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Introduction: BSDEs for stochastic control problems Preliminaries

Framework & notations

> Very classical setting: (22,.4,P) a complete probability space with a
Brownian Motion W, (F;)tso is the natural filtration of the BM. We are
given a time horizon T > 0.
< All the randomness comes from W.

» R%valued martingales with prescribed terminal value £ € /:2(]-})
T
yt:]E[§|ft]:£—J ZdW,,0<t< T,
t

— (V,2) e S x 5 i.e. Y is continous and adapted process, Z is
progressively measurable & ]E[supte[oﬂ |Ve? + SOT |Z:]? dt] < .
> Example in a Markovian setting: Let u(-) be the solution of
deu+ 302 u=0and u(T,:) =g(-) (backward heat equation)
Set £ = g(Wr), Vi := u(t, W;) and Z; := Oxu(t, W;), compute
€= u(T,Wr) = ult, W) +§] (0ru+ 102.0)(s, Ws) ds+§] du(s, Ws) AW,
S E=Ve+§] ZodW ..
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Introduction: BSDEs for stochastic control problems Preliminaries

Backward Stochastic Differential Equation

> Backward SDEs: Non linear perturbation with a driver f. Solve for
YV, 2) € S x 5 s.t.

T T
34:£+f f(s,ys,zs)ds—f ZdW,,0<t<T.
t t

» If (y,z) — f(s,y,z) is a Lispchitz function (possibly random) then there
exists a unique solution to the above equation ! [PP90, PP92]

> One typically shows that the following Picard iteration scheme

T T
34”:£+f f(s,ys”_l,Z;’_l)ds—f Zraw,
t t

converges in . x J% to a unique fixed point...

> In dimension one (for y), they satisfy a comparison theorem namely
consider, for i € {1,2}, ¢ terminal condition of BSDE solution (', Z') ,

> If & = &, then Y} = )2, te [0, T].
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Introduction: BSDEs for stochastic control problems Preliminaries

Markovian BSDEs - Link with PDEs

» Consider a forward SDE:

t t
X, = x+f b(Xs)ds—kf o (X)) AW,
0 0
for some (b, o) Lipschitz continuous.

> Markovian BSDE: One sets £ := g(X7) and solve for

T T

f(Xs, Vs, Zs)ds — J Zs dW;

t

Vo= glr) + |

t

(x,y,z) — f(x,y,z) is deterministic
> Then one has V; = u(t, X;) for some function u (and with a bit of
smoothness Z; = o (X;)0xu(t, X:))

> The function u satisfies
Oru+ Lxu~+ f(x,u,0(.)0xu) =0and u(T,-) = g(-), (1)

where Lxu = b(x)0xu + $02(x)02u (in dimension one.)
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Introduction: BSDEs for stochastic control problems Preliminaries

Elements of proof

> The representation V; = u(t, X;) comes from the Markov property of
(Xt)os<t<T Which is extended in this nonlinear setting.

> If one assumes smoothness of u then applying Ito’s formula, we get

du(t, Xt) = (atu + EXU)(t, Xt) dt + O'(Xt)axu(t, Xt) th
and we also have
du(t,Xt) = dyt = _f(Xt7yt7 Zt) dt + Zt th

> ldentifying the Brownian part leads to Z; = o(X;)0dxu(t, Xy)
> Then, identifying the ' dt'-part shows that u solves the semi-linear PDE, as
claimed.

> Under various assumptions, one can show that v is smooth and solves the
PDE classicaly. If not, viscosity solution theory can be used.

> The link between the FBSDE and the semi-linear PDE is often coined as
"non-linear Feynman-Kac formula”.
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Introduction: BSDEs for stochastic control problems Stochastic target problem

A Stochastic Target Problem

> Consider a state process X and a one dimensional controlled process:

t T
Y;:%Z b J f(Xs, Ys, Zs)ds + J Zs dWs (2)

0 t

The controls are y € R (initial value) and Z € J#2.

> Target problem: the target is £ € £L2(F7), goal: find
p:=inf{y e R|3Z e #?, Y%’Z>§} (3)

> The solution is the initial value of the BSDE: p := )y where

T T
yt:5+f f(Xs,ys,Zs)ds—J Zs dWs
t t

The optimal control is then given by Z.

> A typical example of stochastic target problem is the super-hedging
problem in finance. Note that this link between BSDEs and stochastic
target problem will be used later on in the numerical part.
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Introduction: BSDEs for stochastic control problems Stochastic target problem

Elements of proof

> The fact that (), Z) is a super-solution (namely ) > p) to the problem
comes existence result for BSDEs. The more delicate question is the fact
that ) gives exactly the infinimum.

> To answer this question, one uses the comparison theorem for one
dimensional BSDEs, recall:
Let & > &. For i = 1,2, denote (), Z7) the BSDEs associated to the
terminal condition &', Then, Y1 > Y2, for all t € [0, T].
< This comparison theorem is proven using a linearisation argument, see
e.g. [EKPQOIT7].

> Conclusion: assume that there exists y and Z such that Y%’Z =& =T,
one applies simply the comparison theorem to get that y > )j. Then
taking the infinimum on y, we get p = Y (recall (3))
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Introduction: BSDEs for stochastic control problems Classical stochastic control problem

A classical stochastic control problem

We consider a control problem that leads to a toy model for prices in carbon
markets, see last section. Here (W, B) are independent Brownian Motion.

> Let P be a multidimensional auxiliary process: dP; = o(P;) dW,;
Let (Ef) be the controlled emission process for o € 7% with dynamics

dE = (b(Py) — ar)dt +ndB: (7 =0)

v

> Let the cost functional be given by
L1
Je) =B | Flasfds + g(E5)
0

Here g is a C! convex function.

» One has to solve: ming,eq,2 J(a) (a strictly convex minimisation problem
which has thus a solution)

> The story is that g is a terminal cost that has to pay the company if it
emits above a given level A, typically g(e) = AM(A — e), (actually a
smoother version), « is the abatement process to reduce emission and
| is the cost of abatement.
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Introduction: BSDEs for stochastic control problems Classical stochastic control problem

Stochastic Maximum Principle

In order to study the solvability of the problem, we compute the Gateaux
derivative of the functional o — J(a).

> We first observe that

1 T
ovd(a) = Iirr}) E(J(a +ev) — J(a)) = El] asvsds + g'(E?)avE%l
€—> 0
where 0, E® = lim._o L(EST — Ef) So vs ds.

> Define the "BSDE" Y = E[g (ET)|}}] (the adjoint process) to compute:

oyJ(a) = ]ElLT(at - Y)ve dt]

at the optimum a*, we have 0, J(a*) = 0, Vv necessarily and thus Y* = a*
» Then (E*, Y*) solves a fully coupled BSDEs
dE} = (b(P) — Y{)dt +ndB: and Y} =E[g'(EF)|F:]. (f =0 herel)
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Introduction: BSDEs for stochastic control problems Classical stochastic control problem

Forward-Backward stochastic differential equation

> The solution (the optimal control process) to the previous optimisation
problem is an example of fully coupled Forward-Backward SDE.
> Namely, a process (X, ), Z) that solves on [0, T]

t

t
Xy =x+ J b(X., Vs, Z5) ds + J o(Xe, Vo) AW, (forward)
0 0

Ve = g(X7) +J

t

T T

f(Xs, Vs, Z5)ds — f ZsdW, (backward)
t
> Wellposedness is more difficult to obtain. Lispchitz assumption of the
coefficient is not enough. One needs on top
- whether structural conditions (smallness condition, monotonicity),
- or boundedness of terminal condition and ellipticity of o.
> A key step is to prove that V; = u(t, X}) for some Lipschitz function u(-)
called the decoupling field. With a bit of smoothness, one has that u(-)
solves (denoting v = o(x, u)dxu) the parabolic quasilinear PDE

1
Oru + b(x, u,v)oxu + Eaz(x, u)2u+ f(x,u,v) =0and u(T, ) = g(-)
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Introduction: BSDEs for stochastic control problems Classical stochastic control problem

Further representation properties

FBSDE can be extended to obtain representation of the solution of more general
control problem [ZZ17]

» When the volatility of the state process is not controlled, it is possible to
represent directly the optimal value of the control problem by using
quadratic BSDEs. The associated PDE are HJB equation.

» If the control problem is (related to) an optimal stopping problem then the
definition of Reflected BSDE allow to represent the value function. The
associated PDE are quasivariational inequalities.

> If the volatility of the state process is also controlled, then one introduces
Second Order BSDE to obtain probabilistic representation of the value
function. The associated PDE are HJB equations (fully non linear PDEs)

» The solution of large population stochastic control problem as Mean Field
Games or Mean Field Control can be represented using McKean-Vlasov
FBSDEs (FBSDEs depending on the law of the solution). The related PDE
are then quasilinear PDE or HJB equation written on the space of
probability measure.
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Numerical approximation of FBSDEs Discrete-time approximation

Setting

e We want to approximate the solution (X,Y, Z) [0, 7] to the system:

Xt =x0 + Jt b(Xs)ds + Jt o(Xs) dWs (4)
0 . 0 .
Vi :g(XT)+f f(ys,Zs)ds—f Z,dW, (5)

where b, o, f and g are L-Lipschitz continous functions for some L > 0.
> Let us be given a discrete-time grid m = {t; ;=0 < --- < ty = T}, with
thy1—th,=T/N=:h
> We consider that we know how to similate the Brownian motion (W) on
this grid and denote AW, = W, ,, — W,, ~ N(0, h)
> The forward SDE (36) is approximated by a Euler-Maruyama scheme:

Xns1 = Xo + b(Xa)h + (X)) AW, and X = xo. (6)

— Well studied and "easy” to simulate see e.g. [KPS12].

e Our main question is how to approximate (37)?
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Numerical approximation of FBSDEs Discrete-time approximation

Heuristics for the scheme

> Write down the solution (Y, Z) on m:

th+1 thy1
Vo=Vt | fOuzde- | zdw
tn th
> Approximate the integrals to get:
Ve, ~ Ve + hf(Vr,, Z2¢,) — Ze, AW, (7)

> Taking conditional expectation on both sides above, we obtain:
Vi, ~Ee[Vr,0 | + hf (Y, Z¢,) — scheme for Y

<> one needs an approximation for Z!

> Multiply (7) by AW, and take conditional expectation on both sides:

0~ E. [, ,AW,] — hZ,, — scheme for Z

J-F Chassagneux (Université Paris Cité & LPSM) FBSDE approximation for stochastic control problem Woudschoten conference, 27-29 September 2023, Z



Numerical approximation of FBSDEs Discrete-time approximation

Scheme Definition for BSDE

e Euler scheme for BSDEs [BT04, Zha04]:
-atty = T: set

(Yn, Zn) = (g(Xn),0) (8)

- for n < N, compute

{zn — By [ Yoy 20]

9
Yo =E¢[Yoi1] + hf (Ya, Zp) )

(Et[-] = E[:|F:,] conditional expectation operator)
e Some remarks:

> This is an implicit scheme in y, so one must impose hL < 1 to obtain
well-posedness. In practice, Picard iteration will allow to compute the fixed
point rapidly.

> One could also use explicit scheme: Y, = E.[Y,11 + hf (Y11, Zn)]

> In practice, a difficult question is the estimation of the conditional
expectation.

J-F Chassagneux (Université Paris Cité & LPSM) FBSDE approximation for stochastic control problem Woudschoten conference, 27-29 September 2023, Z



Numerical approximation of FBSDEs Discrete-time approximation

Functional definition of the scheme

> From the Markov property of the Euler scheme (X,), one deduces that
Y, = G,(X,) and Z, = V,(X,), for some measurable functions (&, V,).

> More precisely, define one step of Euler scheme for X:
X i=x + b(x)h + o(x) AW,

and, setting uy = g, compute from n+ 1 to n:

X AVVn
Vn(x) —E[ﬁnﬁ-l(x;xl) h ]

n(x) = E[dn1(X,77) ]+ (n(x), Va(x))

> If one introduces a grid for x-values, then one can obtain approximation of
in, Vy, at this grid point. This has to be combined with some interpolation
procedure to evaluate e.g. Tp1 (X3 ).

> Later on we discuss instead regression method that also yields
approximation of (i, V).
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Numerical approximation of FBSDEs Numerical analysis

[2-stability of the Euler scheme

e Perturbation approach: Consider, for ¢, € L?(F;,),

y, — Etn[f/m] + hE (Y, Z,) + G (10)
. . AW,
Zn = Et"|:yn+1h:| (11)

Definition (L2-stability)

The scheme given in (38) is L%-stable if there exists a constant C > 0 s.t.

N-1 N—1
mng[m - VHF] + ) hE[|Z,, . Zn|2] < CE[YN ~ PNy 2
n=0 n=0

for h small enough, for all perturbation (.

Theorem
If f is Lipschitz continous, the scheme (38) is L?-stable.

J-F Chassagneux (Université Paris Cité & LPSM) FBSDE approximation for stochastic control problem Woudschoten conference, 27-29 September 2023, Z



Numerical approximation of FBSDEs Numerical analysis

Proof of the stability result

In the proof below, C is a constant that will change from line to line but that does not depend
on the discretisation grid.

A key point is to observe that the scheme can be rewritten "almost as a BSDE". Indeed, we
observe that

Yo = Yni1 + hf(Ya, Zn) — hZoHy — AM, (12)

AW,
yat

where H, = Note that (12) defines AM,, moreover it satisfies

Ee[AM,] = E¢,[AMaHa] = 0 and E[|AM,|?] < o (13)

These properties are obtained by using the definition of the scheme given in (38).
For the perturbed scheme, we have similarly:

Yo = Yor1 + hf (Ya, Zn) + Cn — hZaHn — AM, (14)
Denoting 6f, = f(Yn, Zo) — f(Yn, Zy) and 6AM, = AM, — AM,, we observe that
8Yy + h6ZyHp + SAMy = §Yni1 + h8fy + Cn . (15)

Squaring both sides and taking conditional expectation, we compute, using Young's inequality,

c
[0Yal? + OZo[> < (L + CHYEq,|(8¥s1 + h66a)? | + 1ol - (16)
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Numerical approximation of FBSDEs Numerical analysis

Note that
(6Yni1+ h6£)2 < (|6Ynr1| + Ch|8Ya| + Ch|6Z,|)? (17)
<1+ g)(lﬁYnHI + ChlsYa|)? + C(1 + %)h2|62n\2 (18)
Choosing h and € such that C(h+¢) < % we obtain
(6Ynt1 4+ h6f)? < (1 + Ch)|6Yns1|? + Ch|SYa|? + %h2\62n|2 (19)
Inserting the previous inequality in (16), we get
(SYal? + SHISZo < (1 + CHB[I5Yas1 ] + 1ol (20)
5Yal? < €T [15nia2] + Gl (1)

Taking expectation on both sides and iterating over n, we obtain the stability result for the Y
part. For the Z part we sum over n (20) and used the stability obtained for the Y part to

conclude. O
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Numerical approximation of FBSDEs Numerical analysis

Truncation error

> Let us introduce

A AW,
2= Bo| 9 . (22)
» We define the local truncation error as
~ tnt1 PN
Goim Bl [ 10020 - £ 2] (23)
tn

> |t measures how well the true solution satisfies the scheme.
The global truncation error is then defined as

2 E[NIG] - (24)

> Assume at this point that there is no error made on the forward
process, thus Yy — Y7 = 0 and we have

maxE[| Ve, — Ya?] < CT(x) . (25)

v
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Numerical approximation of FBSDEs Numerical analysis

Order of convergence

Theorem

In the regular case, we have that
T(r) < Ch?

and thus the scheme is of order 1.

Theorem

In the Lispchitz coefficient case, we have that
T(r)< C|h+ Zf E[|V: — V.2 dt] + ZJ E[|2: — 2,*] dt | < Ch

where Z;, = %Et,[ng“ Z: dt] . The scheme is of order one half.
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Numerical approximation of FBSDEs Numerical analysis

Proof in the regular case

(proof in the one dimensional case to simplify notations) We denote for a
smooth function ¢

0O (t,x) := (0: + Lx®) (£, x), 6V = ()00

We observe that, since ¢, = Etn[ (Ve Ze) — F(Veys Ze))] dt]

ty

thy1 ~
|6n|<|1EtnU [f<yt,zt>—f<yt",zfn>1dr]+Chztn—ztn|. (26)
t

n

Using the PDE satisfied by v i.e. u(©® + f(u,u™™) = 0, we get

Elf (Vs 20) = F(Ver )] = [Be[u®(6,4) - u@(ta 2,) || (27)
thy1
= |EtnU u®O(t, &) dt] | (28)
ty
< Ch (29)

where we used Ito's formula for the last equality.
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Numerical approximation of FBSDEs Numerical analysis

2. Now we compute, setting H, := AhW"
n

5 tht1 1 (tr+1
Zt, = Eu(tns1, Xey ) Hn] = Et"[an u© (¢, xp) de + EJ u® (¢, Xt)dt} (30)
t) t,

n n

Observe that

|Etn[Hn ft"“ uO (e, x4 dt] | = |Etn[Hn ft"“{u@(t, ) — u® (8, th)}dt] e
th th
< Ch (32)
and that
]Etn[u(l)(t, Xt)] - ]Etn[u“)(t,,,th) n f u(o’l)(s,Xs)ds} (33)
We thus get
|u<:tn[% f:“ uO (e, Xt)dt] — 4D (8, X)| < Ch (34)

leading to |Z¢, — Z,|? < Ch. We then obtain that
[Cnl < €. (35)

And, by summing this local error estimate, we conclude that 7 (7) < Ch2. O
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Numerical approximation of FBSDEs Numerical analysis

Remarks

» When X cannot be perfectly simulated, the discrete time error due to its
approximation has to be taken into account: the convergence results do not
change.

» One key question is how to estimate the conditional expectation (see
example below). This is also a new source of error, that propagates along
the backward recursion. This point is also well understood for most of the
methods.

» The theoretical analysis has also been conducted for coefficients that are
not globally Lipschitz or with irregular terminal conditions. The scheme
might need to be modified slightly and the convergence rate is lower in
some cases.

» Higher order schemes: The discrete time error can be reduced bu using e.g.
Crank-Nicolson scheme:

Yn = IE[Yn-i—l + g (f(Y,,,Z,,) + f(Yn+lvzn+1)) ‘ftn]
— (the scheme for Z has to be modified as well)

RK scheme, linear multi-step scheme have also been introduced, see
numerical example below.
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Numerical approximation of FBSDEs Implementation of the Euler Scheme

Small recap

e We want to approximate the solution (X, ), Z).c[o,7] to the system:

t t
Xe=x0+ J b(X,)ds + f o (Xs) AW, (36)
0 . 0 ;
V. = g(X7) +f f(Vs, Z¢)ds —f Z, AW, (37)
t t

where b, o, f and g are L-Lipschitz continous functions for some L > 0.
e Euler scheme for BSDEs:

-atty = T: set (YN7ZN) = (g(XN)70)

- for n < N, compute

{Zn = Etn[yn+1A;‘:vn:| (38)

Yo =E¢[Yor1] + hf (Ya, Zp)

e The scheme is wellposed, stable and convergent with a rate. We need to
understand how to compute the conditional expectations involved.
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Numerical approximation of FBSDEs Implementation of the Euler Scheme

Implementation via (non-linear) regression

> In practice, one needs to estimate conditional expectation. Many methods
can be used, e.g. Malliavin method [CMT10, BT04, BET04], quantization
method [BP03, PS18], cubature and tree based method
[CM12, Chal4, CT17], Fourier method [RO15].

» Regression methods, as the one used for US options, can be easily adapted
to the BSDEs setting, introduced in [GLWO05, LGWO06] and extensively
studied in [GT16b, GT16a, GLSTV16, GT17]

» With regression methods, one obtains an approximation the functions
u(t,-) for t € w (and also of it gradient through the Z) instead of a the
value at a point (or around a point).

» Recently, [HPW20] used (deep) Neural Networks to compute the above
scheme. Namely the class ® is given by NN with a fixed structure with
parameters 6 € R? for some ¢ big.

— we explain below how a to set up the regression method.
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Numerical approximation of FBSDEs Implementation of the Euler Scheme

How to compute one step of the scheme?

» To compute conditional expectation E[U(X,11)|F:, ] where U(+) is a
measurable function s.t. U(X,11) € £?, one observes

EU(Xn41)|Fe,] = EIU (Xns1) [ Xa] = argmin, p E[U(Xns1) — (X))
< In practice one has to restric the class of possible function : linear

specification (leading to OLS) or non-linear specification (Neural network
to train)

> One could compute two regression:
AW,
Z, = ]Etn[Y,,Hh] and Y, = E¢[Yoi1] + A (Y, Z)

» Or observe that

(Yn, Zn) = argmin, ,cpoz E[|Yar1 — (v = hf (Xa, y,2) + 2ZAW,) ]
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Numerical approximation of FBSDEs Implementation of the Euler Scheme

Elements of proof

e We first observe that
Yoi1 = Yo — hf(Xs, Yo, Z,) + Z, AW, — AM,,
where E,[AM,] = E,[AM,AW,] = 0,E,[|[AM,*] <. So that
E[[ Vo1 — (v — b (Xory,2) + 2AW,)?]

=E[|Y, — hf(Xn, Yn, Zo) — {y — hf (Xn, v, 2)} + (Zo — 2) AW, — AM, ]
=E[|Yn — hf(Xa, Ya, Zs) — {y — hf (Xn, y, 2)}?| + hE[|Z, — 2|?] + E[|AM,[?].

Obviously, (Y}, Z,) does achieve the minimum of the right side of the above
equation.

Reciprocally, any optimal solution (y*,z*) must satisfy z* = Z, from the second
term of the right side in the above equality. Moreover, necessarily one has

y* = Et,,[ - hf(Xm YmZ ) + hf( n7y*7Zn)]
= Etn[yn+1 + hf( nvy Z )]

By uniqueness of the scheme definition, we conclude y* = Y,,. O
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Numerical approximation of FBSDEs Implementation of the Euler Scheme

The scheme in practice

>

[HPW20] uses the class of feedforward Neural Network: functions ¢(6, )
with parameters 6 € R9 for some ¢ large (0 representing biais and matrice
weights for all layers).

v

The scheme is as follows:
-setat T, Uy(-) = g(+)
- from step n+ 1 to n, knowing Uy, (-), find 6*,9* € argmin, , of

B[4 1(Xni1) — U0, Xn) — hEU(O, X), V{9, X0)) + VI, Xa) AW,)|?]

> Then set U} () = U0, ")

> U} is then an approximation of u(ty,-).

> In practice, the above optimisation problem is computed using SGD
methods (training of Neural Networks).
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Numerical approximation of FBSDEs Implementation of the Euler Scheme

Numerical illustration [CCF22] - a toy model

> We consider the following example borrowed from [HPW20] (essentially
brownian setting): For d =10, T =1,t€ [0, T], let

0.2 1
dX; = —14dt dw, Xo=1
t d d +\/End ts 0 ds
T—t

f(t,x,y,z) = (cos(x) + 0.2sin(x)) e = f%(sin(f() cos(x)e’ 712
1

+og (2147,

g(x) = cos(x), where x = Z Xp-

i=1

> The theoretical solution of this BSDE is Y; = cos()?t)e% and

Zl = ﬁ5|n(Xt)e =1, ,d. (Apply Ito's formula...)
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Numerical approximation of FBSDEs Implementation of the Euler Scheme

Numerical illustration [CCF22] - rate of convergence

Absolute error of YO against Ntime for Bounded example with nTest = 10, d=10
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Numerical approximation of FBSDEs Implementation of the Euler Scheme

Numerical illustration [CCF22] - complexity control

log2(Error)

J-F Chassagneux (Université Paris Cité & LPSM) FBSDE approximation for stochastic control problem Woudschoten confe

Absolute error of Y0 against time cost for Bounded example with nTest = 10, d=10

Euler_implicit

=21 o ---- Euler_explicit
E—
-
" -~ RK_gN_2
g o ———- RKgN 3
e
ul_
.‘- aly
““_ .-.'“n_
i) “'.‘_h .
S N e
‘.L\‘ T : ..
S ., el
-5 g - e,
_]_0 4
-12 1
r
B 3 10 1 2 b 1 15

log2{Time cost)

27-29 September 2023, Z



Numerical approximation of FBSDEs A forward method

A shooting method: The Deep BSDE solver [HJW18]

> Consider, for y € R and Z € H,, the controlled process
t t
YV =y —J f(YY4,Z,)ds +J Zs dW, (39)
0 0

> Introduce the following optimisation problem

Vo= i E[ X)) — yrZ
LI lg(XT) = Y7

?| (40)

> In the Lipschitz setting, the solution of the above optimisation is V = 0
and the argmin is given by (), Z) solution to the BSDE.

» Main idea: solve numerically the optimisation problem (40) to get an
approximation of the BSDE.

> Remark: we observe that this numerical method aims to solve directly the
stochastic target problem!
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Numerical approximation of FBSDEs A forward method

Discrete problem

» The controlled process Y4 is discretised using an Euler scheme on 7:
Yoi1= Yo+ hf(Yy Z,) + Z,AW, and Yy =y .
— X is also approximated by an Euler scheme X (if need be).

> The random variable (Z,) must be discretised also in some sense.
1. Non-linear specification: for some © € R¥ where © stands for the
coefficients of a Neural Network pny and Z, = o (©, Xa)
2. Linear specification: Z, = (6, Xs,) where

K
eu(0,-) = > Okdi(-), 0eR™
k=1

where (éx)1<k<k are some basis functions.

> The discrete optimisation problem is now given by

V= inf E[lg(X7)— Y§[]#0

veRIHK
where v = (y, 0y, ...,0On_1) for the non-linear specification, or
v =(y,00,...,0n_1) for the linear specification.
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Numerical approximation of FBSDEs A forward method

Comments on the discrete optimisation problem

e [HL20] proves two types of error control.

> A posteriori error (for any v € R1K)

-

sup E[D}t - ,;f[t]F] + EU |Z: — Zlf[t]|2dt] < C(h+E[lg(Xn) — Y3 F))

te[0, T] 0
(for t € [0, T] s.t. tx <t < tx1 oOne sets n[t] = k)

> Control by best approximation error:

N—-1
inf E[lg(Xr) - Y§P] < C (h + ing[Z 120(Xe) = (00, X2

1+K
veR n—0

with 2,(X,) = JE[§7*" 2. d|x, |

e In practice, the discrete optimisation problem is solved by SGD. Thanks to the
A posteriori error control, a small loss in the SGD procedure guarantees that
one has a good estimation of the solution. (see next section for numerical

illustration)
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Probabilistic approximation of Quasi-linear PDEs

Outline

Probabilistic approximation of Quasi-linear PDEs
Numerical methods for fully coupled FBSDE
A carbon market price model
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Probabilistic approximation of Quasi-linear PDEs

Introduction

> Let u(-) be a smooth solution to (denoting v = o(x, u)dxu)
1
Oct + b(x, u, v)oxu + 50'2(X, )2 u+ f(x,u,v) =0and u(T,-) = g(-)

> Solve dXt = b(Xt, U(t, Xt>7 V(t, Xt)) dt + O'(Xh U(t, Xt)) th
then setting (Y, Z:) := (u(t, X:), v(t, X:)), one gets,

t t
X = +J b(Xs, Vs, Z5)ds +J o(Xs, Vs) dWs (41)
0 ., 0 .
Ve =g(X1) + J f(Xs, Vs, Zs)ds — J Zs dW; (42)
t t

» Equations (41)-(42) is a system of fully coupled FBSDE. They can
represent the optimal control of an optimisation problem (see section I).

> | will give below an application to carbon markets modelling where the
system (41)-(42) will describe the equilibrium price of allowances.
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Probabilistic approximation of Quasi-linear PDEs Numerical methods for fully coupled FBSDE

Numerical methods

> The fact that the system (41)-(42) is fully coupled renders its
approximation quite intricate. We will consider the following (slightly)
simplified system to present the numerical methods

t T T
X =x+ J o(Ys)dWs and YV = g(X7) + J f(Zs)ds — J Zs dWs
0 t t
> The first step in the numerical approximation will be to decoupled the
system in a way.
> We will consider three methods:

1. a global Picard Iteration method
2. a forward method (the shooting method revisited)
3. a layer method (the backward method revisited)
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Probabilistic approximation of Quasi-linear PDEs Numerical methods for fully coupled FBSDE

Picard lteration method

> Initialise iteration with Y = g(x) and compute from step m — 1 to m:

T T
F(ZM)ds —J ZM AW,

t

t
w7 = x+ [ oraw, & ¥ - gy + |
0 t
> Under structural conditions, the above scheme converges. To compute it in
practice, one approximate the function u™ s.t. V" = u™(t, X["). [BZ08]
uses a sequence of Euler scheme to perform this approximation.
> Namely, Initialise with @°(-) = g(-), for 0 < n < N and compute from step
m — 1 to m on the grid 7:
- An Euler scheme for the forward part: X, = X + (a7 (X)) AW,
- and the backward iteration on 7 Y = E[ Y| F, | + hf(Z["),
Zr =E[Ym A0 |7, ]
— set then & s.t. Y = a(X").
> Computing the conditional expectation in practice allows to get an
approximation of .
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Probabilistic approximation of Quasi-linear PDEs Numerical methods for fully coupled FBSDE

Numerical lllustration

e We choose d = 4 using an from [BZ08] (they run d = 10 in the paper)

t
Xit = Xi0 +J oY.dW,,, 1<i<d,
0

d 3
1
Y = ;sin(kar) +£ —rYs + 2e73’ =s) (Z sin( Xk s) > ds.

One verifies that (43) decouples via Y; = e~ "(T—1) ZZZI sin(Xk.e) -
o We plot the sequence of Picard Iteration m — Y{"

(43)

(a) r=1,0=04 (b) r=0,0=0.5
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Probabilistic approximation of Quasi-linear PDEs Numerical methods for fully coupled FBSDE

Numerical bifurcation

> The model:
dX; = pcos(Yy)dt + dW; and X = x e R,

dY: = Z; dW; and Yy =sin(Xy) .
> The important parameter is the coupling parameter p that will vary.
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Probabilistic approximation of Quasi-linear PDEs Numerical methods for fully coupled FBSDE

Deep BSDE solver

> The principle is the same as in the case of decoupled BSDEs.
> The controlled process is now given by

t
pedd =x+f a(YY?)dw,
0
t t
yvZ :y—J f(Zs)ds+f Zs AW,
0 0

> Under some structural condition (see [HL20]), the optimisation

V= mi ]E[ X202y _ yyZ 2] 44
(y’zr)g]'lgxm g(X7%) 7 (44)
has unique argmin given by (), Z) (solution of the fully coupled FBSDE)

> [HL20] proposes a discrete time version of the optimisation solved using
SGD (extending [HJW17, HJE18] )
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Probabilistic approximation of Quasi-linear PDEs Numerical methods for fully coupled FBSDE

Numerical illustration

e This is example of Bender and Zhang now in dimension d = 100... (the figure
below comes directly from [HL20]!)

10':

100 -

$ s

g § 107!

107 5

g g

3 E‘ 10 2.

102+ 3
) | I I I ] 1073 :=; ; : : : :
0 5000 10000 15000 20000 25000 0 5000 10000 15000 20000 25000
Number of iteration steps Number of iteration steps

Fig. 1 Loss function (left) and relative approximation error of ¥y (right) against the number of iteration
steps in the case of Example 1 (100-dimensional). The proposed deep BSDE method achieves a relative
error of size 0.39%. The shaded area depicts the mean = the standard deviation of the associated quantity
in 5 runs
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Probabilistic approximation of Quasi-linear PDEs Numerical methods for fully coupled FBSDE

Probabilistic layer methods

> These methods have been introduced in e.g. [MTO00] (see also [Dou72]).
They amount to solve the PDE on each time interval.
> Definition:
> initialization: un(-) := g(-) and wy(-) =0
> the transition from step n + 1 to step n is as follows

X,f’;)f =X+ o(x, Un1(x)) AW,

o AW,
) = E| (X3 21 |

un(x) = E[un1(X)77)] + hf (va(x))

< We observe that the decoupling is done using the predictor u,41.

» Convergence: Delarue and Menozzi [DMO06] obtains convergence with a
rate essentially if o is uniformly elliptic.

> In practice, it requires the introduction of a discretization grid in space.
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Probabilistic approximation of Quasi-linear PDEs A carbon market price model

Carbon markets

> Carbon dioxide (CO2) emission have a negative impact on the environment.

> Carbon markets are implemented to ‘price’ this and hopefully carbon
emission reduction could be achieved

> Since 2005, the EU has had its own emissions trading system (ETS): an
example of cap-and-trade scheme

- A central authority set a limit on pollutant emission during a given period.
Allowances are allocated to participating installations (via auctioning).

- The total amount of allowances is the aggregated cap.

- At the end of the period, each participating installation has to surrender an
allowance for each unit of emission or pay a penalty.

- During the period, participants can trade the allowances.
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Probabilistic approximation of Quasi-linear PDEs A carbon market price model

Main features

e Model based on FBSDEs see e.g. [CDET13, CD13, HS12]
e Three main processes on one period [0, T].

1. The spot allowance price Y: we assume that the market is frictionless and
arbitrage-free and that there is a probability such that (e " Y;)o<t<7 is a
martingale, namely

dY; = rYdt + Z, dW,

r is the interest rate, Z is a square integrable process.
2. Auxiliary process P:

Represent state variables that trigger the emission process ( Electricity
price or demand & fuel prices etc.) Fundamentals that are linked to goods
emitting CO;.
3. Emission process E: cumulative process with impact from the allowance
price
dE; = u(P:, Yy)dt

— 11 is decreasing in Y to take into account feedback of the allowance price
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Probabilistic approximation of Quasi-linear PDEs A carbon market price model

Results for one-period model

» From Carmona and Delarue [CD13], there exists a unique solution to:

dP; = b(P:)dt + o(P) dW;,  (forward)
dE; = u(P:, Y:) dt, (forward)
dY: = rYedt + Z; dW,, (backward)

with terminal condition: ¢(E7) = plig,~ny < Y7 < plig=ny = 64 (E7).
There exists a decoupling field s.t. Y; = u(t, P, E;) fort < T.

> The decoupling field u is the “entropy” solution to
Oru+ p(p,u)leu+ Lpu = ru, and u(T,e, p) = d(e) (45)

< u is Lipschitz in p and non decreasing in e.
<> Oeu explodes at T near A, we only know |deu(t, p, e)| < 75
— Set p(p,u) = —u and L, = 0,r = 0. One obtains a ‘backward" inviscid

Burgers equation...
» Multi-period model (finite or infinite number of period) [CCC23].
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Probabilistic approximation of Quasi-linear PDEs A carbon market price model

A numerical Toy model

» One-period Toy model (r = 0), dimension d + 1, 0 > 0:
AP, = o dW;, dE = (X0, PE=Ye) dt, Y, = Z,- aw,
and “YT = 1[1)00)(ET)”.
> The quasi-linear pde associated is:
2
Oru + (% 9 pf— u) deu+ % 0, 02,pu =0
» Reduced to one dimension via u(t,p,e) = w(t,e + (T — t)ﬁ 9 ph)
with
o?(T — t)?
Orw — Woew + %(}ggw =0and w(T,§) = 1iezyy

< Particle method associated to scalar conservation law can be used
(Bossy, Jourdain, Tallay...) to get a proxy for the true solution:
e— u(0,0,e).
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Probabilistic approximation of Quasi-linear PDEs A carbon market price model

Methods for fully coupled FBSDEs

e Results for Delarue-Menozzi scheme [DMO6]: (probabilistic layer method)

10 proxy — 10— proxy 7 101 — proxy
Zam 0w scherne | 2-dim DM Scheme / 2.dim DM Scheme

08 08 08
206 208 2086
Tos To4 T oa

02 02 02

00 00 00

) a 13 1 2 H ) Y 13 1 2 3 ) Y 13 1 2 3
E E E

(c) o =0.01 (dyo =03 (e) o =1.0

e Results for the deep FBSDE solver (learning error is small):

10 10— proxy 10 { — proxy
Deep FESDE Solver Deep FBSDE Solver
08 08 / 08
0s 05 0s
04 04 04
02 02 02
00 Deep FBSDE Solver 00 0
2 a 1} 1 3 3 2 I 0 1 3 3 2 I 0 1 3 3

(f) o =0.01 (g) 0 =03 (h) e =1.0
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Probabilistic approximation of Quasi-linear PDEs A carbon market price model

A splitting scheme

> The numerical methods above fail to capture the correct weak solution.

> This comes from the degeneracy in e and the irregularity of the final
condition. Many PDE methods would work, however the dimension of P is
too 'big' in applications.
> We use a splitting scheme to treat both problem: on a time grid
™ = (tn)OSnsN
we iterate a transport operator (fixing p) and a diffusion operator (fixing €)
> The transport part is implemented using methods designed for
discontinuous solution.

> Results [CY22b]:

1. we prove the convergence of the splitting scheme with rate % in the setting
of existence and uniqueness for singular FBSDEs.

2. we test the splitting scheme using various approximations of the transport
operator and the diffusion part (regression).

J-F Chassagneux (Université Paris Cité & LPSM) FBSDE approximation for stochastic control problem Woudschoten conference, 27-29 September 2023, Z



Probabilistic approximation of Quasi-linear PDEs A carbon market price model

Implementation

> The transport operator is implemented using finite difference schemes:
Upwind scheme or Lax-Friedrichs scheme, with J steps in space.

» The regression to estimate functions from RY — R7 is computed using NN.
(simple version of scheme in [HPW20])

> We develop also an alternative scheme: the regression is computed on a
tree and transport operator approximated by a particles system. This works
well for d < 4 and P; := f(t, W;). ( Convergence with a rate is proven in
[CY22a]).

> We test also a multiplicative model:

dPf = puPfdt + oPfAWY, P§ =1, and dE; = ji(Y:, Pe)dt  (46)

with fi(y, p) = (Hz P ) ~%, for some 6 > 0 and ¢(p, €) = Lic=0; -

< it can be reduced to a 2-dimensional modell
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Probabilistic approximation of Quasi-linear PDEs A carbon market price model

Some numerics on the Toy model

109 — Proxy 109 — Praxy 101 — Proxy

— BT& SPD 4-dim — BT & SPD 4-dim — BT&SPD4-dim

(i) o = 0.01 () e =03

Figure: Linear Toy Model: Comparison of the three methods:

- Neural Nets & Lax-Friedrichs (NN&LF) with d = 10

- an alternative scheme (BT&SPD) with d = 4

- The Proxy solution given by particle method.

Lax-Friedrichs scheme implemented with discretization of space J = 1500, 1000, 500, for

o = 0.01,0.3,1 respectively and number of time step K = 30. The number of time step for
the splitting is N = 64. For BT&SPD, the number of particles is M = 3500 and the number
of time steps N = 20.
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Probabilistic approximation of Quasi-linear PDEs A carbon market price model

On the multiplicative model

109 — BT&SPD 107 — BT&SPD 7 101 — BT&seD
NNs & Upuind NS & Upwindt / NNs & Upwind

(a) o =0.01 (b) 0 =03 (c)o=1.0

Figure: A multiplicative model in dimension d = 10. Comparison of two methods:

- Neural nets & Upwind scheme

- the alternative scheme on equivalent 4-dimensional model (BT&SPD).

The Upwind scheme used discretization of space J = 100, 400,500 respectively for

o =1,0.3,0.01 and number of time step K = 20. The number of time step for the splitting is
N = 32. For BT&SPD, the number of particles is M = 3500, and the number of time steps
N = 20.
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Conclusion

» Forward-Backward SDEs can represent the solution of various type of
stochastic control problems. They also yield probabilistic representation of
various class of non-linear PDEs

» Designing numerical probabilistic methods can be a good alternative to
PDE methods: especially if the dimension of the state space is large.

» They appear to be very natural in the mean field setting (where the state
space is infinite dimensional)

» They can also handle non markovian specification [BL14] (not discussed
here)

» Time discretization combined with regression methods is now well
understood even in the fully coupled case.

» The question of the curse of dimensionality is still present. Beyond the use
of deep neural networks [AJK* 23], some methods are promising, for
example: Multi-Level Picard [HJK*19] or branching particles|[HLT T 14]
(not discussed here).

» Challenges certainly remain for McKean-Vlasov FBSDEs and the
approximation of PDEs with non linearity on the second order derivatives.
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Probabilistic approximation of Quasi-linear PDEs A carbon market price model

Numerical stability analysis for BSDEs schemes [CR15]

Thank you for your attention!
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