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Quantum SciML

1. Quantum neural networks

• data embedding

• kernels

5. Quantum generative modelling with latent space models

• model transformation

• DQGM

3. Quantum kernels for SciML

• kernel models

• support vector regression

• convex DE solver

• fraud detection

2. DQC: derivative quantum circuits

• circuit differentiation

• ODE solving

• convergent-

divergent nozzle

• model discovery

• barren plateaus

• variational circuits

• Fourier vs Chebyshev

4. Generative modelling by quantum quantile mechanics

• QGAN

• quantile functions

• QCBM

• GAN

• QQM

• OU sampling

• OU sampling

• copula multivariate models

• capacity/expressivity

• trainability
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HHL protocol

QC for linear systems

[Phys. Rev. Lett. 15, 150502 (2009)]

We reformulate a linear system problem as inversion of Hermitian operator A:

Quantum solution runs in O(log(N) s2 k2 /e) time, and can be further improved to k log(1/e).

This can be used as a subroutine in solving linear differential equations.

However, the challenges of described 

scheme include: 

1) the input problem;

2) the output problem;

3) deep circuits and ancilla overhead;

4) linearity;

5) dependence on the finite differencing.

Overall we can expect polynomial speed 

ups, but this dependence on the problem 

considered (dimensionality, correlations).

We may need to rethink the way quantum machine learning is approached

Instead of speeding up linear algebra protocols, let us look advantage in representing function 

and boost neural network based approaches.
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Quantum Machine Learning



Limited by

Machine learning

5

regression

classification

clustering

generative 

modelling

PDE solvers
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We can loosely divide machine learning algorithms into two families of algorithms: 

• deep neural network-based protocols        and

deep neural net

Machine learning algorithms

• kernel-based protocols

classical kernel 
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Classical machine learning corresponds to a highly efficient way to represent generic

parametrised nonlinear function – we use classical neural networks as universal approximators.

artificial neural network

action of nonlinear neuron

Once we have our parametrisable model, we need to 

train it with gradient descent, or do any other data 

analysis in the unsupervised way.

activation functions

Machine learning
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Quantum neural networks

Our goal is to represent functions in the form of parametrised quantum circuits, which can 

be seen as analogues of quantum neural networks.

[M. Benedetti et al., Quantum Sci. Technol. 4, 043001 (2019)]

In the simplest case we use a cost function read as measurement of Hermitian operators

QNN-based quantum state latent space function
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We can loosely divide machine learning algorithms into two families of algorithms: 

• deep neural network-based protocols        and

deep neural net

We can design quantum machine learning methods based on similar principles:

Machine learning algorithms

• kernel-based protocols

quantum neural net

Each has pros/cons, and we will use them depending on the context.

classical kernel 

quantum kernel
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Quantum neural networks

The power of quantum machine learning comes from representing data as quantum states 

in high-dimensional Hilbert space.

[M. Schuld, arXiv:2101.11020 (2021)]

quantum embedding (feature map) drawing decision boundary in a 

feature space

• Expressivity of our model (Rademacher complexity of a function class) is defined by 

the structure of the quantum feature map

• To solve specific ML tasks we can train our parametrized model by adjusting angles to 

minimize a loss function

• Alternatively, we can use quantum embedding followed by kernel measurements and 

convex optimisation



Variational quantum algorithms
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workflow for hybrid quantum-classical algorithms (VQE)

Key ingredients:

▷ variational quantum 

circuit (similar to choosing 

an architecture of neural 

network)

▷ loss function (energy for 

VQE, but can be fidelity and 

overlaps for generic 

protocols)

▷ optimization schedule

(derivative-based vs 

derivative-free, frugal or not, 

influence of noise)

▷ measurement schedule

(we need to average 

Hamiltonian, equivalent to 

measuring all commuting 

sets of Pauli strings)
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Quantum circuit learning

One of the first problems we can solve corresponds to regression.

[K. Mitarai, PRA 98, 032309 (2018)]nonlinear regression by QNNs

input data for training variationally prepared function

To match the training data we need to assign the loss function. The simplest and most 

intuitive form is mean squared error (MSE) also known as L2 loss. 

MSE loss:

Getting advantage requires working with multidimensional functions and feature maps. 
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Quantum circuit learning

One of the first problems we can solve corresponds to regression.

[K. Mitarai, PRA 98, 032309 (2018)]nonlinear regression by QNNs

input data for training variationally prepared function

To match the training data we need to assign the loss function. The simplest and most 

intuitive form is mean squared error (MSE) also known as L2 loss. 

MSE loss:

Getting advantage requires working with multidimensional functions and feature maps. 

The challenge is finding problems 

where classical solutions do not 

provide sufficient accuracy.
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We can consider a generic feature map with interleaved 𝒙-dependent unitaries 𝑺(𝒙) (data 

embedding) and parameterized circuits 𝑾 (“weights”). This is called a data reuploading

technique.

Quantum feature maps

Circuits 𝑾 may 

have some 

arbitrary structure.

Data embedding 𝑺(𝒙) generated by 

some Hermitian operator and without 

pre-processing of 𝒙 can be 

diagonalized as: 

Our goal is to form a quantum model 

as an expectation:

developing correspondence between 

QNN-based models and Fourier seriesNext, we can show that the model 

corresponds to partial Fourier series with 

controlled coefficients.
[M. Schuld et al, PRA 103, 032430 (2021)]
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Quantum feature maps
We can consider the action of the feature map in the eigenbasis of embedding (diagonal 

generator S). Variable dependence has a complex exponential form that are concatenated, 

weighted by 𝑾s, and contracted on the operator 𝑴.

Contracting the resulting state on the operator 𝑴 we arrive to the quantum model of the type:

QNN-based model as 

partial Fourier series: where

The resulting model is characterised by its spectrum

Major properties of this spectrum are and

size degree

Let’s characterise the properties of the models we build.
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The number of available frequencies depends on the number of nontrivial gaps (difference 

of eigenvalues) and number of reuplodings. This can be serial and parallel.

We generally consider three key properties of quantum models (informal):

1) capacity (𝑲,𝑫, redundancy etc)

2) expressivity (𝒄[𝜽])

3) trainability (var[grad[𝜃]])

Quantum feature maps

characterizes available fitting functions

accessible models defined by 

variational parameters

ability to find suitable 

(quasi)optimal parameters

coefficient distribution for random 𝜽

Identifying high-capacity 

quantum models with excellent 

expressivity and trainability is 

an ongoing challenge
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Quantum feature maps
Next, we can also develop feature maps based on different basis function. For instance, we 

have designed a Chebyshev quantum feature map

[OK, A. Paine, V. Elfving, Phys. Rev. A 103, 052416 (2021)]
Let us use rotations of the form

parameterised embedding

Chebyshev basis functions

For TR-symmetric ansatze we can write a 

corresponding model as

quantum Chebyshev model

Finally, we have also introduced a phase feature map with exponential capacity

[OK, A. E. Paine, V. Elfving, arXiv:2202.08253 (2022)]

phase map model
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DQCs for nonlinear DEs
Our goal is to represent functions in the form of differentiable quantum circuits (DQCs) aka 

quantum neural networks, as used in the quantum circuit learning.

In the simplest case we use a cost function readout as measurement 

of Hermitian operators (any chosen pool)

DQC-based quantum state latent space function

quantum feature map

Once we have represented a function 𝒇(𝒙) using DQC, we can also find its derivative 

d𝒇(𝒙)/𝒅𝒙 using automatic differentiation (forward path).

[OK, A. E. Paine, V. Elfving, Phys. Rev. A 103, 052416 (2021)]
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DQCs for nonlinear DEs

To differentiate the quantum circuit consisting of gates generated by Pauli string generators 

we can use the parameter shift rule. While this is usually done for derivative-based 

optimization, in our case we also use it for automatic feature map differentiation.

differentiated quantum circuits

[K. Mitarai et al., PRA 98, 032309 (2018)]

[M. Schuld et al., PRA 99, 032331 (2019)]

Derivatives can be evaluated at any point of the grid.

We can also now perform 

generalized circuit differentiation

with arbitrary generators for feature 

maps and variational gates

[OK, V. Elfving, PRA 104, 

052417 (2021)]
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PINN: Physics-informed neural network

• The approach works for various architectures, and thus is applicable to analog neural 

networks (optical, electrical, spintronic). Quantum offers large feature space and accuracy

• Although a heuristic, using neural PDEs outperformed traditional methods already for 

systems with 6 equations, and is efficient for d > 3 dimensions

Recent year neural function representation has led to advances in 

computational fluid dynamics, where DNNs are used as universal 

approximators and derivatives are analytical

physics-informed neural networks and neural PDEs 

[Raissi et al, J. Comp. Phys. 

378, 686 (2019)]

[arXiv:2001.04385]
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DQCs for nonlinear DEs

Then, we design a loss function such that RHS and LHS parts of the differential equation are 

equal, and search for the optimal solution as

We start with differential equation with appropriate boundary conditions written in the form

DEs:

variational search true DE solutionDQC solution

From the technical side, we develop and use 

several crucial elements:

• Chebyshev feature map of variable capacity

• adjustable cost functions (~classical NNs)

• boundary handling procedures

• add regularization

[OK, V. Elfving, PRA 104, 052417 (2021)]
Annie Paine 

(PhD student)

Vincent Elfving

(CTO/sols)
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DQCs for nonlinear DEs

true solution (blue) and DQC solution (red)

First, let us test it for some simple example with parabolic solution. The function is updated 

dynamically at each epoch (6q, HEA, depth=6, Adam, Chebyshev feature map)
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DQCs for nonlinear DEs

Ok, so it works.

First, let us test it for some simple example with parabolic solution. The function is updated 

dynamically at each epoch (6q, HEA, depth=6, Adam, Chebyshev feature map)

true solution (blue) and DQC solution (red)
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DQCs for nonlinear DEs

Given the nozzle profile 𝐴(𝑥) and initial 

conditions, our goal is to find the steady state 

profile for density, temperature, and velocity.

Finally, we consider an example from fluid dynamics, being quasi-1D Navier-Stokes

equations for the convergent-divergent nozzle.

Navier-Stokes equations

Classically, it is not easy to integrate this 

system due to divergence at the nozzle throat. 

How can we solve these?
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DQCs for nonlinear DEs

Train the remaining part with 40 points (avoiding 

the throat) using the first stage for regularization 

(150 epochs), for 600 epochs in total.

[OK, A. E. Paine, V. Elfving, Phys. Rev. A 

103, 052416 (2021)]

We train DQC to solve the problem avoiding the divergent region, and show that the solver is 

able to capture the behaviour.

• train from initial 

point 𝑥 = 0 and 

before the throat

• use 20 points and 

200 epochs of 

Adam with 0.01 

learning rate

Good quality of solution is obtained even with 

limited resources.
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DQCs for nonlinear DEs

Train the remaining part with 40 points (avoiding 

the throat) using the first stage for regularization 

(150 epochs), for 600 epochs in total.

[OK, A. E. Paine, V. Elfving, Phys. Rev. A 

103, 052416 (2021)]

We train DQC to solve the problem avoiding the divergent region, and show that the solver is 

able to capture the behaviour.

• train from initial 

point 𝑥 = 0 and 

before the throat

• use 20 points and 

200 epochs of 

Adam with 0.01 

learning rate

Good quality of solution is obtained even with 

limited resources.

Neural networks are efficient in multiple 

dimensions, but the competition from 

classical grid-based methods is fierce 

(tasks shall be data-driven)
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Quantum model discovery

Our goal is to build data-driven physical models. This can be performed in a form of model 

discovery. This corresponds to QMoD, in analogy to DNN-based approaches. 

flow chart of quantum model discovery

[N. Heim, A. Ghosh, OK, V. Elfving, arXiv:2111.06376 (2022)]
We minimize loss on sparse data 

where optimal model and DE terms 

are selected by gradient descent,
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Quantum model discovery

Possible test problems include learning Lotka-Volterra equations.

recovered dynamics of LS system

model loss data loss

[N. Heim, A. Ghosh, OK, V. 

Elfving, arXiv:2111.06376 

(2022)]
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Barren plateaus

[J. R. McClean et al. (Google), Nat. Comun. (2018); M. Cerezo et al., Nat. Commun. (2021)]

One of the major questions for QNN training corresponds to 

barren plateaus – we try to navigate a landscape projected 

from exponentially-large Hilbert space. 

variance vs depth and # qubits

loss landscape

emergence of barren plateaus

• For some circuits the variance of gradients drops exponentially 

in the number of qubits – QNN is not trainable.

• Recent results that for convolutional architecture this can be 

overcome, with polynomial scaling (trainable QNNs).
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Barren plateaus

[J. R. McClean et al. (Google), Nat. Comun. (2018); M. Cerezo et al., Nat. Commun. (2021)]

One of the major questions for QNN training corresponds to 

barren plateaus – we try to navigate a landscape projected 

from exponentially-large Hilbert space. 

variance vs depth and # qubits

loss landscape

emergence of barren plateaus

• For some circuits the variance of gradients drops exponentially 

in the number of qubits – QNN is not trainable.

• Recent results that for convolutional architecture this can be 

overcome, with polynomial scaling (trainable QNNs).

The issues of training QML models 

(vanishing gradients, multiple local 

minima) are progressively addressed, and 

this represents a hot topic of research.
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Quantum Kernel Machine Learning
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Quantum differential kernels

We can use quantum kernels for solving nonlinear regression and differential equations

with convex optimization.

mixed model regression (MMD)

For MMD we simply form L2 loss, and apply convex optimisation as

support vector regression (SVR)

For SVR we use dual variables, Lagrangian formulation, and Karush-Kuhn-Tucker (KKT) 

optimality conditions to find 𝑓 using the kernel trick.

reproducing quantum correlations MMR training with Newton’s method

[A. E. Paine, V. Elfving, OK; arXiv:2203.08884 (2022)]
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Quantum differential kernels

We can exploit the same approach for solving differential equations with quantum kernels.

differential constraint

system of equation for SVR-based ODE solver

We developed quantum kernel 

differentiation in different forms, 

and used it to several problems.

SVR based solution

[A. E. Paine, V. Elfving, OK; 

arXiv:2203.08884 (2022)]

While general solvers are not yet known (active research in classical ML), we suggest solvers 

for various cases.

kernel derivatives
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Quantum fraud detection

Another area where quantum kernels may be beneficial is fraud detection, where 

unsupervised machine learning is performed using one-class support vector machine 

(OC-SVM).

t-SNE 

visualisation

Used Kaggle dataset with PCA pre-

processing, average precision (AP) 

metric, and various quantum 

embeddings (IQP, QAOA, HEA).

quantum vs classical benchmarks

# features = # qubits Einar Bui 

Magnusson (HSBC)

• advantage is dataset dependent 

(correlations)

• training is consuming due to 𝑂(𝐿2)
Gram matrix estimation, but can be 

reduced

• absolute clock rates of quantum 

computers and sampling rates are 

important

[OK, EBM; arXiv:2208.01203 (2022)]
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Quantum fraud detection

Another area where quantum kernels may be beneficial is fraud detection, where 

unsupervised machine learning is performed using one-class support vector machine 

(OC-SVM).

t-SNE 

visualisation

Used Kaggle dataset with PCA pre-

processing, average precision (AP) 

metric, and various quantum 

embeddings (IQP, QAOA, HEA).

quantum vs classical benchmarks

# features = # qubits Einar Bui 

Magnusson (HSBC)

• advantage is dataset dependent 

(correlations)

• training is consuming due to 𝑂(𝐿2)
Gram matrix estimation, but can be 

reduced

• absolute clock rates of quantum 

computers and sampling rates are 

important

[OK, EBM; arXiv:2208.01203 (2022)]

Quantum kernel methods use convex 

methods, but require more 

measurements for training and 

inference (Gram matrix updates)
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Generative modelling

classical generative modelling: StyleGAN in action

ours vision of generative modelling…
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Quantum generative modelling

One important QML application corresponds to generative modelling.

QCBM (quantum circuit 

Born machine)

[Benedetti et al., npj Quantum Information 5, 45 (2019)]

Thanks to properties of quantum 

mechanics, quantum states can 

represent quasi-probability distribution, 

with each measurement giving a 

sample according to the Born rule

• Kullback–Leibler divergence as a 

loss function is expensive

• Other options MMD loss, Sinkhorn

divergence etc.

• Finally generator can be trained in 

the adversarial fashion (QGAN)

[B. Coyle et al., npj Quant. Inf. 6 , 60 (2020)]
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Quantum generative modelling

generative adversarial training schedule

[Ian Goodfellow et al., Generative Adversarial Networks, arXiv:1406.2661]

The goal of generative adversarial network (GAN) as a variationally trained neural net is to 

provide a synthetic sample that looks like a real sample, as judged by a discriminator 

network.

The training is based on game theory approach with an objective to find Nash equilibrium

between the two networks, Generator and Discriminator.
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Quantum generative modelling
Now let’s dissect the classical GAN approach. First we assign a latent space random 

variable

Then we train 𝑫(𝒙) to maximize the probability of assigning correct labels (since we know if 

it was real of fake), and simultaneously train 𝑮(𝒛) by minimizing the difference

random latent variable 

from prior distribution

𝑧 ∈ Z ~ 𝑝𝑧(𝑧)

parametrized 

generator function

parametrized discriminator 

function with single scalar output

~ 𝑝𝑔(𝑧)

(probability that a sample 

came from data)

minimax game max E[log(D(G(z))]
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Quantum generative modelling

• can use QCBM as a generator with fast sampling

• this limits us to discrete distributions

[C. Zoufal et al., npj Quantum Inf. 5, 103 (2019)]

For quantum GANs we can use quantum chips for performing sampling.

• discriminator can be quantum

(QNN) or classical (DNN)

Note that as compared to classical GANs with QCBM we learn (quasi)probability distributions.

o potential caveats come from trainability of QCBMs as they are typically based on the 

global cost operators

o may require large number of samples to learn

o once loaded, we cannot use distributions when considering differential equations



41

Quantum generative modelling

A different possibility is offered when the generator is substituted by a QNN. In this case can 

be used to encode 𝑮(𝒛) using a feature map for a latent variable 𝒛 and enable continuous 

quantum generative adversarial networks.

QGAN generator (continuous)

[J. Romero, A. Aspuru-Guzik, Adv. Quantum Technol. 2000003 (2020)]

QGAN discriminator

In this case QGAN resembles the classical analogue, and allows using full QNN machinery.

There are positive and negative points though.

o to get a sample from trained probability 

distribution we need to measure 

expectations of a cost operator 

(increased measurement budget) 

• can work with continuous distributions

• training becomes more stable since we 

do not work with wavefunction-based 

samples (yet requires equilibrium)
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Quantum generative modelling

The example considers a 2-qubit generator, with the synthetic data coming from pre-defined 

circuit configuration.

QGAN training

Interim conclusion: 

generation modelling 

is difficult.
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Quantum generative modelling

We have decided to approach the task differently. For this, let’s go through the sampling 

procedure carefully and understand what we are trying to achieve. 

Classically, the relevant steps include:

The process we want to perform corresponds to drawing samples 𝑿𝒕 (random variable) from 

a probability distribution (potentially time-dependent):

sampling procedure

 find a cumulative distribution 

function (CDF)

 draw a random uniform latent 

variable 𝒛 and solve

 requires CDF inversion

 the inverse of CDF is called a 

quantile function, that gives 

use samples
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Quantum quantile mechanics
To summarise, for producing samples we need to construct a quantile function 𝑸(𝒛) as a 

monotonically increasing function of a latent variable (almost* like GAN).

Which probability distributions shall we consider? The motivation comes from stochastic 

differential equations (SDEs):

stochastic differential equation

one opportunity is to solve a corresponding 

Fokker-Planck equation for 𝒑(𝒙, 𝒕) if we 

want to consider expectations

More general: [H. Alghassi et al., arXiv:2108.10846 (2021)]

Once we want to perform generative 

modelling, we should use quantum 

quantile mechanics (aka quantilized FP)

quantile mechanics PDE

After solving QQM equations as a function of 𝒛 and 𝑡, representing quantile function in a 

neural form, we can perform time series generation and dataset augmentation, while learning 

from data and allowing for trainable SDE parameters.

We will use differentiable quantum circuits to solve QQM equations based on 

feature map differentiation and variational procedure. 

[Steinbrecher & Shaw, Quantile mechanics, 

Eur. J. Appl. Math. 19, 87 (2008)]
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Quantum quantile mechanics
Returning back to the QQM problem, we combine our loss function to learn from data and 

satisfy differential equations 

loss function for training differential loss function

Now let’s test the approach by considering 

Ornstein-Uhlenbeck process as an example
Ornstein-Uhlenbeck SDE

The solution for OU is known, where PDF is normal and QF is inverse error function.

QQM training

[A. E. Paine, V. Elfving, OK, arXiv:2108.03190 (2021)]
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Quantum quantile mechanics
We can now perform sampling from time-dependent quantum QF, and compare to 

classical SDE solvers.

sampled SDE solutions

quantum-classical 

difference 

While results above assume a known initial quantile 

function, we can also learn it from data by dataset 

ordering, and assigning latent variable to each bin.

data-inferred QQF

• excellent* results can be obtained with relatively low 

number of samples and stable procedure

o we need to mind the “tails” for high-quality sampling

[A. E. Paine, V. Elfving, OK, arXiv:2108.03190 (2021)]
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Differentiable quantum generative models
To improve sampling we need to utilize feature map encoding for PDF, yet being able to 

sample then in the bit basis. We combine both by constructing differentiable quantum 

generative models (DQGM).

We divide training and sampling stages, where learning is in the phase (latent) space.

samplinglatent space model

[OK, A. E. Paine, V. Elfving, arXiv:2202.08253 (2022)]

QCBM (quantum circuit 

Born machine)

generalize QCBM to make 

differentiable and

For this, we use the phase feature map:
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Differentiable quantum generative models

Once we have represented a function 𝒑(𝒙) using DQGM, we can also find its derivative 

d𝒑(𝒙)/𝒅𝒙 using automatic differentiation (measurement modification), and introduce 

differential constraints – solve SDEs.

The mapping between phase (latent) space and bit-basis for sampling corresponds to 

quantum Fourier transform (efficient subroutine).

o analysis of the phase feature map

o DQGM and generalized QCBM

o frequency taming

o feature map sparsification

o AD via modified measurements

o Fokker-Planck constrained

o model evolution for dynamics

o multivarite distributions and building of 

copula models

[OK, A. E. Paine, V. Elfving, arXiv:2202.08253 (2022)]

Our goal is to join the quantum model expressivity 

(capacity) advantage and sampling advantage as 

utilized in “supremacy”-type advantage
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Differentiable quantum generative models

Once we have represented a function 𝒑(𝒙) using DQGM, we can also find its derivative 

d𝒑(𝒙)/𝒅𝒙 using automatic differentiation (measurement modification), and introduce 

differential constraints – solve SDEs.

The mapping between phase (latent) space and bit-basis for sampling corresponds to 

quantum Fourier transform (efficient subroutine).

Model differentiation is important if we want to supplement learning from data with learning 

from differential constraints (making it physics-informed/finance-informed etc).

o analysis of the phase feature map

o DQGM and generalized QCBM

o frequency taming

o feature map sparsification

o AD via modified measurements

o Fokker-Planck constrained

o model evolution for dynamics

o multivarite distributions and building of 

copula models

[OK, A. E. Paine, V. Elfving, arXiv:2202.08253 (2022)]
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Differentiable quantum generative models
We can then continue to solve SDE for the Ornstein-Uhlenbeck process

Model differentiation is important if we want to supplement learning from data with learning 

from differential constraints (making it physics-informed/finance-informed etc).

SDE for OU process
Fokker-Planck equation at stationarity
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Differentiable quantum generative models

multivariate quantum copula sampling

We can use copula approach to encode correlations explicitly using entangling operations, 

and performing training/sampling separately

copula PDF
multivariate sampling

[OK, A. E. Paine, V. Elfving, arXiv:2202.08253 (2022)]
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Differentiable quantum generative models

multivariate quantum copula sampling



Conclusions and questions

53

 Quantum machine learning offers a powerful and innovative paradigm for 

performing data-driven tasks

 Quantum advantage may arise from building models based on high-

dimensional quantum states

 Quantum models can be differentiated, and used for solving differentia 

equations

 We can also use quantum kernel-based approaches to avoid non-convex 

optimisation

 Generative modelling represents a task wjere quantum computers may 

excel

 We can exploit SDE structure to get access to samples via quantile 

functions, and propagate them in time (QQM)

 We can also build latent models for sampling, and get advantage in 

multidimensional setting


