Structure-preserving learning of
embedded, discrete closure models

Benjamin Sanderse, Syver Agdestein, Toby van Gastelen, Henrik Rosenberger, Hugo Melchers

7th October 2022

Woudschoten conference W

— Scientific Computing group

Machine
Learning

Uncertainty
Quantification

Physics models

— Scientific Computing and Machine Learning

e SCforML
approximation theory of neural networks; optimization theory; improve and

understand NNs

e SChbyML
improve existing SC methods, e.g. use NNs for matrix inversion

e SCand ML
tight integration of SC and ML methods - focus of this talk

— Typical applications: energy and climate

Sloshing of LNG Offshore wind farms Weather & climate

Many applications feature multiscale fluid flows

~10 km

Simulating all scales with a computational model is unfeasible

Accurate and stable closure models needed

closure
model

~10 km

Closure model approximates effect of small scales on large scales

— Closure problems occur in many fields

Resolving clouds in climate/weather models: “parameterization”

— Example: “closure” with neural network

Burgers’ equation Ou L 9 (u?) + O"u
o : —_— = ———(u V—
sers 4 ot~ 20z B2
e Small scales appear for small viscosity v
1..
e Aim: accurate solutions on coarse grids
50
B

e “Simple” machine learning approach:

u(t + At) = u(t) + At - NN(u(t);)

0.00 0.25 0.50 0.75 1.00

— SciML approaches reduce error

increasing structure (“inductive bias”)

e Low-res model (“no closure”):
0.10

e Basic ML model:
0.087

e Neural ODE:

0.041
e Neural closure model:

0.029
e With momentum conservation:
0.026

Including physics is most useful for small
neural networks

1
0.25

1
0.75

1
1.00

— Today's talk

e Structure-preserving closure models and stability
e Training procedures: derivative fitting vs. trajectory fitting

“Discretize first” - “Preserve structure” - “Embedded learning”

— Basics of closure modelling

e We consider PDEs describing many scales, e.g. the Navier-Stokes equations

0

e NS describes (too) many scales of motion for small viscosity v
e Reduce range of scales by a filtering operation:
= Alu) Alu) = /u(ﬁ,t)G(zL’,f)dS u=u—1u

e Aim: use coarser meshes and larger time steps when solving for w

— Basics of closure modelling

e Art: find a closure model with parameters 8 s.t.
c(u;0) ~C[A, Fl(u)
e Commutator error often due to nonlinearity, e.g. (Navier-Stokes):

CAFl(u) =V - (u®@u)— V- (u®u)

e Finding c(u;60) is an inverse problem which can have multiple solutions

ou

e Common form: = F(u) + c(u;0)

R

+ c(u;0)

— Basics of closure modelling

e Traditionally, closure model are formulated as closed-form expressions based
on physical arguments

o Smagorinsky model, gradient model, e.g. ¢(u;0) =V - (vr(u)S(u))
o Great interpretability; universal applicability highly limited

e Recent alternative:
o Use neural networks to approximate the commutator error: c(u;6) = NN(u;)

0 = argming |[NN(yer; 0) — C[A, F(tyer) ||3

o Issue: difficult to get stable results

Neural-networks give great match

GRU3 (—)

Exact (—)

-
. hv.t
-

.
’
-

- .“ - y -
- D]
P w. -
U
.

.
.

m. '

Kurz & Beck, “A machine learning framework for LES closure terms”, 2021

— ... but give instabilities in the dynamical system

filtered DNS
Standard

- = 06=00L,0=0.2
— 0=0.0l,0=04
....... 6=0.0l,0a=1.0
- = 06=0.02,0=02
0 =0.02,00=0.4
....... 6=0.02,00=1.0

Dinax

3
1.4 1.45 1.5 1.55 1.6 1.4 1.45 1.5 1.55 1.6
t

Kurz & Beck, “Investigating Model-Data Inconsistency in Data-Informed Turbulence Closure Terms”, 2020

— Tackling instability in dynamical systems with NNs

e “Model-data inconsistency” and instability common problem for ML-based
closure models (mismatch training environment and prediction environment)

e Recent approaches:

Stability training on data with artificial noise (Kurz & Beck, 2021)
Minimizing (or eliminating) backscatter (Park & Choi, 2021)

Projection onto a stable basis (Beck et al., 2019)

Trajectory fitting (List et al., 2022; MacArt et al., 2021)

Reinforcement learning (Bae & Koumoutsakos, 2022; Kurz et al. 2022)

Our approach: “discretize first” + “preserve structure”

— Common approach in closure modelling

all scales large scales

4
7 /a\), closure
>) / / \/ =
reduce o A

confinuous

complexity N
l discretize

‘large scales

.................................

I closure
model

discrete

— New approach: discretize first

continuous

discrete

all scales

ou

ot

F(u ldiscrefize

e Consistency training data and prediction environment
e Inverse problem easier on discrete level
e Closure models tailor-made to discretization
e |ess regularity requirements
e Easier to handle boundary conditions
reduce iorge scoles
complexity discrete
I, —+ closure
du model
dt

— Example of “discretize first”: inferring a parameter

. _ du
e Problem: find € in the ODE T = Ou

e Given: initial condition and reference solution tef(7)

e Forward Euler discretization u" = (14 At0)"u(0)

e Minimize loss function L(u"™(0), upet(T)) = (u" — uref<T))2
= (1 4+ At0)"u(0) — urer(T))?

— Example of “discretize first”: inferring a parameter

® True Va|UeI 0* — 0,2 7k +exacts'olutionfull model

numerical solution full model
numerical solution tuned model

e Forward Euler:

1 pet(T)\ /™ ’
Orp = — — 11 ~0.24 ar
FE = 2 <(w(0) > 0245

e The “incorrect” parameter gives the 2
exact solution: it corrects the

discretization error 0.0 25 5.0 75 100

— Example of “discretize first”: inferring a parameter

e Problem: find € in the ODE d <u1> _ (0 9) <u1>
dt \us —60 0 (%)
————

A(0)
e Given: initial condition and reference solution uyet(T")

1 1
e RKS3 discretization u" = (I + AtA(0) + §At2A(9)2 + EAt3A(9)3)"u(O)

e Minimize loss function E(Un(e), Uref(T)) = Hun(e) - uref(T>”%

— Example of “discretize first”: inferring a parameter

e Loss function high-order polynomial in 8 =7

40

e Multiple local minima - aliasing
e Number of minima increases with -
number of time steps and with order of

RK scheme

20

10

— Inferring a parameter

Loss function choice important
Local minima can be tricky

exact solution full model

exact solution full model

i numerical solution full model
numerical solution full model

—>¢— numerical solution tuned model

—><¢— numerical solution tuned model

exact solution full model
exact solution full model
1 numerical solution full model
numerical solution full model P
—>¢— numerical solution tuned model
—>¢— numerical solution tuned model

— Example of “discretize first”: inferring a parameter

e Adapt loss function 300

E uref Z Hu - uref)H%

200

e Clear global minimum !

100

e We call this “trajectory fitting” -
(more about this later)

Examples of preserving structure

4B
e ODE formulation (“neural ODE") d—? = NN(u;0)
du _ _
e Closure model form (“neural closure model”) i f(a) + NN(u;0)
. dua B _
e Conservation T f(a) + V -NN(u;0)
e Translation invariance CNN architecture

e Energy conservation

Energy conservation implies stability

e Many PDEs, including Navier-Stokes, possess secondary conservation laws,
such as energy or entropy, which give a stability bound

:> —:—I//Vu:VudQ
di o

K::%/u-udQ

Idea: impose a similar structure on the filtered equations

— Korteweg - de Vries equation

e Shallow water waves, solitons:

oo
ot oxr Ox3

e Energy conservation (periodic BCs):
dFE d 1 5
— = — — d) =0
at dt 2 /Q“

7

~~

=:F
e Discretized using skew-symmetric scheme:

du du
e —3G(u) — D3u (u, E) =0

— Discrete filtering and reconstruction

e Spatial filter W: t=0.0
u
uy uz us ugq us ue uy usg ug
'W' w11 w12 w13 w21 w22 w23 w31 w32 w33

ﬁI _ J_l_hIhIhI"Zr
e Subgrid-scales defined
via reconstruction operator R: ol

u’ u e
-1 1 < L L 1
- X
I u subgrid scales important near sharp gradients

— Energy decomposition

e Since W R =1, we can decompose the N—
energy as:
4 L
1, 1 ,
Eh:§(u,u)g+§(u,u)w 5L —gh:EthE;z
\ . ~~ J/ A\ ~~ J/ — Zl
=:F, =K o1 B
e Time evolution:
1 -
dt dt dt BT s 50 E
t
e Touse energy Stability we need Total energy conserved, large-scale energy not

information about the small scales

— Subgrid compression

e Simulating u’ is not feasible.
e Replace u’ by compressed (coarse-grid)
variable s

with linear compression T

learned from

— Compressed variables learn effective subgrid content

t=20.0

—u
— Ru
s

compressed subgrid variable identifies sharp gradients

0.8

0.6 -

04 r

0.2 |

0.0 25 5.0 7.5 10.0
t

learned compression matches small scale energy closely

— Energy-conserving closure model

Large scale dynamics with closure model
Compressed small scale dynamics

d f[a] _ [f(a) N [cu (1, 8;0,)
dt [s| | O | cs(,8;05)
(latent variables) “extended neural
closure model”
e Energy conserving condition dEp(a) 1d(s,s)e —0
dt 2 dt
[J

Our proposal: learn a skew-symmetric

matrix fwith entries given by neural
network outputs

cu(T, s
— Skew-symmetric neural network Lsm,s; s)

e Intuition behind skew-symmetric closure model: local energy exchanges

YA

K . Uj—1 T2 ; U1 U; 42 o
K(a,s;®) = [—K2 2 “-C O
S;—2 Si—1 S; Si+1 Si42
\ AW
e Skew-symmetric forms obtained by K; = [M1(0),®1(0), M5(0)]

[A,®, B]:= A®B” — (A®B")T

e K, allows energy exchange between large and small scales

— New closure model improves quality + stability

15 r

1.0

0.0

-1.0 Y

e Trained on different initial conditions, tested on unseen initial conditions

e Reduction from N =600 to N =30

e Compare to standard CNN

t=20.0

—— Reference
——— Skew-NN
—— NN

20

30

True
Skew-NN
—— NN

no closure

\IJV

— Evolution of subgrid content matches nicely

15 F

1.0

05 |

0.0 -

-1.0 4

t=0.0

— Reference u

—— Skew-NN u
Reference s
Skew-NN s

10

20

30

Evolution
of a/u

Evolution
of s

8

10

0
0.0

1hr1f?-
AP,
2.5

h H = h ey
R Lrs ' . Lim
th‘tuh§¢ . e kltpuh
5.0 7.5 10.00.0 2.5 5.0 7.5 10.0
t t

— Extension to Burgers’ equation

e Includes viscosity and time-dependent boundary conditions
e Reduction from N=1000 to N=40
t=0.0

—— Reference u

Skew-NN u
Reference s
Skew-NN s

“[

What about training neural closure models?

— Training approaches for neural closure ODEs

0.5

0.0

0.5

-1.0

-15F

e

7N

1

(easy)

requires derivative of
NN wrt parameters

derivative fitting

d
Loss = H (d_?) y — NN(uyes; 9)

AR
1t /| N\

7 \
4 |

// \\
// .] . .
ol requires derivative of
s solution wrt NN "\

\

parameters (difficult) | ©

trajectory fitting

d
Loss = Z lu(t;) — uret(t;)||>, where d_? = NN(u;9)

2

Loss = H (i—?) y — NN(uyef; 9)

— Derivative fitting can be inaccurate (and unstable)

Theorem 3.2. Let uret(t),t > 0 be given, and let u(t),t > 0 be the solution of the ODE §® = NN(u;9). If
the following holds:

“ uref) NN(uref “
b) ||[NN(a;¥) — NN(b;9)|| < C|la—b|,

then the following error bound holds:

lurec(®) —u@®)ll < & (€~ 1).

Based on the “Fundamental Lemma”, Hairer et al. (1993)

If a neural ODE:

e is given a good initial condition;

e approximates the derivative well and is Lipschitz;
Then, the resulting ODE solution may still be inaccurate

Loss = Z lu(t;) — urer(t;)||*, where du _ = NN(u

— Trajectory fitting (“embedded learning™)

e Trajectory fitting yields stable results, tailor-made to the discretization

dLoss

e Derivatives of loss function computed via sensitivity methods

1. Discretise-then-optimise:
o Need differentiable solver (not always available, e.g. black box code)

2. Optlrglfe—thde.n-—dtlscretllc-se - L2018, %y"l' yT) NN(u(t) 9)
o Solve adjoint equations (Chen et al.
I ST =y TS AN(u(t);)
dLoss

— Comparison of approaches

Derivative fitting

trajectory fitting

A

[

Discretise-then-optimise

Optimise-then-discretise

Terms that must be differen-
tiable

Accuracy of computed gradi-
ents of loss function

Can learn long-term accuracy
Requires time-derivatives of
training data

Computational cost

NN

Exact

No
Yes

Low

Several issues / design choices:
e Trajectory length / “unrolled time steps” in loss function
Stiffness (backpropagation with implicit solvers more difficult)

[J
e Chaotic systems
[J

Exploding /vanishing gradients

NN, f, and ODE solver
Exact

Yes
No

High

NN and f
Approximate

Yes
No

High

— Kuramoto-Sivashinsky equation

e Chaotic:
o Use Valid Prediction Time (VPT) to
assess accuracy
o Weighting of loss function to damp
exponential increase in sensitivity
o Stiff:
o Opt-Disc: implicit ESDIRK KenCarp47 8
o Disc-Opt: explicit ETDRK4 in Fourier
domain (Kassam & Trefethen 2005)
e Reduction 1024 -> 128

— Effect of trajectory length, optimise-then-discretise

60

50

40

30

20

10

VPT

short trajectories

60

50

40

30

20

10

VPT

long trajectories

— Valid prediction time, optimise-then-discretise

.. VPT
Training method Min | Ave | Max
Coarse ODE 1.17 | 1.93 | 3.00
Derivative fitting 4.17/] 5.36 [\7.54

Short trajectories | 4.08\] 5.84 [/ 8.29

Optimise-then-discretise Long trajectories | 2.38 | 3.38 | 4.67

c=0.5 2.42 | 4.20 | 5.38
Long trajectories, c=1.0 2.96 | 4.38 | 6.29
decaying error weights c=1.5 3.29 | 4.58 | 5.88

c=2.0 2.71 | 4.29 | 5.75

— Effect of trajectory length, discretise-then-optimise

e Discretise-then-optimise higher al
VPT than optimise-then- ol - -1
discretise | ‘D |
e In both cases: trajectories should ol 7 °
not be ‘too long’ — 1 of T
SR E
2 -
@ 1000 epochs
© 5000 epochs
@
0

1 2 4 8 15 30 60 90 100 110 120
trajectory length

— Comparison of training approaches

Discretise-then-optimise overall
best performance

Optimise-then-discretise sensitive
to training interval; longer interval
less accurate

Derivative fitting reasonable but
diverges (for Burgers: unstable)

10 Training method Avg VPT
L (0) Coarse ODE 1.93
(1) Derivative fitting 5.36
S Lol Optimise-then-discretise
AT (2) > Short trajectories 5.84
_, (3) > Long trajectories 3.38
197 (4) > Weighted error function 4.29
. (5) Discretise-then-optimise 7.10
| 0 20 20 60 80 100 120

7

— Conclusions

e “Discretize first”
o Tailor-made closure models
o Useful framework when using neural networks, eases analysis

e “Preserve structure”
o Accuracy improves by adding physics knowledge
o Non-linear stability possible with energy conserving methods

e “Embedded learning” with trajectory fitting
o Discretise-then-optimise with differentiable solvers preferred
o Promising but with strings attached: problem-dependent, comparison not easy

— Julia is great for differentiable programming

e Neural closure models (OXO) N%UTal
o https://github.com/HugoMelchers/neural-closure-models @g@ ﬁogg%geﬂ

ND
e Incompressible, energy-conserving Navier-Stokes code b% Incompressible

o https://github.com/agdestein/IncompressibleNavierStokes.jl NavierStokes.jl

e DifferentialEquations.jl by Rackauckas et al. (
o https://sciml.ai u

https://github.com/HugoMelchers/neural-closure-models
https://github.com/agdestein/IncompressibleNavierStokes.jl
https://sciml.ai/

