inconsistency

⇒ Investor has incentive to deviate from initial optimal policy at later times

EW-ES policy computed at time zero

 \hookrightarrow Pre-commitment policy

Induced time consistent policy

At t_0 we compute the pre-commitment EW-ES control

- For t > t₀ we assume that the investor follows the induced time consistent control (Strub et al (2019))
- ullet This control is identical to the pre-commitment control at t_0
- No incentive to deviate from this control at $t > t_0$

Induced time consistent control determined from (fixed W^*)

$$\sup_{\mathcal{P}} E_{\mathcal{P}} \left\{ \sum_{i} q_{i} + \kappa G(W_{T}, W^{*}) + \epsilon W_{T} \right\}$$

 W^* from pre-commitment solution at time zero

Alternative: equilibrium mean-ES control

 \hookrightarrow Does not actually control tail risk! (Forsyth(2020)) 10

¹⁰For more discussion of time consistency, induced time consistency, pre-commitment, see Bjork et al (2021), Vigna (2020, 2022), Strub et al (2019), Forsyth (2020)

Withdrawal Control: limiting case

Theorem 1 (Bang-bang withdrawal control: continuous limit)

Assume that

- the stock and bond indexes follow a parametric jump-diffusion
- the portfolio is continuously rebalanced, and withdrawals occur at the continuous (finite) rate $\hat{q} \in [\hat{q}_{min}, \hat{q}_{max}]$

then the optimal control is bang-bang, i.e. the optimal withdrawal \hat{q}^* is either $\hat{q}^* = \hat{q}_{min}$ or $\hat{q}^* = \hat{q}_{max}$.

Proof.

See Forsyth (North American Actuarial Journal (2022))

But of course, in real life, we do not withdraw/rebalance continuously.

Scenario: all amounts indexed to inflation

- DC account at t = 0 (age 65) \$1,000K (one million)
- Minimum withdrawal from DC account \$35K per year¹¹
- Maximum withdrawal from DC \$60K per year
- No shorting, no leverage $(p \in [0,1])$
- Annual rebalancing/withdrawals
- Retiree owns mortgage-free real estate worth \$400K

Investment Horizon

- T = 30 years, i.e. from age 65 to 95
 - → Plan to live long and prosper

 $^{^{11}}$ Assume gov't benefits of 22K/year. Minimum income $\simeq 22K + 35K = 57K/\text{year}.$

Scenario II

Why do we include real estate in the scenario?

Since $q_{\min} = 35K$ per year, W_t can become negative

- When $W_t < 0$, assume retiree is borrowing, using a reverse mortgage¹²
 - Reverse mortgages allow borrowing of 50% of home value
 - In our case: \$200K
- Once $W_t < 0$
 - All stocks are liquidated
 - Debt accumulates at borrowing rate
- If $W_T > 0$, then real-estate is a bequest
- Real estate is a hedge of last resort: not fungible with other wealth
 - This mental bucketing of real estate is a well-known behavioral finance result.¹³

¹²See Pfeiffer et al, Journal of Financial Planning (2013)

 $^{^{\}rm 13}\text{I}$ also observe this with my fellow retirees: real-estate is a separate bucket

Numerical Method I

Pre-commitment control at t_0 (same as induced time consistent control)

Interchange sup sup(...)

$$\sup_{W^*} \sup_{\mathcal{P}} E_{\mathcal{P}} \left\{ \sum_{i} q_i + \kappa G(W_T, W^*) + \epsilon W_T \right\}$$

$$\max_{i} maximize over W^*$$

Solve inner DP problem using PIDE methods

Numerical Method II

Inner maximization: dynamic programming

- Conditional expectations at t_i^+
 - Solve linear 2-d PIDE
 - Use δ -monotone Fourier method (Forsyth and Labahn (2019))
- Optimal controls at each rebalancing time
 - Discretize controls
 - Find maximum by exhaustive search
- \bullet Guaranteed to converge to the solution as discretization parameters $\to 0$

Outer maximization over W^*

- Discretize W*, use coarse PIDE grid
 - ightarrow Find optimal W^* by exhaustive search
- Use coarse grid W* as starting point for 1-d optimization on finer grids

Data

Center for Research in Security Prices (CRSP) US

- Cap weighted index, all stocks on all major US exchanges 1926:1-2019:12
- US 10 year Treasury index
- Monthly data, inflation adjusted by CPI

Synthetic Market

- Stock/bond returns driven by parametric jump-diffusion model, calibrated to data
- Optimal controls computed in the synthetic market

Historical market

- Stock/bond returns from stationary block bootstrap resampling of actual data¹⁴
- No assumptions about stock/bond processes
- Used to test control robustness computed in the synthetic market

¹⁴Dichtl et al (2016, Appl. Econ.), Anarkulova et al (JFE,2022)

Pareto optimal points (Units: Thousands)

Varying scalarization parameter κ

- → Traces out efficient frontier
 - y-axis is annual average expected withdrawals
 - ullet E.g.: 50K ($W_0=1000K$) corresponds to 5% withdrawal rate
 - Recall ES is mean of worst 5% $W_T \Rightarrow$ larger is better

EW-ES efficient frontier (Units: thousands)

- Solutions with different PIDE grids
- ES is the mean of the worst 5% of outcomes
- ullet Each pt on curve, different κ
- Reverse mortgage hedge
 - \rightarrow Any point ES > -200K is acceptable

Note Efficient Frontier almost vertical at right hand end

- Base case: constant withdrawal 35K/year
- Tiny increase in risk (smaller ES)
 - ⇒ Average withdrawal 50K per year (never less than 35K)

Point on Frontier: (EW,ES) = (52K/year, -42K)

- \rightarrow ES $\simeq -42K$
- ightarrow 5th percentile wealth at $t=30\simeq 58 {
 m K}$
- \rightarrow Average withdrawal \simeq 52K/year

Point on Frontier: (EW,ES) = (52K/year, -42K)

- Withdrawal controls \simeq bang-bang, i.e. only withdraw either q_{\min} or q_{\max} .
- Median $W_t \simeq 1000K \rightarrow 300K$

Robustness Check: Efficient Frontier (Units: thousands)

Bengen 4% rule: bootstrapped historical market^a

- ⇒ very inefficient
- \Rightarrow More risky than advertised, ES $\simeq -270$ K

Controls computed and stored in the synthetic market

Parametric model calibrated to historical data

Controls tested¹⁵ in the bootstrapped historical market

 $\,\rightarrow\,$ Controls are robust to parametric model misspecification

^aBengen suggests 50% in stocks.

^bExperimentally, 40% in stocks maximized ES.

¹⁵ "Out-of-sample" test.

Stabilization term (EW,ES) = (52K/year, -42K)

Recall objective function:

$$\sup_{\mathcal{P}} \sup_{W^*} \left\{ \overbrace{EW} + \overbrace{\kappa \ G(W_T, W^*)}^{\text{mean worst 5\% outcomes}} + \overbrace{\epsilon W_T}^{\text{Stabilization}} \right\}$$

Stabilization term

Plots of efficient EW-ES frontiers overlap for $\epsilon=\pm 10^{-6}$ Recall that we are assuming the investor follows the induced time consistent strategy

- $W^* = 58K$
- Suppose that t = 25, i.e. 90 years old
- W = 2000K, you will never run out of cash with $q_{max} = 60\text{K/year}$
- It does not matter whether you invest 100% in stocks or bonds

If you are Warren Buffet, this problem is ill-posed

Fraction Stocks < 0.4 at 95th percentile

If you are rich and old, then it does not matter what you do

- $\epsilon = +10^{-6}$ invest 100% in stocks
- \bullet $\epsilon = -10^{-6}$ invest 100% in bonds

But these lucky large wealth outcomes \Rightarrow no effect on (EW,ES) frontier

Peter Ponzo: Canasta Strategy

Peter Ponzo (retired Applied Math Professor from Waterloo)

- Retired: 1993; passed away: 2020
- In 1993, took commuted value of his pension
 - One-half \rightarrow annuity (interest rate: 9.8%)
 - One-half \rightarrow self-directed investments
 - Wrote a blog about his attempts to "beat the market"
- It turned out that beating the market was not easy!

But: he summarized his withdrawal strategy: "Canasta Strategy" "If we have a good year, we take a trip to China,...,if we have a bad year, we stay home and play canasta."

This is a bang-bang control!

Conclusions

- Optimal strategy: flexible withdrawals, dynamic stock-bond allocation
 - \rightarrow Less risk, higher average withdrawals¹⁶ compared to 4% rule
 - \rightarrow Bootstrap resampling \Rightarrow controls are robust
- In the continuous withdrawal limit
 - → Optimal withdrawals are bang-bang, i.e. only withdraw at either maximum or minimum rate
- Discrete rebalancing: withdrawal controls are very close to bang-bang
- Intuition: if you are lucky, and make money in stocks, take money off the table and go on a cruise
 - → Otherwise: sit tight

 $^{^{16}}$ Optimal: 5% EW, with ES \simeq 0; Bengen: 4% EW, with ES $\simeq -270 K$.

Cumulative Distribution Functions: (EW,ES) = (52K/year, -42K)

Average withdrawal

Wealth at T = 30 years

Bootstrap resampled historical data (blksize = 3 months)

- > 94% probability: average withdrawals > 40K per year
- > 98% probability: $W_T > 0$

Decumulation of Retirement Savings: The Nastiest, Hardest Problem in Finance Part II: Numerical Algorithms

Peter Forsyth¹ Y. Li¹ M. Chen¹ M. Shirazi¹

¹Cheriton School of Computer Science University of Waterloo

Woudschoten September 27-29, 2023 Friday 9:00

Decumulation of Retirement Savings

Recall from the first talk

- Retiree wants to maximize total withdrawals
- Minimize risk of running out of cash (30 year retirement)
- Can invest in a mix of stocks and bonds
- At each (yearly) rebalancing time
 - Choose amount to withdraw q
 - Fraction in stocks p
- No shorting/leverage for investments
- $q \in [q_{\min}, q_{\max}]$

Stochastic Process: Stock Index

Let S_t be the real (inflation adjusted) amount in a stock index S_t follows a jump diffusion process

$$\frac{dS_t}{S_{t^-}} = (\mu - \lambda \gamma) \ dt + \sigma \ dZ + d \left(\sum_{i=1}^{\pi_t^s} (\xi_i - 1) \right),$$

$$\sigma^s = \text{ volatility}$$

$$dZ = \text{ increment of Wiener process}$$

$$\pi_t^s = \text{ Poisson process with intensity } \lambda$$

$$S_{t^-} \to \xi_i S_t \text{ at jump times}$$

$$\gamma = E[\xi - 1]$$

$$\xi \simeq \text{ double exponential distribution} \tag{1}$$

Stochastic Process: Bond Index

Let B_t be the real (inflation adjusted) amount in a constant maturity bond index

Model real returns of the bond index directly as a stochastic process

- Common practitioner approach (Lin et al, IME (2015))
- Avoids modelling interest rates, inflation
- Easy to calibrate to historical data

 B_t follows a jump diffusion process

$$\frac{dB_t}{B_{t-}} = \dots$$
 similar to stock process

(2)

Parameters for both processes calibrated to historical data

Recall

Withdraw/rebalance at discrete times $t_i \in [0, T]$ The investor has two controls at each rebalancing time

$$q_i$$
 = Amount of withdrawal p_i = Fraction in stocks after withdrawal (3)

At t_i , the investor withdraws q_i

$$W_i^- = S_i^- + B_i^ W_i^+ = W_i^- - q_i$$

Then, the investor rebalances the portfolio

$$S_i^+ = p_i W_i^+$$

 $B_i^+ = (1 - p_i) W_i^+$ (5)

Can show that

$$q_i = q_i(W_i^-)$$
 ; $p_i = p_i(W_i^+)$

(4)

Controls

Constraints on controls

$$q_i \in [q_{\sf min}, q_{\sf max}]$$
 ; withdrawal amount $p_i \in [0,1]$; fraction in stocks no shorting, no leverage

Set of controls

$$\mathcal{P} = \{(q_i(\cdot), p_i(\cdot))) : i = 0, \dots, M\}$$

$$\mathcal{P}_n = \{(q_i(\cdot), p_i(\cdot))) : i = n, \dots, M\}$$
tail of the controls (7)

EW-ES Objective Function

Objective function:

$$\sup_{\mathcal{P}} \sup_{W^*} E_{\mathcal{P}} \left\{ \underbrace{\sum_{i}^{t} q_i}_{i} + \underbrace{\kappa \ G(W_T, W^*)}_{\kappa \ G(W_T, W^*)} + \underbrace{\epsilon W_T}_{\epsilon W_T} \right\}$$

Numerical Method I

Interchange sup sup(...)

$$\sup_{W^*} \sup_{\mathcal{P}} E_{\mathcal{P}} \left\{ \sum_{i} q_i + \kappa G(W_T, W^*) + \epsilon W_T \right\}$$

$$\max_{i} \sum_{maximize over W^*} |W^*| |W^*$$

Solve inner DP problem using PIDE methods

Inner problem: value function

$$V(s, b, W^*, t_n^-) = \sup_{\mathcal{P}_n} \left\{ E_{\mathcal{P}_n}^{(S_n^-, B_n^-), t_n^-} \left[\sum_{i=n}^M q_i + \kappa \left(W^* + \frac{1}{\alpha} \min((W_T - W^*), 0) \right) \middle| (S_n^-, B_n^-)) = (s, b) \right] \right\}.$$

Where:

Subject to
$$\begin{cases} (S_t, B_t) \text{ follow processes (1) and (2);} \\ W_\ell^+ = S_\ell^- + B_\ell^- - q_\ell \\ S_\ell^+ = p_\ell(\cdot)W_\ell^+; \ B_\ell^+ = (1 - p_\ell(\cdot))W_\ell^+ \\ t_\ell = \text{ rebalancing times} \end{cases}$$

Dynamic Programming Approach

Terminal condition at $t_M = T$

$$V(s, b, W^*, T^+) = \kappa \left(W^* + \frac{\min((s + b - W^*), 0)}{.05}\right).$$

At any rebalancing time t_n

 \hookrightarrow Advance the solution backwards $t_n^+ o t_n^-$

$$V(s, b, W^*, t_n^-) = \sup_{(p,q)} \left\{ q + \left[V(w^+ p, w^+ (1-p), W^*, t_n^+) \right] \right\}$$

$$w^- = s + b$$

$$w^+ = w^- - q$$

$$t_n^+ = t_n + \epsilon$$
, $t_n^- = t_n - \epsilon$, $\epsilon \uparrow 0^+$

Between rebalancing times

For
$$t \in (t_{n-1}^+, t_n^-)$$

- \hookrightarrow No cashflows, no discounting, for $h \to 0$
- \hookrightarrow Tower property

$$V(s,b,W^*,t) = E\Big[V(S(t+h),B(t+h),W^*,t+h)\Big]$$

 $\Big|S(t)=s,B(t)=b\Big]$

Apply Ito's Lemma for jump/diffusion processes

- → 2-D Partial Integro Differential Equation (PIDE)
- \rightarrow Independent variables (s, b, t)

Numerical Algorithm: Details

Discretize state space (s, b) \hookrightarrow 2-D grid, with mesh parameter hSolve PIDE, using Fourier method

- Standard Fourier methods may not be monotone
- ullet Example: Two possible controls $\mathcal{P}^A,\mathcal{P}^B$ are such that

$$\mathcal{P}^{\mathcal{A}} = \{(q_i(\cdot), p_i(\cdot))) : i = 0, \dots, M\} \in \mathcal{A}$$

 $\mathcal{P}^{\mathcal{B}} = \{(q_i(\cdot), p_i(\cdot))\} : i = 0, \dots, M\} \in \mathcal{B}$

• Assume $\mathcal{A} \subset \mathcal{B}$

Then we should have the monotonicity property (optimal control maximizes V)

$$V^{\mathcal{A}}(s,b,t) \leq V^{\mathcal{B}}(s,b,t) \; ; \; \forall (s,b,t)$$

We use a δ -monotone Fourier method \rightarrow guarantees

$$V^{\mathcal{A}}(s,b,t) \leq V^{\mathcal{B}}(s,b,t) + \delta$$

Given fixed h, δ can be made arbitrarily small

Numerical Details II

At rebalancing times:

- Discretize the controls with spacing O(h)
- Find optimal (p, q) by exhaustive search
- For off-grid points
 - → Use linear interpolation of discretized value function

Actual value function $\hat{V}(s_0, b_0, t_0)$

$$\hat{V}(s_0, b_0, t_0) = \sup_{W^*} \underbrace{V(s_0, b_0, W^*, t_0)}_{Inner PIDE Solve}$$

Solve problem on sequence of grids

- On coarse grid, discretize W^* , maximize by exhaustive search
- ullet On finer grids, use coarse grid estimate for W^* as starting point
 - ightarrow Find optimal W^* using 1-d optimization algorithm

Numerical Details III

Solve control problem on grid

At each rebalancing time, store optimal controls

Determine statistical quantities

- Synthetic Market: use stored controls, do Monte Carlo simulations with parametric SDE model of stocks and bonds
- Historical Market: use stored controls, do bootstrap resampling of historical stock, bond returns

Bootstrap simulations

- Out of sample test
- No assumptions about market stochastic processes

Numerical Example

- DC account at t = 0 (age 65) \$1,000K (one million)
- Minimum withdrawal from DC account \$35K per year²
- Maximum withdrawal from DC \$60K per year
- No shorting, no leverage $(p \in [0,1])$
- Annual rebalancing/withdrawals
- Retiree owns mortgage-free real estate worth \$400K
 - \rightarrow Hedge of last resort if account exhausted
- Investment horizon: age 65 to 95

 $^{^2} Assume gov't benefits of 22K/year. Minimum income <math display="inline">\simeq 22K + 35K = 57K/year.$

Convergence Check: Synthetic Market

 \Rightarrow Even coarse grid gives good solution

Alternative Approach: Machine Learning

- Does not use dynamic programming
 - Efficient in cases where performance criteria is high dimensional
 - → Control is low dimensional (see van Staden, Forsyth, Li, SIFIN (2023))
 - Can be used in cases where no dynamic programming principle exists (e.g. mean semi-variance)
- Does not require a parametric model of stochastic processes for stock and bond
- Can be extended to higher dimensional problems (e.g. more assets)

Basic idea ³

- Go back to original problem formulation
- Approximate control directly using a Neural Network (NN)
- Approximate expectations by sampling paths
- Optimize w.r.t. NN parameters

³See also Han (2016), Andersson, Oosterlee (2023).

NN Framework

Approximate controls

$$q_{i}(W_{i}^{-}, t_{i}^{-}) \simeq \hat{q}(W_{i}^{-}, t_{i}^{-}; \theta_{q})$$

$$p_{i}(W_{i}^{+}, t_{i}^{+}) \simeq \hat{p}(W_{i}^{+}, t_{i}^{+}; \theta_{p})$$

$$\mathcal{P} \simeq \hat{\mathcal{P}} = \{\hat{q}(\cdot), \hat{p}(\cdot)\}$$

$$\{\hat{q}(W_i^-, t_i^-; \theta_q), \hat{p}(W_i^+, t_i^+; \theta_p)\}$$

- ullet fully connected feedforward NNs, parameterized by $(heta_q, heta_p)$
- Separate NN for \hat{q} and \hat{p} .
- Note that using time t as input
 - → recurrent network
- Wealth is only state variable needed in this case

Solve for control directly (Policy Function Approximation)

Recall Objective function

$$\sup_{\mathcal{P}} \sup_{W^*} E_{\mathcal{P}} \left\{ \underbrace{\sum_{i}^{total \ withdrawals}}_{q_i} + \underbrace{\kappa \ G(W_T, W^*)}_{\kappa \ G(W_T, W^*)} + \underbrace{\epsilon W_T}_{\epsilon W_T} \right\}$$

Generate M sample paths (use stochastic model)

$$W_T^j$$
 = Final wealth along $j^t h$ path q_i^j = Withdrawal at time t_i along $j^t h$ path

Approximate $E[\cdot]$ by mean of samples

$$\sup_{W^*,\theta_q,\theta_p} \frac{1}{M} \sum_{i=1}^{M} \left\{ \sum_{i} q_i^j + \kappa \ G(W_T^j, W^*) + \epsilon W_T^j \right\}$$

Simultaneously maximize over $(W^*, \theta_p, \theta_q)$

NN Method

Each NN has output activation function that encodes constraints

→ Allows unconstrained optimization (i.e. SGD)

No need to have inner/outer optimization

- $ightarrow W^*$ maximized along with $(heta_q, heta_p)$
 - A single network $\hat{q}(W^-, t; \theta_q)$ approximates the q control for all t
 - Similarly for the p control
 - → Contrasts with stacked NN approach used previously
 - Note: we generate paths using parameterized SDEs
 - ightarrow We are agnostic to method used to generate paths

NN Framework Diagram

Output of \hat{q} network

 \Rightarrow Input to \hat{p} network

Withdrawal Control Heatmaps

Withdrawal control is 'bang-bang': Switches abruptly between q_{min} and q_{max} .

Figure: Withdrawal amount, PDE Control, $\epsilon=10^{-6}$

Figure: Withdrawal amount, NN Control, $\epsilon=10^{-6}$

Units: thousands of dollars

Stock Allocation Control Heatmaps (1)

Figure: Fraction in stocks, PDE Control, $\epsilon=10^{-6}$

Figure: Fraction in stocks, NN Control, $\epsilon = 10^{-6}$

Effect of stabilization term clearly shown in PDE heatmap, but NN is not sensitive enough (ϵ is tiny). *Units: thousands of dollars*

Stock Allocation Control Heatmaps (2)

Figure: Fraction in stocks, PDE Control, $\epsilon = -10^{-6}$

Figure: Fraction in stocks, NN Control, $\epsilon = 10^{-6}$

Making **stabilization term negative** shows that NN control is somewhere in between +/- epsilon versions of PDE control. *Units:* thousands of dollars

Efficient Frontier Comparison: Synthetic Market

Figure: Comparison of EW-ES frontier for NN and PDE methods. Labels on nodes are the κ values. *Units: thousands of dollars*

PDE frontier virtually the same, $\epsilon = \pm 10^{-6}$

Bootstrap Resampling

Stationary Block Bootstrap resampling

- Monthly historical data: 1926:1-2020:1
- Draw blocks of data (with replacement) from historical data
 - → Simultaneously draw stock and bond returns
 - $\rightarrow \ \, \text{Sampling in blocks preserves serial correlation}$
- Blocksizes are drawn from a geometric distribution
 - ightarrow Random blocksizes reduce edge effects, preserve stationarity
- Concatenate blocks to form a single path of T years
- Dubious algorithm available to determine expected blocksize

Typical parameters

- 10⁵ training samples, 10⁵ test samples
- ullet Probability of a single identical train, test path $< 10^{-29}$

The universe is 10¹⁸ seconds old.

Train on Synthetic Data, Test on Historical Data

Figure: Comparison of EW-ES frontier for NN training performance vs. tests on resampled historical data. *Units: thousands of dollars*

Train with Historical Data, Test on Synthetic Data

Demonstrates NN framework's ability to use other datasets and still yield good results.

Figure: Historical training data, block size = 3 months

Figure: Historical training data, block size = 12 months

Labels on nodes: κ values. Units: thousands of dollars

Conclusions

- ullet Train/test combinations o multi-period optimization is robust
- ullet NN method o accurate results compared to ground truth
 - \rightarrow Even for bang-bang controls
- Advantages of NN
 - Does not depend on parametric SDE model (data driven)
 - Can solve high dimensional problems
 - Can be used for problems which do not have DP principle

But

CPU time for computing a single point on the efficient frontier

- PDE: medium grid (C++) \simeq 400 sec (laptop)
- NN: 2 hours (Pytorch + GPUs)

Low dimensional problem, parametric model for stochastic processes

 \rightarrow PDEs win