Part 2: A Posteriori Error Estimation & Adaptive Stochastic Galerkin Finite Element Approximation

Catherine E. Powell

University of Manchester

catherine.powell@manchester.ac.uk

September 27, 2022

9 Parametric PDE: Find $u : D \times \Gamma \rightarrow \mathbb{R}$ such that

$$-\nabla \cdot (\mathbf{a}(\mathbf{x}, \mathbf{y}) \nabla \mathbf{u}(\mathbf{x}, \mathbf{y})) = f(\mathbf{x}), \qquad \mathbf{x} \in D \subset \mathbb{R}^{2,3}, \quad \mathbf{y} \in \Gamma.$$

2 Weak Problem: Find $u \in V := L^2_{\pi}(\Gamma, H^1_0(D))$ satisfying

$$\int_{\Gamma} \left(\int_{D} a \nabla u \cdot \nabla v \, d\mathbf{x} \right) \, d\pi(\mathbf{y}) = \int_{\Gamma} \left(\int_{D} f \, v \, d\mathbf{x} \right) \, d\pi(\mathbf{y}) \qquad \forall v \in V,$$

where π is a **probability measure**.

9 Parametric PDE: Find $u : D \times \Gamma \rightarrow \mathbb{R}$ such that

 $-\nabla \cdot (\mathbf{a}(\mathbf{x}, \mathbf{y}) \nabla u(\mathbf{x}, \mathbf{y})) = f(\mathbf{x}), \qquad \mathbf{x} \in D \subset \mathbb{R}^{2,3}, \quad \mathbf{y} \in \Gamma.$

2 Weak Problem: Find $u \in V := L^2_{\pi}(\Gamma, H^1_0(D))$ satisfying

$$A(u,v) = \ell(v), \qquad \forall v \in V$$

where $A(\cdot, \cdot)$ is an **inner product** that induces an **energy norm** $\|\cdot\|_A$.

9 Parametric PDE: Find $u : D \times \Gamma \rightarrow \mathbb{R}$ such that

$$-\nabla \cdot (\mathbf{a}(\mathbf{x},\mathbf{y})\nabla u(\mathbf{x},\mathbf{y})) = f(\mathbf{x}), \qquad \mathbf{x} \in D \subset \mathbb{R}^{2,3}, \quad \mathbf{y} \in \Gamma.$$

Q Galerkin Approximation: Find $u_X \in X \subset V$ satisfying:

$$A(u_X, v) = \ell(v), \qquad \forall v \in X$$

where $A(\cdot, \cdot)$ is an **inner product** that induces an **energy norm** $\|\cdot\|_A$.

9 Parametric PDE: Find $u : D \times \Gamma \rightarrow \mathbb{R}$ such that

$$-\nabla \cdot (\boldsymbol{a}(\boldsymbol{x}, \boldsymbol{y}) \nabla \boldsymbol{u}(\boldsymbol{x}, \boldsymbol{y})) = f(\boldsymbol{x}), \qquad \boldsymbol{x} \in D \subset \mathbb{R}^{2,3}, \quad \boldsymbol{y} \in \boldsymbol{\Gamma}.$$

3 Galerkin Approximation: Find $u_X \in X \subset V$ satisfying:

$$A(u_X, v) = \ell(v), \qquad \forall v \in X$$

where $A(\cdot, \cdot)$ is an **inner product** that induces an **energy norm** $\|\cdot\|_{A}$.

3 Solve Linear System: Au = f.

9 Parametric PDE: Find $u : D \times \Gamma \rightarrow \mathbb{R}$ such that

$$-\nabla \cdot (\mathbf{a}(\mathbf{x}, \mathbf{y}) \nabla u(\mathbf{x}, \mathbf{y})) = f(\mathbf{x}), \qquad \mathbf{x} \in D \subset \mathbb{R}^{2,3}, \quad \mathbf{y} \in \Gamma.$$

Q Galerkin Approximation: Find $u_X \in X \subset V$ satisfying:

$$A(u_X, v) = \ell(v), \qquad \forall v \in X$$

where $A(\cdot, \cdot)$ is an **inner product** that induces an **energy norm** $\|\cdot\|_{A}$.

Solve Linear System: Au = f.

Solution Error Equations: The error $e := u - u_X \in V$ satisfies:

$$A(e,v) = \underbrace{\ell(v) - A(u_X, v)}_{\text{residual } R(v)} \qquad \forall v \in V.$$

 \Box Ideally: Choose SGFEM space X so that $||e||_A \leq TOL$.

Adaptive SGFEM

- ▷ Start with a **low-dimensional** space X and computes $\hat{u}_0 \in X$.
- ▷ Estimate the (energy) error using only a posterior information

$$\eta \approx \|u - \widehat{u}_0\|_A = \mathbb{E}\left[\|a^{1/2}\nabla(u - \widehat{u}_0)\|_{L^2(D)}^2\right]^{1/2}$$

- ▷ Decide how best to **enrich** *X* if η > *TOL*.
- \triangleright Compute a sequence of approximations $\hat{u}_0, \ldots, \hat{u}_L$ until

 $\eta \leq TOL.$

Adaptive SGFEM

- ▷ Start with a **low-dimensional** space X and computes $\hat{u}_0 \in X$.
- ▷ Estimate the (energy) error using only a posterior information

$$\eta \approx \|u - \widehat{u}_0\|_A = \mathbb{E}\left[\|a^{1/2}\nabla(u - \widehat{u}_0)\|_{L^2(D)}^2\right]^{1/2}$$

- \triangleright Decide how best to **enrich** *X* if $\eta > TOL$.
- \triangleright Compute a sequence of approximations $\hat{u}_0, \ldots, \hat{u}_L$ until

 $\eta \leq TOL.$

We use a strategy called **'Hierarchical Error Estimation'** and work with approximation spaces with the so-called **multilevel** structure:

$$X:=\bigoplus_{\alpha\in J_P}H_1^{\alpha}\otimes P^{\alpha}.$$

□ **Hierarchical** a posteriori error estimation is an old idea!

- Bank + Weiser, Math. Comp., (1985). Bank + Smith, SINUM, 1993.
- Ainsworth + Oden. Wiley, 2000.

□ **Hierarchical** a posteriori error estimation is an old idea!

- Bank + Weiser, Math. Comp., (1985). Bank + Smith, SINUM, 1993.
- Ainsworth + Oden. Wiley, 2000.

□ Alternative 'residual-based' error estimation schemes available.

• Gittleson, Schwab, Eigel, Zander, Merdon,

□ **Hierarchical** a posteriori error estimation is an old idea!

- Bank + Weiser, Math. Comp., (1985). Bank + Smith, SINUM, 1993.
- Ainsworth + Oden. Wiley, 2000.

□ Alternative 'residual-based' error estimation schemes available.

- Gittleson, Schwab, Eigel, Zander, Merdon,
- Early works on **multilevel** SGFEM, e.g.,
 - Gittelson. Math. Comp., 82(283), 2013.
 - Eigel, Gittelson, Schwab, Zander. CMAME, 270, 2014.

☐ **Hierarchical** a posteriori error estimation is an old idea!

- Bank + Weiser, Math. Comp., (1985). Bank + Smith, SINUM, 1993.
- Ainsworth + Oden. Wiley, 2000.

□ Alternative 'residual-based' error estimation schemes available.

- Gittleson, Schwab, Eigel, Zander, Merdon,
- Early works on multilevel SGFEM, e.g.,
 - Gittelson. Math. Comp., 82(283), 2013.
 - Eigel, Gittelson, Schwab, Zander. CMAME, 270, 2014.

□ A priori results + convergence rates for multilevel SGFEM, e.g.

• Cohen, DeVore, Schwab. Analytic regularity and polynomial approx. of parametric and stochastic elliptic PDE's. Anal. Appl., 9(1), 2011.

Background + Collaborators

□ Worked presented here based on PhD work of **<u>Adam Crowder</u>**:

- PhD thesis, University of Manchester, 2020.
- Efficient adaptive multilevel SG approx. using implicit a posteriori error estimation. Crowder, Powell, Bespalov, **SISC. 41(3)**, 2019.

Background + Collaborators

□ Worked presented here based on PhD work of **<u>Adam Crowder</u>**:

- PhD thesis, University of Manchester, 2020.
- Efficient adaptive multilevel SG approx. using implicit a posteriori error estimation. Crowder, Powell, Bespalov, **SISC. 41(3)**, 2019.
- □ ML-SGFEM software further developed by George Papanikos.

https://github.com/ceapowell/ML-SGFEM

Background + Collaborators

□ Worked presented here based on PhD work of **<u>Adam Crowder</u>**:

- PhD thesis, University of Manchester, 2020.
- Efficient adaptive multilevel SG approx. using implicit a posteriori error estimation. Crowder, Powell, Bespalov, **SISC. 41(3)**, 2019.
- □ ML-SGFEM software further developed by George Papanikos.

https://github.com/ceapowell/ML-SGFEM

 \Box EPSRC-funded project started \approx 10 years ago in Manchester with **David Silvester** and **Alex Bespalov**

- Energy norm a posteriori error estimation for parametric operator equations, Bespalov, Powell, Silvester, **SISC. 36(2)**, 2014.
- S-IFISS MATLAB Toolbox:

http://www.manchester.ac.uk/ifiss/sifiss

$$X := \bigoplus_{\alpha \in J_P} H_1^{\alpha} \otimes P^{\alpha}$$

$$X := \bigoplus_{\alpha \in J_P} H_1^{\alpha} \otimes P^{\alpha}$$

 \Box J_P is a **finite set** of **finitely supported** sequences:

$$J_{P} \subset J := \big\{ \boldsymbol{\alpha} = (\alpha_{1}, \alpha_{2}, \ldots) \in \mathbb{N}_{0}^{\mathbb{N}} \mid \# \operatorname{supp} \boldsymbol{\alpha} < \infty \big\}.$$

$$X := \bigoplus_{\alpha \in J_P} H_1^{\alpha} \otimes P^{\alpha}$$

 \Box J_P is a finite set of finitely supported sequences:

$$J_P \subset J := \big\{ \boldsymbol{\alpha} = (\alpha_1, \alpha_2, \ldots) \in \mathbb{N}_0^{\mathbb{N}} \mid \ \# \operatorname{supp} \boldsymbol{\alpha} < \infty \big\}.$$

 \Box Orthogonal Polynomials: $P^{\alpha} := \operatorname{span} \{\psi_{\alpha}(\mathbf{y})\} \subset L^{2}_{\pi}(\Gamma)$ where

$$\psi_{oldsymbol lpha}(oldsymbol y) = \prod_{m=1}^\infty \psi_{lpha_m}(oldsymbol y_m), \qquad \psi_i ext{ has degree } i ext{ and } \psi_0 = 1.$$

$$X := \bigoplus_{\alpha \in J_P} H_1^{\alpha} \otimes P^{\alpha}$$

 \Box J_P is a finite set of finitely supported sequences:

$$J_P \subset J := \{ \boldsymbol{\alpha} = (\alpha_1, \alpha_2, \ldots) \in \mathbb{N}_0^{\mathbb{N}} \mid \# \operatorname{supp} \boldsymbol{\alpha} < \infty \}.$$

 \Box Orthogonal Polynomials: $P^{\alpha} := \operatorname{span} \{\psi_{\alpha}(\mathbf{y})\} \subset L^{2}_{\pi}(\Gamma)$ where

$$\psi_{\alpha}(\mathbf{y}) = \prod_{m=1}^{\infty} \psi_{\alpha_m}(\mathbf{y}_m), \qquad \psi_i \text{ has degree } i \text{ and } \psi_0 = 1.$$

 $\Box \text{ FEM Spaces: } H_1^{\boldsymbol{\alpha}} := \operatorname{span} \{ \phi_i^{\boldsymbol{\alpha}}(\boldsymbol{x}), i = 1, \dots, n_{\boldsymbol{\alpha}} \} \subset H_0^1(D).$

$$X := \bigoplus_{\alpha \in J_P} H_1^{\alpha} \otimes P^{\alpha}$$

 \Box J_P is a **finite set** of **finitely supported** sequences:

$$J_P \subset J := \{ \boldsymbol{\alpha} = (\alpha_1, \alpha_2, \ldots) \in \mathbb{N}_0^{\mathbb{N}} \mid \# \operatorname{supp} \boldsymbol{\alpha} < \infty \}.$$

 \Box Orthogonal Polynomials: $P^{\alpha} := \operatorname{span} \{\psi_{\alpha}(\mathbf{y})\} \subset L^{2}_{\pi}(\Gamma)$ where

$$\psi_{\alpha}(\mathbf{y}) = \prod_{m=1}^{\infty} \psi_{\alpha_m}(\mathbf{y}_m), \qquad \psi_i \text{ has degree } i \text{ and } \psi_0 = 1.$$

 $\Box \text{ FEM Spaces: } H_1^{\boldsymbol{\alpha}} := \operatorname{span} \{ \phi_i^{\boldsymbol{\alpha}}(\boldsymbol{x}), i = 1, \dots, n_{\boldsymbol{\alpha}} \} \subset H_0^1(D).$

Special case: If $H_1^{\alpha} = H_1$ for all $\alpha \in J_P$ then

 $X := H_1 \otimes P$, where $P := \operatorname{span} \{ \psi_{\alpha}(\mathbf{y}), \alpha \in J_P \}$.

Polynomial-based Surrogate

$$u_X(\mathbf{x},\mathbf{y}) = \sum_{\alpha \in J_P} \left(\sum_{i=1}^{n_{\alpha}} u_{i,\alpha} \phi_i^{\alpha}(\mathbf{x}) \right) \psi_{\alpha}(\mathbf{y}) = \sum_{\alpha \in J_P} \underbrace{u_{\alpha}(\mathbf{x})}_{\in H_1^{\alpha}} \psi_{\alpha}(\mathbf{y}).$$

Test Problem: 8 spatial modes $u_{\alpha}(\mathbf{x})$

For $u_X \in X \subset V$, we know $e := u - u_X \in V$ satisfies:

$$A(e, v) = R(v) \qquad \forall v \in V.$$

() Consider $e_W \in W \supset X$ such that:

$$A(e_W, v) = R(v), \qquad \forall v \in W.$$

For $u_X \in X \subset V$, we know $e := u - u_X \in V$ satisfies:

$$A(e, v) = R(v) \qquad \forall v \in V.$$

• Consider $e_W \in W \supset X$ such that:

$$A(e_W, v) = R(v), \qquad \forall v \in W.$$

Choose

$$W = X \oplus \underbrace{Y}_{\text{'detail'}}, \qquad X \cap Y = \{0\}$$

and define error estimate $\eta := \|e_Y\|_A$ where

$$e_Y \in Y$$
: $A(e_Y, v) = R(v), \quad \forall v \in Y.$

For $u_X \in X \subset V$, we know $e := u - u_X \in V$ satisfies:

$$A(e, v) = R(v) \qquad \forall v \in V.$$

• Consider $e_W \in W \supset X$ such that:

$$A(e_W, v) = R(v), \qquad \forall v \in W.$$

Choose

$$W = X \oplus \underbrace{Y}_{\text{'detail'}}, \qquad X \cap Y = \{0\}$$

and define error estimate $\eta := \|e_Y\|_A$ where

$$e_Y \in Y$$
: $A(e_Y, v) = R(v)$, $\forall v \in Y$.

Alternatively: If $A_0(\cdot, \cdot)$ is another inner product such that $\lambda \|v\|_A^2 \le \|v\|_{A_0}^2 \le \Lambda \|v\|_A^2 \qquad \forall v \in V,$

For $u_X \in X \subset V$, we know $e := u - u_X \in V$ satisfies:

$$A(e, v) = R(v) \qquad \forall v \in V.$$

• Consider $e_W \in W \supset X$ such that:

$$A(e_W, v) = R(v), \qquad \forall v \in W.$$

Choose

$$W = X \oplus \underbrace{Y}_{\text{'detail'}}, \qquad X \cap Y = \{0\}$$

and define error estimate $\eta := \|e_Y\|_A$ where

$$e_Y \in Y$$
: $A(e_Y, v) = R(v), \quad \forall v \in Y.$

Alternatively: If $A_0(\cdot, \cdot)$ is another inner product such that

$$\lambda \|\mathbf{v}\|_{A}^{2} \leq \|\mathbf{v}\|_{A_{0}}^{2} \leq \Lambda \|\mathbf{v}\|_{A}^{2} \qquad \forall \, \mathbf{v} \in \mathbf{V},$$

define $\eta := \|e_Y\|_{A_0}$ where

$$e_Y \in Y$$
: $A_0(e_Y, v) = R(v), \quad \forall v \in Y.$

If we can choose the **detail space** Y so that

3 Saturation Assumption: $\exists \beta \in [0, 1)$ such that

$$\|u-u_W\|_A \leq \beta \|u-u_X\|_A$$

2 CBS Inequality: $\exists \gamma \in [0,1)$ such that

 $|A_0(u,v)| \leq \gamma \, \|u\|_{A_0} \|v\|_{A_0}, \qquad \forall u \in X, \, \forall v \in Y$

then, one can prove that $\eta = \|e_Y\|_{A_0}$ satisfies:

If we can choose the **detail space** Y so that

3 Saturation Assumption: $\exists \beta \in [0, 1)$ such that

$$\|u-u_W\|_A \leq \beta \|u-u_X\|_A$$

2 CBS Inequality: $\exists \gamma \in [0,1)$ such that

 $|A_0(u,v)| \leq \gamma ||u||_{A_0} ||v||_{A_0}, \qquad \forall u \in X, \, \forall v \in Y$

then, one can prove that $\eta = \|e_Y\|_{A_0}$ satisfies:

$$\sqrt{\lambda} \eta \leq \|u - u_X\|_A \leq \frac{\sqrt{\Lambda}}{\sqrt{1 - \beta^2}\sqrt{1 - \gamma^2}} \eta.$$

If we can choose the **detail space** Y so that

3 Saturation Assumption: $\exists \beta \in [0, 1)$ such that

$$\|u-u_W\|_A \leq \beta \|u-u_X\|_A$$

2 CBS Inequality: $\exists \gamma \in [0,1)$ such that

 $|A_0(u,v)| \leq \gamma \|u\|_{A_0} \|v\|_{A_0}, \qquad \forall u \in X, \, \forall v \in Y$

then, one can prove that $\eta = \|e_Y\|_{A_0}$ satisfies:

$$\sqrt{\lambda} \eta \leq \|u - u_X\|_A \leq \frac{\sqrt{\Lambda}}{\sqrt{1 - \beta^2}\sqrt{1 - \gamma^2}} \eta.$$

Constants depend on the **choice of detail space** Y and $A_0(\cdot, \cdot)$.

If we can choose the **detail space** Y so that

3 Saturation Assumption: $\exists \beta \in [0, 1)$ such that

$$\|u-u_W\|_A \leq \beta \|u-u_X\|_A$$

2 CBS Inequality: $\exists \gamma \in [0,1)$ such that

 $|A_0(u,v)| \leq \gamma \|u\|_{A_0} \|v\|_{A_0}, \qquad \forall u \in X, \, \forall v \in Y$

then, one can prove that $\eta = \|e_Y\|_{A_0}$ satisfies:

$$\sqrt{\lambda} \eta \leq \|u - u_X\|_A \leq \frac{\sqrt{\Lambda}}{\sqrt{1 - \beta^2}\sqrt{1 - \gamma^2}} \eta.$$

 \Box Constants depend on the **choice of detail space** Y and $A_0(\cdot, \cdot)$.

 \Box Here, choose $A_0(\cdot, \cdot)$ to be inner product associated with $a_0(\mathbf{x})$.

Detail Space (1)

$$X = \bigoplus_{\alpha \in J_P} H_1^{\alpha} \otimes P^{\alpha}$$

• For each $\alpha \in J_P$ choose H_2^{α} (new FEM space) such that

 $H_1^{\boldsymbol{\alpha}} \cap H_2^{\boldsymbol{\alpha}} = \{0\}.$

Detail Space (1)

$$X = \bigoplus_{\alpha \in J_P} H_1^{\alpha} \otimes P^{\alpha}$$

• For each $\alpha \in J_P$ choose H_2^{α} (new FEM space) such that

 $H_1^{\boldsymbol{\alpha}} \cap H_2^{\boldsymbol{\alpha}} = \{0\}.$

• Choose J_Q (new set of multi-indices) with

 $J_P \cap J_Q = \emptyset$

and for each $\beta \in J_Q$ define $Q^{\beta} := \operatorname{span} \{\psi_{\beta}(\mathbf{y})\}$.

Detail Space (1)

$$X = \bigoplus_{\alpha \in J_P} H_1^{\alpha} \otimes P^{\alpha}$$

• For each $\alpha \in J_P$ choose H_2^{α} (new FEM space) such that

 $H_1^{\boldsymbol{\alpha}} \cap H_2^{\boldsymbol{\alpha}} = \{0\}.$

• Choose J_Q (new set of multi-indices) with

 $J_P \cap J_Q = \emptyset$

and for each $\beta \in J_Q$ define $Q^{\beta} := \operatorname{span} \{ \psi_{\beta}(\mathbf{y}) \}$.

Define detail space:

$$Y = \left(\bigoplus_{\alpha \in J_{P}} H_{2}^{\alpha} \otimes P^{\alpha}\right) \oplus \left(\bigoplus_{\beta \in J_{Q}} H \otimes Q^{\beta}\right) := Y_{1} \oplus Y_{2}$$

where *H* is <u>one</u> of the **FEM** spaces H_1^{α} .

Detail Space (2)

Re-write detail space as

$$Y = \left(\bigoplus_{\boldsymbol{\alpha} \in J_{\mathcal{P}}} Y_{1,\boldsymbol{\alpha}}\right) \oplus \left(\bigoplus_{\boldsymbol{\beta} \in J_{\mathcal{Q}}} Y_{2,\boldsymbol{\beta}}\right)$$

where

$$Y_{1,\alpha} = H_2^{\alpha} \otimes P^{\alpha}, \qquad Y_{2,\beta} = H \otimes Q^{\beta}.$$

Detail Space (2)

Re-write detail space as

$$Y = \left(igoplus_{oldsymbol{lpha} \in J_P} Y_{1,oldsymbol{lpha}}
ight) \oplus \left(igoplus_{oldsymbol{eta} \in J_Q} Y_{2,oldsymbol{eta}}
ight)$$

where

$$Y_{1,\alpha} = H_2^{\alpha} \otimes P^{\alpha}, \qquad Y_{2,\beta} = H \otimes Q^{\beta}.$$

Our choice of Y and $A_0(\cdot, \cdot)$ ensures the estimator can be **decomposed:**

Detail Space (2)

Re-write detail space as

$$Y = \left(\bigoplus_{\boldsymbol{\alpha} \in J_{\mathcal{P}}} Y_{1,\boldsymbol{\alpha}}\right) \oplus \left(\bigoplus_{\boldsymbol{\beta} \in J_{\mathcal{Q}}} Y_{2,\boldsymbol{\beta}}\right)$$

where

$$Y_{1,\alpha} = H_2^{\alpha} \otimes P^{\alpha}, \qquad Y_{2,\beta} = H \otimes Q^{\beta}.$$

Our choice of Y and $A_0(\cdot, \cdot)$ ensures the estimator can be **decomposed:**

$$\eta := \| e_{Y} \|_{A_{0}} = \left(\sum_{\alpha \in J_{P}} \| e_{Y_{1,\alpha}} \|_{A_{0}}^{2} + \sum_{\beta \in J_{Q}} \| e_{Y_{2,\beta}} \|_{A_{0}}^{2} \right)^{1/2},$$

where the components satisfy

$$\begin{array}{rcl} e_{\mathsf{Y}_{1,\boldsymbol{\alpha}}} \in Y_{1,\boldsymbol{\alpha}}: & A_0(e_{\mathsf{Y}_{1,\boldsymbol{\alpha}}},v) & = & R(v), & \forall \, v \in Y_{1,\boldsymbol{\alpha}}, \\ e_{\mathsf{Y}_{2,\boldsymbol{\beta}}} \in Y_{2,\boldsymbol{\beta}}: & A_0(e_{\mathsf{Y}_{2,\boldsymbol{\beta}}},v) & = & R(v), & \forall \, v \in Y_{2,\boldsymbol{\beta}}. \end{array}$$

How to Choose H_2^{α} ?

CBS constant $\gamma := \max_{\alpha \in J_P} \{\gamma_{\alpha}\}$ where γ_{α} depends only on H_2^{α} and H_1^{α} .

How to Choose H_2^{α} ?

CBS constant $\gamma := \max_{\alpha \in J_P} \{\gamma_\alpha\}$ where γ_α depends only on H_2^{α} and H_1^{α} .

Example: Construct H_2^{α} locally using 'bubble' functions associated with (\circ).

$H_1^{oldsymbol{lpha}}$	$H_2^{\boldsymbol{lpha}}$	γ^2_{α}	$\sqrt{1-\gamma_{oldsymbol{lpha}}^2}$
$\mathbb{Q}_1(h_{oldsymbol{lpha}})$	$\mathbb{Q}_2(h_{oldsymbol{lpha}})$	0.4545	0.7385
$\mathbb{Q}_1(h_{oldsymbol{lpha}})$	$\mathbb{Q}_1(h_{oldsymbol{lpha}}/2)$	0.3750	0.7905
$\mathbb{Q}_1(h_{oldsymbol{lpha}})$	$\mathbb{Q}_2(h_{\alpha}/2)$	0.0446	0.9774
$\mathbb{Q}_1(h_{oldsymbol{lpha}})$	$\mathbb{Q}_4(h_{oldsymbol{lpha}})$	0.0121	0.9939

$$X = \bigoplus_{\alpha \in J_{\mathcal{P}}} H_{1}^{\alpha} \otimes \mathcal{P}^{\alpha}, \qquad Y = \left(\bigoplus_{\alpha \in J_{\mathcal{P}}} H_{2}^{\alpha} \otimes \mathcal{P}^{\alpha}\right) \oplus \left(\bigoplus_{\beta \in J_{Q}} \mathcal{H} \otimes \mathcal{Q}^{\beta}\right)$$

$$X = \bigoplus_{\alpha \in J_{\mathcal{P}}} H_{1}^{\alpha} \otimes \mathcal{P}^{\alpha}, \qquad Y = \left(\bigoplus_{\alpha \in J_{\mathcal{P}}} H_{2}^{\alpha} \otimes \mathcal{P}^{\alpha}\right) \oplus \left(\bigoplus_{\beta \in J_{Q}} \mathcal{H} \otimes \mathcal{Q}^{\beta}\right)$$

To get an **accurate** error estimate, need to choose Y so that

$$\sqrt{1-\beta^2}\sqrt{1-\gamma^2} \approx 1$$

where

$$\|u-u_W\|_A \leq \beta \|u-u_X\|_A, \qquad u_W \in W := X \oplus Y.$$

$$X = \bigoplus_{\alpha \in J_{\mathcal{P}}} H_{1}^{\alpha} \otimes \mathcal{P}^{\alpha}, \qquad Y = \left(\bigoplus_{\alpha \in J_{\mathcal{P}}} H_{2}^{\alpha} \otimes \mathcal{P}^{\alpha}\right) \oplus \left(\bigoplus_{\beta \in J_{Q}} \mathcal{H} \otimes \mathcal{Q}^{\beta}\right)$$

To get an **accurate** error estimate, need to choose Y so that

$$\sqrt{1-\beta^2}\sqrt{1-\gamma^2} \approx 1$$

where

$$\|u-u_W\|_A \leq \beta \|u-u_X\|_A, \qquad u_W \in W := X \oplus Y.$$

□ We choose

$$J_Q = \{ \boldsymbol{\beta} \in J \setminus J_P, \, \boldsymbol{\beta} = \boldsymbol{\alpha} \pm \mathbf{e}^m, \boldsymbol{\beta} \in J_P, \, m = 1, \dots, M_P + \Delta_M \}$$

where M_P is # highest parameter activated in J_P .

$$X = \bigoplus_{\alpha \in J_{\mathcal{P}}} H_{1}^{\alpha} \otimes \mathcal{P}^{\alpha}, \qquad Y = \left(\bigoplus_{\alpha \in J_{\mathcal{P}}} H_{2}^{\alpha} \otimes \mathcal{P}^{\alpha}\right) \oplus \left(\bigoplus_{\beta \in J_{Q}} \mathcal{H} \otimes \mathcal{Q}^{\beta}\right)$$

To get an **accurate** error estimate, need to choose Y so that

$$\sqrt{1-\beta^2}\sqrt{1-\gamma^2}\approx 1$$

where

$$\|u-u_W\|_A \leq \beta \|u-u_X\|_A, \qquad u_W \in W := X \oplus Y.$$

We choose

$$J_{Q} = \{\beta \in J \setminus J_{P}, \beta = \alpha \pm \mathbf{e}^{m}, \beta \in J_{P}, m = 1, \dots, M_{P} + \Delta_{M}\}$$

where M_P is # highest parameter activated in J_P .

 $\Box \Delta_M$ needs to be **larger** for problems where $||a_m||_{\infty}$ decays **slowly**.

Decoupled Error Reduction Indicators

Define the spaces

$$W_1 := X \oplus \left(\bigoplus_{\boldsymbol{lpha} \in \overline{J_P}} Y_{1, \boldsymbol{lpha}} \right), \qquad W_2 := X \oplus \left(\bigoplus_{\boldsymbol{eta} \in \overline{J_Q}} Y_{2, \boldsymbol{eta}} \right)$$

where $\overline{J_P} \subset J_P$ and $\overline{J_Q} \subset J_Q$ and consider the Galerkin approximations:

 \triangleright $u_{W_1} \in W_1$ (spatial refinement), $u_{W_2} \in W_2$ (parametric enrichment).

Decoupled Error Reduction Indicators

Define the spaces

$$W_1 := X \oplus \left(\bigoplus_{\alpha \in \overline{J_{\rho}}} Y_{1,\alpha} \right), \qquad W_2 := X \oplus \left(\bigoplus_{\beta \in \overline{J_Q}} Y_{2,\beta} \right)$$

where $\overline{J_P} \subset J_P$ and $\overline{J_Q} \subset J_Q$ and consider the Galerkin approximations:

 \triangleright $u_{W_1} \in W_1$ (spatial refinement), $u_{W_2} \in W_2$ (parametric enrichment).

Define the error estimates

$$\eta_1 := \sum_{\boldsymbol{\alpha} \in \overline{J_P}} \|\boldsymbol{e}_{\boldsymbol{Y}_{1,\boldsymbol{\alpha}}}\|_{A_0}^2, \qquad \eta_2 := \sum_{\boldsymbol{\beta} \in \overline{J_Q}} \|\boldsymbol{e}_{\boldsymbol{Y}_{2,\boldsymbol{\beta}}}\|_{A_0}^2.$$

Then one can prove that

Decoupled Error Reduction Indicators

Define the spaces

$$W_1 := X \oplus \left(\bigoplus_{\alpha \in \overline{J_{\rho}}} Y_{1,\alpha} \right), \qquad W_2 := X \oplus \left(\bigoplus_{\beta \in \overline{J_Q}} Y_{2,\beta} \right)$$

where $\overline{J_P} \subset J_P$ and $\overline{J_Q} \subset J_Q$ and consider the Galerkin approximations:

 \triangleright $u_{W_1} \in W_1$ (spatial refinement), $u_{W_2} \in W_2$ (parametric enrichment).

Define the error estimates

$$\eta_1 := \sum_{\alpha \in \overline{J_P}} \|e_{Y_{1,\alpha}}\|_{A_0}^2, \qquad \eta_2 := \sum_{\beta \in \overline{J_Q}} \|e_{Y_{2,\beta}}\|_{A_0}^2.$$

Then one can prove that

$$\lambda \eta_1 \leq \|u_{W_1} - u_X\|_E^2 \leq \frac{\Lambda}{1 - \gamma^2} \eta_1$$

$$\lambda \eta_2 \leq \|u_{W_2} - u_X\|_E^2 \leq \Lambda \eta_2.$$

This allows us to do adaptivity!

- \Box INITIALIZE: J_P and $\{H_1^{\alpha}, \forall \alpha \in J_P\}$
- □ **SOLVE:** Find $u_X \in X$

- □ INITIALIZE: J_P and $\{H_1^{\alpha}, \forall \alpha \in J_P\}$
- **SOLVE:** Find $u_X \in X$
- \Box **DETAIL SPACE:** Choose *H*, J_Q (i.e, Δ_M) and $\{H_2^{\alpha}, \forall \alpha \in J_P\}$

- □ INITIALIZE: J_P and $\{H_1^{\alpha}, \forall \alpha \in J_P\}$
- **SOLVE:** Find $u_X \in X$
- \Box **DETAIL SPACE:** Choose H, J_Q (i.e, Δ_M) and $\{H_2^{\alpha}, \forall \alpha \in J_P\}$
- **COMPUTE ERROR COMPONENTS:**

 $\{\|e_{Y_{1,\alpha}}\|_{A_0}, \, \alpha \in J_P\}, \qquad \{\|e_{Y_{2,\beta}}\|_{A_0}, \, \beta \in J_Q\}$

□ ENERGY ERROR ESTIMATE:

$$\eta = \left(\sum_{\alpha \in J_{P}} \| e_{Y_{1,\alpha}} \|_{A_{0}}^{2} + \sum_{\beta \in J_{Q}} \| e_{Y_{2,\beta}} \|_{A_{0}}^{2} \right)^{1/2}$$

- □ INITIALIZE: J_P and $\{H_1^{\alpha}, \forall \alpha \in J_P\}$
- **SOLVE:** Find $u_X \in X$
- \Box **DETAIL SPACE:** Choose *H*, J_Q (i.e, Δ_M) and $\{H_2^{\alpha}, \forall \alpha \in J_P\}$
- **COMPUTE ERROR COMPONENTS:**

 $\{\|\boldsymbol{e}_{\boldsymbol{Y}_{1,\boldsymbol{\alpha}}}\|_{\boldsymbol{A}_{0}},\,\boldsymbol{\alpha}\in J_{\boldsymbol{P}}\},\qquad \{\|\boldsymbol{e}_{\boldsymbol{Y}_{2,\boldsymbol{\beta}}}\|_{\boldsymbol{A}_{0}},\,\boldsymbol{\beta}\in J_{\boldsymbol{Q}}\}$

ENERGY ERROR ESTIMATE:

$$\eta = \left(\sum_{\boldsymbol{\alpha} \in J_{\mathcal{P}}} \|\boldsymbol{e}_{\boldsymbol{Y}_{1,\boldsymbol{\alpha}}}\|_{A_0}^2 + \sum_{\boldsymbol{\beta} \in J_Q} \|\boldsymbol{e}_{\boldsymbol{Y}_{2,\boldsymbol{\beta}}}\|_{A_0}^2\right)^{1/2}$$

 \Box IF $\eta \leq TOL$ STOP;

ELSE

Compute ESTIMATED ERROR REDUCTION RATIOS:

$$\left\{\frac{\|\boldsymbol{e}_{\boldsymbol{Y}_{1,\boldsymbol{\alpha}}}\|_{A_0}^2}{\dim(\boldsymbol{Y}_{1,\boldsymbol{\alpha}})},\,\boldsymbol{\alpha}\in J_{\boldsymbol{P}}\right\},$$

$$\left\{\frac{\|\boldsymbol{e}_{\boldsymbol{Y}_{2,\boldsymbol{\beta}}}\|_{\boldsymbol{A}_{0}}^{2}}{\dim(\boldsymbol{Y}_{2,\boldsymbol{\beta}})},\,\boldsymbol{\beta}\in J_{\boldsymbol{Q}}\right\}$$

□ **IDENTIFY** 'important' subsets

$$\overline{J_P} \subset J_P, \qquad \overline{J_Q} \subset J_Q$$

□ ERROR REDUCTION INDICATORS

$$\eta_1 := \sum_{\boldsymbol{\alpha} \in \overline{J_P}} \|\boldsymbol{e}_{\boldsymbol{Y}_{1,\boldsymbol{\alpha}}}\|_{A_0}^2, \qquad \eta_2 := \sum_{\boldsymbol{\beta} \in \overline{J_Q}} \|\boldsymbol{e}_{\boldsymbol{Y}_{2,\boldsymbol{\beta}}}\|_{A_0}^2.$$

□ **IDENTIFY** 'important' subsets

$$\overline{J_P} \subset J_P, \qquad \overline{J_Q} \subset J_Q$$

□ ERROR REDUCTION INDICATORS

$$\eta_1 := \sum_{\boldsymbol{\alpha} \in \overline{J_P}} \|\boldsymbol{e}_{\boldsymbol{Y}_{1,\boldsymbol{\alpha}}}\|_{A_0}^2, \qquad \eta_2 := \sum_{\boldsymbol{\beta} \in \overline{J_Q}} \|\boldsymbol{e}_{\boldsymbol{Y}_{2,\boldsymbol{\beta}}}\|_{A_0}^2$$

DECIDE whether to do SPATIAL or PARAMETRIC enrichment

IDENTIFY 'important' subsets

$$\overline{J_P} \subset J_P, \qquad \overline{J_Q} \subset J_Q$$

ERROR REDUCTION INDICATORS

$$\eta_1 := \sum_{\boldsymbol{\alpha} \in \overline{J_P}} \|\boldsymbol{e}_{\boldsymbol{Y}_{1,\boldsymbol{\alpha}}}\|_{A_0}^2, \qquad \eta_2 := \sum_{\boldsymbol{\beta} \in \overline{J_Q}} \|\boldsymbol{e}_{\boldsymbol{Y}_{2,\boldsymbol{\beta}}}\|_{A_0}^2.$$

DECIDE whether to do SPATIAL or PARAMETRIC enrichment

IF SPATIAL

- Freeze J_P
- improve H_1^{α} for $\alpha \in \overline{J_P}$

□ **IDENTIFY** 'important' subsets

$$\overline{J_P} \subset J_P, \qquad \overline{J_Q} \subset J_Q$$

ERROR REDUCTION INDICATORS

$$\eta_1 := \sum_{\boldsymbol{\alpha} \in \overline{J_P}} \|\boldsymbol{e}_{\boldsymbol{Y}_{1,\boldsymbol{\alpha}}}\|_{A_0}^2, \qquad \eta_2 := \sum_{\boldsymbol{\beta} \in \overline{J_Q}} \|\boldsymbol{e}_{\boldsymbol{Y}_{2,\boldsymbol{\beta}}}\|_{A_0}^2.$$

DECIDE whether to do SPATIAL or PARAMETRIC enrichment

IF SPATIAL

- Freeze J_P
- improve H_1^{α} for $\alpha \in \overline{J_P}$

IF PARAMETRIC

- Freeze $H_1^{\boldsymbol{lpha}}$ for ${\boldsymbol{lpha}}\in J_P$
- initialize H for new $\alpha \in \overline{J_Q}$
- $J_P \leftarrow J_P \cup \overline{J_Q};$

END

 $D = [0, 1]^2$, f = 1, $a(\mathbf{x}, \mathbf{y}) = 1 + \sum_{m=1}^{\infty} a_m(\mathbf{x}) y_m$ with $y_m \sim U(-1, 1)$ and $a_m(\mathbf{x}) := 0.547 m^{-2} \cos(2\pi \beta_m^1 x_1) \cos(2\pi \beta_m^2 x_2)$

$$D = [0,1]^2$$
, $f = 1$, $a(\mathbf{x}, \mathbf{y}) = 1 + \sum_{m=1}^{\infty} a_m(\mathbf{x}) y_m$ with $y_m \sim U(-1,1)$ and
 $a_m(\mathbf{x}) := 0.547 m^{-2} \cos(2\pi \beta_m^1 x_1) \cos(2\pi \beta_m^2 x_2)$

$$X := \bigoplus_{\alpha \in J_P} H_1^{\alpha} \otimes P^{\alpha}$$

▷ **INITIALIZE:** $J_P = \{\mathbf{0}, (1, 0, ..., 0)\}$ and $H_1^{\alpha} = \mathbb{Q}_1(h)$ on uniform mesh, with $h = 2^{-4}$ ('level' 4).

 $D = [0, 1]^2$, f = 1, $a(\mathbf{x}, \mathbf{y}) = 1 + \sum_{m=1}^{\infty} a_m(\mathbf{x}) y_m$ with $y_m \sim U(-1, 1)$ and $a_m(\mathbf{x}) := 0.547 m^{-2} \cos(2\pi \beta_m^1 x_1) \cos(2\pi \beta_m^2 x_2)$

$$X := \bigoplus_{\alpha \in J_P} H_1^{\alpha} \otimes P^{\alpha}$$

- ▷ INITIALIZE: $J_P = \{0, (1, 0, ..., 0)\}$ and $H_1^{\alpha} = \mathbb{Q}_1(h)$ on uniform mesh, with $h = 2^{-4}$ ('level' 4).
- ▷ **DETAIL SPACE:** Choose $H_2^{\alpha} = \mathbb{Q}_2(h)$ and $\Delta_M = 5$.
- ▷ **ERROR ESTIMATION:** Compute $\eta \approx ||u u_X||_A$. If $\eta \leq TOL$, then **STOP**. Otherwise,
 - Improve H_1^{α} (e.g. refine the mesh) for one or more $\alpha \in J_P$, **OR**
 - Add new multi-indices β to J_P (and initialize H^{β}).

 $D = [0, 1]^2$, f = 1, $a(\mathbf{x}, \mathbf{y}) = 1 + \sum_{m=1}^{\infty} a_m(\mathbf{x}) y_m$ with $y_m \sim U(-1, 1)$ and $a_m(\mathbf{x}) := 0.547 m^{-2} \cos(2\pi \beta_m^1 x_1) \cos(2\pi \beta_m^2 x_2)$

$$X := \bigoplus_{\alpha \in J_P} H_1^{\alpha} \otimes P^{\alpha}$$

- ▷ INITIALIZE: $J_P = \{0, (1, 0, ..., 0)\}$ and $H_1^{\alpha} = \mathbb{Q}_1(h)$ on uniform mesh, with $h = 2^{-4}$ ('level' 4).
- ▷ **DETAIL SPACE:** Choose $H_2^{\alpha} = \mathbb{Q}_2(h)$ and $\Delta_M = 5$.
- ▷ **ERROR ESTIMATION:** Compute $\eta \approx ||u u_X||_A$. If $\eta \leq TOL$, then **STOP**. Otherwise,
 - Improve H_1^{α} (e.g. refine the mesh) for one or more $\alpha \in J_P$, **OR**
 - Add new multi-indices β to J_P (and initialize H^{β}).
- \triangleright Choose TOL = 1.5e-3.

 $D = [0, 1]^2$, f = 1, $a(\mathbf{x}, \mathbf{y}) = 1 + \sum_{m=1}^{\infty} a_m(\mathbf{x}) y_m$ with $y_m \sim U(-1, 1)$ and $a_m(\mathbf{x}) := 0.547 m^{-2} \cos(2\pi \beta_m^1 x_1) \cos(2\pi \beta_m^2 x_2)$

$$X := \bigoplus_{\alpha \in J_P} H_1^{\alpha} \otimes P^{\alpha}$$

- ▷ INITIALIZE: $J_P = \{0, (1, 0, ..., 0)\}$ and $H_1^{\alpha} = \mathbb{Q}_1(h)$ on uniform mesh, with $h = 2^{-4}$ ('level' 4).
- ▷ **DETAIL SPACE:** Choose $H_2^{\alpha} = \mathbb{Q}_2(h)$ and $\Delta_M = 5$.
- ▷ **ERROR ESTIMATION:** Compute $\eta \approx ||u u_X||_A$. If $\eta \leq TOL$, then **STOP**. Otherwise,
 - Improve H_1^{α} (e.g. refine the mesh) for one or more $\alpha \in J_P$, **OR**
 - Add new multi-indices β to J_P (and initialize H^{β}).
- \triangleright Choose TOL = 1.5e-3.
- \triangleright Target convergence rate: $N_{\rm dof}^{-1/2}$.

Eigel, Gittelson, Schwab, Zander. Adaptive stochastic Galerkin FEM. CMAME (2014).

Example 1: Final Mean & Variance

Time = 20.90 seconds. Total iterations = 26. No. parametric polynomials = 36 No. activated variables = 14. Total DOF = 104,452.

Example 1: Final Approximation Space

At the final step $X := \bigoplus_{\alpha \in J_P} H_1^{\alpha} \otimes P^{\alpha}$

- J_P contains 36 multi-indices, (M = 14 activated parameters)
- $H_1^{\alpha} = \mathbb{Q}_1(h)$ with $h = 2^{-8}, 2^{-7}, 2^{-6}, 2^{-5}, 2^{-4}$ (1,1,3,6,25 terms)

Example 1: Convergence & Accuracy

Example 2: Separable Exponential Covariance

Poorer convergence rate and error estimator is less accurate.

Example 2: Separable Exponential Covariance

At the final step $X := \bigoplus_{\alpha \in J_P} H_1^{\alpha} \otimes P^{\alpha}$

- J_P contains 223 multi-indices, (M = 103 activated parameters)
- $H_1^{\alpha} = \mathbb{Q}_1(h)$ with $h = 2^{-8}, 2^{-6}, 2^{-5}, 2^{-4}$ (1,5,69,148 terms)

Test Problem: exponential decay case

$$D = [0,1]^2, f(\mathbf{x}) = 1, y_m \sim U(-1,1)$$
 and
 $a(\mathbf{x}, \mathbf{y}) = 1 + \sum_{m=1}^{\infty} a_m(\mathbf{x}) y_m \qquad ||a_m(\mathbf{x})||_{\infty} \sim e^{-m}.$

- ▷ INITIALIZE: $J_P = \{\mathbf{0}, (1, 0, ..., 0)\}$ and $H_1^{\alpha} = \mathbb{Q}_2(h)$ on uniform mesh with $h = 2^{-4}$ (level 4).
- ▷ **DETAIL SPACE:** Choose $H_2^{\alpha} = \mathbb{Q}_4(h)$ and $\Delta_M = 2$.
- \triangleright Choose TOL = 1e-4.
- \triangleright Target convergence rate: N_{dof}^{-1} .

Lord, Powell, Shardlow. Introduction to Computational Stochastic PDEs, CUP, 2014.

Example 3: Final Mean & Variance

Time = 26.80 seconds. Total iterations = 27 No. parametric polynomials = 150 No. activated variables = 13 Total DOF = 68,246

Example 3: Convergence & Accuracy

Summary: Adaptive ML-SGFEM for Scalar Elliptic PDEs

- □ If you are prepared to exploit **structure**, SG methods can be used to build **surrogates** with automated and **rigorous error control**.
- □ For 'nice enough' problems, **multilevel** SG methods can achieve **convergence rates** associated with the chosen spatial discretization for the analogous **deterministic** problem.
- \Box Accurate a posteriori **error estimation** is key for driving adaptive algorithms and designing X in a smart way.
- Classical hierarchical¹ error estimation can be modified for use in the parametric PDE setting.

MATLAB code:

https://github.com/ceapowell/ML-SGFEM

¹Bank & Weiser, Bank & Smith, Ainsworth & Oden

Linear Elasticity + Uncertain Young Modulus

Herrmann model for linear elasticity for nearly incompressible materials.

$$-\nabla \cdot \boldsymbol{\sigma} (\mathbf{u}) = \mathbf{f}, \qquad \nabla \cdot \mathbf{u} + \lambda^{-1} \boldsymbol{\rho} = \mathbf{0}$$

where the stress + strain tensors are

$$\sigma(\mathbf{u}) := 2\mu \, \epsilon(\mathbf{u}) - \rho \mathbf{I}, \quad \epsilon(\mathbf{u}) := (\nabla \mathbf{u} + (\nabla \mathbf{u})^{\top})/2$$

+ the Lamé coefficients λ, μ are:

$$\mu(\mathbf{x}, \mathbf{y}) = \frac{E(\mathbf{x}, \mathbf{y})}{2(1+\nu)}, \quad \lambda(\mathbf{x}, \mathbf{y}) = \frac{E(\mathbf{x}, \mathbf{y})\nu}{(1+\nu)(1-2\nu)}$$

- **Solution fields**: **u**, *p* (displacement, pressure)
- \Box Uncertain input: Young modulus $E(\mathbf{x}, \mathbf{y}) := e_0(\mathbf{x}) + \sum_{m=1}^{\infty} e_m(\mathbf{x}) y_m$
- \Box Physical parameters: $\nu \in (0, 1/2)$ (Poisson ratio)

Error Estimation: Single-Level Setting

Denote the stochastic Galerkin approximation

 $\mathbf{u}_{\mathrm{gal}} \in \widehat{\mathbf{V}} := \mathbf{V}_h \otimes \mathcal{P}, \qquad p_{\mathrm{gal}}, \ \widetilde{p}_{\mathrm{gal}} \in \widehat{\mathcal{W}} := \mathbf{W}_h \otimes \mathcal{P}.$

Error equations

Substituting $\mathbf{u} = \mathbf{u}_{gal} + e^{\mathbf{u}}$, $p = p_{gal} + e^{p}$ and $\tilde{p} = \tilde{p}_{gal} + e^{\tilde{p}}$ gives:

$$egin{aligned} &a(e^{\mathbf{u}},\mathbf{v})+b(\mathbf{v},e^{p})=\mathcal{R}^{\mathbf{u}}(\mathbf{v}) &orall \mathbf{v}\in\mathbf{V}, \ &b(e^{\mathbf{u}},q)-c(e^{ ilde{p}},q)=\mathcal{R}^{p}(q) &orall q\in W, \ &-c(e^{p}, ilde{q})+d(e^{ ilde{p}}, ilde{q})=\mathcal{R}^{ ilde{p}}(ilde{q}) &orall ilde{q}\in W, \end{aligned}$$

where $\mathcal{R}^{\mathbf{u}}(\mathbf{v})$, $\mathcal{R}^{p}(q)$ and $\mathcal{R}^{\tilde{p}}(\tilde{q})$ are the residuals.

 \triangleright Approximate $e^{\mathsf{u}} \in \mathsf{V}$, $e^{p}, e^{\tilde{p}} \in W$ in <u>richer</u> spaces than $\widehat{\mathsf{V}}$ and $\widehat{\mathcal{W}}$.

Hierarchical Approach: Single-Level Setting

 \triangleright Choose FEM detail spaces $\widetilde{\mathbf{V}}_h \subset \mathbf{H}_0^1(D), \ \widetilde{W}_h \subset L^2(D)$ with

$$\mathbf{V}_h \cap \widetilde{\mathbf{V}}_h = \{\mathbf{0}\}, \qquad W_h \cap \widetilde{W}_h = \{\mathbf{0}\},$$

such that the enriched spaces are an inf-sup stable pair:

$$\mathbf{V}_h^* := \mathbf{V}_h \oplus \widetilde{\mathbf{V}}_h$$
 and $W_h^* := W_h \oplus \widetilde{W}_h$.

Hierarchical Approach: Single-Level Setting

 \triangleright Choose FEM detail spaces $\widetilde{\mathbf{V}}_h \subset \mathbf{H}_0^1(D), \ \widetilde{W}_h \subset L^2(D)$ with

$$\mathbf{V}_h \cap \widetilde{\mathbf{V}}_h = \{\mathbf{0}\}, \qquad W_h \cap \widetilde{W}_h = \{\mathbf{0}\},$$

such that the enriched spaces are an inf-sup stable pair:

$$\mathbf{V}_h^* := \mathbf{V}_h \oplus \widetilde{\mathbf{V}}_h$$
 and $W_h^* := W_h \oplus \widetilde{W}_h$.

 \triangleright Choose a new set of multi-indices to obtain a polynomial space Q with

$$\mathcal{P}\cap \mathcal{Q}=\{0\}.$$

Hierarchical Approach: Single-Level Setting

▷ Choose FEM detail spaces $\widetilde{\mathbf{V}}_h \subset \mathbf{H}_0^1(D)$, $\widetilde{W}_h \subset L^2(D)$ with

$$\mathbf{V}_h \cap \widetilde{\mathbf{V}}_h = \{\mathbf{0}\}, \qquad W_h \cap \widetilde{W}_h = \{\mathbf{0}\},$$

such that the enriched spaces are an inf-sup stable pair:

$$\mathbf{V}_h^* := \mathbf{V}_h \oplus \widetilde{\mathbf{V}}_h$$
 and $W_h^* := W_h \oplus \widetilde{W}_h$.

 \triangleright Choose a new set of multi-indices to obtain a polynomial space Q with

$$\mathcal{P} \cap \mathcal{Q} = \{0\}.$$

▷ 'Enriched' error approximation spaces:

$$\mathbf{V}^* := \widehat{\mathbf{V}} \oplus \left(\widetilde{\mathbf{V}}_h \otimes \mathcal{P} \right) \oplus (\mathbf{V}_h \otimes \mathcal{Q}),$$

 $W^* := \widehat{W} \oplus \left(\widetilde{W}_h \otimes \mathcal{P} \right) \oplus (W_h \otimes \mathcal{Q}).$

Reference: Khan, Bespalov, Powell., Silvester, Math. Comp., 90(328), (2020).

Error Estimation: Single-Level Setting

Define detail spaces:

$$\mathbf{V}_{\mathrm{new}} = \left(\widetilde{\mathbf{V}}_h \otimes \mathcal{P}\right) \oplus (\mathbf{V}_h \otimes \mathcal{Q}), \quad \mathcal{W}_{\mathrm{new}} = \left(\widetilde{\mathcal{W}}_h \otimes \mathcal{P}\right) \oplus (\mathcal{W}_h \otimes \mathcal{Q}).$$

Solve Simplified Error Equations

Find $\mathbf{e}_{\text{approx}}^{\mathbf{u}} \in \mathbf{V}_{\text{new}}$, $e_{\text{approx}}^{p} \in W_{\text{new}}$ and $e_{\text{approx}}^{\tilde{p}} \in W_{\text{new}}$ such that: $a_{0}(\mathbf{e}_{\text{approx}}^{\mathbf{u}}, \mathbf{v}) := \mathcal{R}^{\mathbf{u}}(\mathbf{v}), \quad \forall \mathbf{v} \in \mathbf{V}_{\text{new}}$ $c_{0}(e_{\text{approx}}^{p}, q) := \mathcal{R}^{p}(q), \quad \forall q \in W_{\text{new}},$ $d_{0}(e_{\text{approx}}^{\tilde{p}}, \tilde{q}) := \mathcal{R}^{\tilde{p}}(\tilde{q}), \quad \forall \tilde{q} \in W_{\text{new}}.$
Define detail spaces:

$$\mathbf{V}_{\mathrm{new}} = \left(\widetilde{\mathbf{V}}_h \otimes \mathcal{P}\right) \oplus (\mathbf{V}_h \otimes \mathcal{Q}), \quad \mathcal{W}_{\mathrm{new}} = \left(\widetilde{\mathcal{W}}_h \otimes \mathcal{P}\right) \oplus (\mathcal{W}_h \otimes \mathcal{Q}).$$

Solve Simplified Error Equations

Find $\mathbf{e}_{\text{approx}}^{\mathbf{u}} \in \mathbf{V}_{\text{new}}$, $e_{\text{approx}}^{p} \in W_{\text{new}}$ and $e_{\text{approx}}^{\tilde{p}} \in W_{\text{new}}$ such that: $a_{0}(\mathbf{e}_{\text{approx}}^{\mathbf{u}}, \mathbf{v}) := \mathcal{R}^{\mathbf{u}}(\mathbf{v}), \quad \forall \mathbf{v} \in \mathbf{V}_{\text{new}}$ $c_{0}(e_{\text{approx}}^{p}, q) := \mathcal{R}^{p}(q), \quad \forall q \in W_{\text{new}},$ $d_{0}(e_{\text{approx}}^{\tilde{p}}, \tilde{q}) := \mathcal{R}^{\tilde{p}}(\tilde{q}), \quad \forall \tilde{q} \in W_{\text{new}}.$

A posteriori error estimate is defined as

$$\eta := (\eta_{\mathbf{u}}^2 + \eta_{p}^2 + \eta_{\tilde{p}}^2)^{1/2},$$

where $\eta_{\mathbf{u}} := \|\mathbf{e}_{\operatorname{approx}}^{\mathbf{u}}\|_{a_0}, \quad \eta_{p} := \|e_{\operatorname{approx}}^{p}\|_{c_0}, \quad \eta_{\tilde{p}} := \|e_{\operatorname{approx}}^{\tilde{p}}\|_{d_0}.$

$$\eta := (\eta_{\mathbf{u}}^2 + \eta_{\rho}^2 + \eta_{\tilde{\rho}}^2)^{1/2}.$$

Two-sided error bounds

$$C_1 \eta \leq |||(e^{\mathbf{u}}, e^{p}, e^{\tilde{p}})||| \leq C_2 \eta,$$

where C_1, C_2 are **independent** of the **discretization** parameters and ν .

$$\eta := (\eta_{\mathbf{u}}^2 + \eta_{\rho}^2 + \eta_{\tilde{\rho}}^2)^{1/2}.$$

Two-sided error bounds

$$C_1 \eta \leq |||(e^{\mathbf{u}}, e^{p}, e^{\tilde{p}})||| \leq C_2 \eta,$$

where C_1 , C_2 are **independent** of the **discretization** parameters and ν .

Each component of the estimator can be decomposed, e.g.,

$$\eta_{\mathbf{u}}^2 = \|\mathbf{e}_{\text{approx}}^{\mathbf{u}}\|_{\mathbf{a}_0}^2 = \|\mathbf{e}_{\text{spatial}}^{\mathbf{u}}\|_{\mathbf{a}_0}^2 + \|\mathbf{e}_{\text{param}}^{\mathbf{u}}\|_{\mathbf{a}_0}^2$$

where

$$\mathbf{e}^{\mathbf{u}}_{\text{spatial}} \in \widetilde{\mathbf{V}}_h \otimes \mathcal{P}, \qquad \mathbf{e}^{\mathbf{u}}_{\text{param}} \in \mathbf{V}_h \otimes \mathcal{Q}.$$

$$\eta := (\eta_{\mathbf{u}}^2 + \eta_{\rho}^2 + \eta_{\tilde{\rho}}^2)^{1/2}.$$

Two-sided error bounds

$$C_1 \eta \leq |||(e^{u}, e^{p}, e^{\tilde{p}})||| \leq C_2 \eta,$$

where C_1, C_2 are **independent** of the **discretization** parameters and ν .

Each component of the estimator can be decomposed, e.g.,

$$\eta_{\mathbf{u}}^2 = \|\mathbf{e}_{\text{approx}}^{\mathbf{u}}\|_{\mathbf{a}_0}^2 = \|\mathbf{e}_{\text{spatial}}^{\mathbf{u}}\|_{\mathbf{a}_0}^2 + \|\mathbf{e}_{\text{param}}^{\mathbf{u}}\|_{\mathbf{a}_0}^2$$

where

$$\mathbf{e}^{\mathbf{u}}_{\mathrm{spatial}} \in \widetilde{\mathbf{V}}_h \otimes \mathcal{P}, \qquad \mathbf{e}^{\mathbf{u}}_{\mathrm{param}} \in \mathbf{V}_h \otimes \mathcal{Q}.$$

Can use separate contributions as indicators for the **error reduction** that would be achieved by enriching either (i) V_{h} - W_{h} or (ii) \mathcal{P} at the next step.

Reference: Khan, Bespalov, Powell., Silvester, Math. Comp., 90(328), (2020).

Clamped Plate Problem - Revisited

$$E(\mathbf{x},\mathbf{y}) = 1 + \sum_{m=1}^{\infty} a_m(\mathbf{x}) y_m, \qquad \|a_m(\mathbf{x})\|_{\infty} \sim m^{-2}, \quad y_m \sim U(-1,1).$$

Horizontal Displacement (Mean, Variance)

Pressure (Mean, Variance)

Adaptive: Poisson ratio $\nu = 0.4$

Initial discretization:

 \triangleright **V**_{*h*}-*W*_{*h*} = **P**₂-*P*₁ on coarse uniform mesh.

 $\rhd \mathcal{P} = \operatorname{span} \{ \psi_{\alpha}(\mathbf{y}), \alpha \in J_P \}, \text{ with } J_P = \{ (0, 0, \ldots,), (1, 0, \ldots) \}.$

Adaptive: Poisson ratio $\nu = 0.4$

Initial discretization:

 \triangleright **V**_h-W_h = **P**₂-P₁ on coarse uniform mesh.

 $\triangleright \mathcal{P} = \operatorname{span} \{ \psi_{\alpha}(\mathbf{y}), \alpha \in J_P \}, \text{ with } J_P = \{ (0, 0, \dots,), (1, 0, \dots) \}.$

Improved Pressure Approximation ($\nu = 0.4$)

Mean (left) and variance (right).

- Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients, R. A. Todor and C. Schwab, IMA J. Numer. Anal., 27(2), pp.232–261, 2007.
- □ Sparse high order FEM for elliptic sPDEs, M. Bieri and **C. Schwab**. Comput. Methods Appl. Mech. Engrg., 198, pp.1149–1170, 2009.
- Sparse tensor discretization of elliptic SPDEs, M. Bieri, R. Andreev, and C. Schwab. SIAM J. Sci. Comput., 31(6), pp.4281–4304, 2009.
- Convergence rates of best N-term Galerkin approximations for a class of elliptic sPDEs, A. Cohen, R. DeVore, and C. Schwab. Found. Comput. Math., 10(6), pp.61–646, 2010.

References: A Priori Analysis

- Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs, C. Schwab and C. J. Gittelson, Acta Numer., 20 (2011), pp. 291–467.
- Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs, A. Cohen, R. DeVore, and C. Schwab, Anal. Appl. (Singap.), 9(1):11–47, 2011.
- On the optimal polynomial approximation of stochastic PDEs by Galerkin and collocation methods, J. Beck, R. Tempone, F. Nobile, and L. Tamellini. Math. Models Methods Appl. Sci., 22(9), 2012.
- Fully discrete approximation of parametric and stochastic elliptic PDEs, M. Bachmayr, A. Cohen, D. Dung, and C. Schwab, SIAM J. Numer. Anal., 55(5):2151?2186, 2017.

References: A Posteriori Error Estimation

- Adaptive stochastic Galerkin FEM, M. Eigel, C.J, Gittelson, C. Schwab, E. Zander, Computer Methods in Applied Mechanics and Engineering, 270, 2014, pp.247–269.
- □ A convergent adaptive stochastic Galerkin finite element method with quasi-optimal spatial meshes, **M. Eigel**, C.J, Gittelson, **C. Schwab**, E. Zander, ESAIM: M2AN, 49 (5), 2015, pp.1367 –1398.
- Local equilibration error estimators for guaranteed error control in adaptive stochastic higher-order Galerkin finite element methods, M. Eigel and C. Merdon. SIAM/ASA J. Uncertain. Quantif., 4(1):1372–1397, 2016.
- Energy norm a posteriori error estimation for parametric operator equations, A. Bespalov, C.E. Powell, D. Silvester, SIAM Journal Sci. Comp. 36(2), A339–A363 (2014),

References: A Posteriori Error Estimation

- Efficient adaptive stochastic Galerkin methods for parametric operator equations, A. Bespalov, D. Silvester SIAM Journal Sci. Comp, 38(4), 2016, pp. A2118-A2140.
- CBS Constants and Their Role in Error Estimation for Stochastic Galerkin Finite Element Methods, A. Crowder, C.E. Powell, J. Sci., Comput., 77(2), 2018, pp.1030–1054.
- Efficient Adaptive Multilevel Stochastic Galerkin Approximation Using Implicit A Posteriori Error Estimation A. Crowder, C.E. Powell, A. Bespalov, SIAM, J. Sci., Comput., 41(3), 2019, A1681–A1705.
- Convergence and Rate Optimality of Adaptive Stochastic Galerkin FEM, A. Bespalov, D. Praetorius, M. Ruggeri, IMA J. Numer. Anal., 42(3), 2022, pp.2190–2213.

Locally Adapted Meshes

IF SPATIAL

- Freeze J_P
- improve H_1^{α} for $\alpha \in \overline{J_P}$

Adam Crowder. Adaptive & Multilevel Stochastic Galerkin Finite Element Approximation. PhD Thesis, University of Manchester, (2020).