
A Mathematical Perspective on Machine Learning

Weinan E

Center for Machine Learning Research and
School of Mathematical Sciences

Peking University

October 5, 2022 1 / 68

Machine learning has changed the way we do AI.

October 5, 2022 2 / 68

Recognizing images better than average humans

Given a set of “labeled” images (“label” = the content of the image), find an algorithm
that can automatically tell us the content of similar images.

Figure: The Cifar-10 dataset: Each image is assigned a label from the 10 different categories

https://www.cs.toronto.edu/~kriz/cifar.html
October 5, 2022 3 / 68

https://www.cs.toronto.edu/~kriz/cifar.html

AlphaGo: Playing Go game better than the best humans!

It was done purely by machine learning!

https://www.bbc.com/news/technology-35761246

October 5, 2022 4 / 68

 https://www.bbc.com/news/technology-35761246

Generating non-existing data: Pictures of FAKE human faces

https://arxiv.org/pdf/1710.10196v3.pdf

October 5, 2022 5 / 68

https://arxiv.org/pdf/1710.10196v3.pdf

In essence, what’s done in all these examples is to solve some standard
mathematical problem.

October 5, 2022 6 / 68

Image classification:
We are interested in the function

f ∗ : image→ its content (category)

We know the values of f ∗ on a finite sample (the labeled data). The goal is to find accurate
approximation of f ∗.

Supervised learning:
Approximating a target function f ∗ using a finite training set

S = {(xj, yj = f ∗(xj)), j ∈ [n] = {1, 2, · · · , n}}

October 5, 2022 7 / 68

Generating pictures of fake human faces:
Approximating and sampling an unknown probability distribution.

Random variable: pictures of human faces

We don’t know its probability distribution

We do have a finite sample: pictures of real human faces

We can approximate the unknown probability distribution and produce new samples

These new samples are pictures of fake human faces.

Unsupervised learning:
Approximating the underlying probability distribution using finite samples.

October 5, 2022 8 / 68

Playing Go games:
Solving the Bellman equation in dynamic programming.

Given the strategy of the opponent, the dynamics of the Go game is a dynamic
programming problem

The optimal strategy satisfies a Bellman equation

Reinforcement learning:
Finding the optimal strategy in a Markov decision process.

October 5, 2022 9 / 68

Wait a minute, we have been solving these kinds of problems in
(computational) mathematics for a long time!

After all,

approximating functions

approximating and sampling probability distributions

solving differential and difference equations

are all classical problems in numerical analysis.

So what is really the difference?

Dimensionality!

October 5, 2022 10 / 68

Dimensionality of the CIFAR-10 problem

Input dimension:
d = 32× 32× 3 = 3072

October 5, 2022 11 / 68

Classical approximation theory

Approximate a function using piecewise linear functions over a mesh of size h:

d = dimensionality of the problem

m = the total number of free parameters in the model

h ∼ m−1/d

|f ∗ − fm| ∼ h2|∇2f ∗| ∼ m−2/d|∇2f ∗|

To reduce the error by a factor of 10, we need to increase m by a factor of 10d/2.

Curse of dimensionality (CoD): As d grows, computational cost grows exponentially fast.

True for all classical algorithms, e.g. approximating functions using polynomials, or wavelets.

October 5, 2022 12 / 68

Apparently, deep neural networks can do much better in high dimension.

October 5, 2022 13 / 68

Main content

Understanding the magic: mathematical theory for supervised learning.

AI for Science: application of machine learning to science and scientific computing.

Skip: “better” machine learning models motivated by ODEs and PDEs.

October 5, 2022 14 / 68

Neural networks are a special class of functions

Two-layer neural networks:

f (x) =
∑
k

akσ(wk · x + ck)

Two set of parameters: {ak}, {(wk, ck)}
σ(z) = max(z, 0), the ReLU (rectified linear units) function.

σ(z) = (1 + e−z)−1, the “sigmoid function”.

Remark about notation: We will neglect the bias term ck in the notation.

October 5, 2022 15 / 68

Deep neural networks: compositions of those

linear transformations

scalar nonlinear function

compositions

f (x, θ) = WLσ ◦ (WL−1σ ◦ (· · ·σ ◦ (W0x))), θ = (W0,W1, · · · ,WL)

σ is a scalar nonlinear function, the activation function.
“◦” means acting on each components, the W ’s are (weight) matrices.

October 5, 2022 16 / 68

Supervised learning

Knowing the values of f ∗ on a finite training dataset

S = {(xj, yj = f ∗(xj)), j ∈ [n] = {1, 2, · · · , n}}

find accurate approximations of the target function f ∗.

Our main objective is to:

Minimize the testing error (“population risk” or “generalization error”):

R(f) = Ex∼µ(f (x)− f ∗(x))2 =

∫
X

(f (x)− f ∗(x))2dµ

where µ is the distribution of x (say on a domain X ⊂ Rd).

To be specific, we will take X = [0, 1]d.

October 5, 2022 17 / 68

Standard procedure for supervised learning

1 choose a hypothesis space (a set of trial functions) Hm (m ∼ dim(Hm))
(piecewise) polynomials, wavelets, ...

neural network models

2 formulate an optimization problem, i.e. choose a loss function
“empirical risk” (to fit the data)

R̂n(θ) =
1

n

n∑
j=1

(f (xj, θ)− f ∗(xj))2 =
1

n

n∑
j=1

`(θ,xj)

add regularization terms

3 training: solve the optimization problem
gradient descent (GD):

θk+1 = θk − η∇R̂n(θk) = θk − η
1

n

n∑
j=1

∇`(θk,xj)

stochastic gradient descent (SGD):

θk+1 = θk − η∇`(θk,xjk)

where jk is randomly chosen from {1, 2, · · · , n} in some way.

October 5, 2022 18 / 68

The three main components of the error

The total error: f ∗ − f̂ , where f̂ = the output of the ML model.

Define:

fm = argmin f∈HmR(f) = best approximation to f ∗ in Hm

f̃n,m = “best approximation to f ∗ in Hm, using only the dataset S”

Decomposition of the error:

f ∗ − f̂ = f ∗ − fm︸ ︷︷ ︸
appr.

+ fm − f̃n,m︸ ︷︷ ︸
estim.

+ f̃n,m − f̂︸ ︷︷ ︸
optim.

f ∗ − fm = approximation error, due entirely to the choice of the hypothesis space

fm − f̃n,m = estimation error — additional error due to the fact that we only have a
finite dataset

f̃n,m − f̂ = optimization error — additional error caused by training

October 5, 2022 19 / 68

Approximation Error

October 5, 2022 20 / 68

Benchmark: High dimensional integration

I(g) =

∫
X

g(x)dµ = Ex∼µg, Im(g) =
1

m

m∑
j=1

g(xj)

Grid-based quadrature rules (α is some fixed number):

I(g)− Im(g) ∼ C(g)

mα/d

Curse of dimensionality (CoD)!

Monte Carlo: {xj, j ∈ [m]} are i.i.d samples of µ

E(I(g)− Im(g))2 =
var(g)

m
, var(g) = Eg2 − (Eg)2

October 5, 2022 21 / 68

Implications to function approximation

Representation of functions using transforms:

Representing functions using Fourier transform:

f ∗(x) =

∫
Rd
f̂ (ω)ei(ω,x)dω.

Approximate using discrete Fourier transform on uniform grids:

fm(x) =
1

m

m∑
j=1

f̂ (ωj)e
i(ωj ,x)

The error suffers from CoD:
f ∗ − fm ∼ hα ∼ m−α/d

October 5, 2022 22 / 68

“New” approach: Let π be a probability distribution

f ∗(x) =

∫
Rd
a(ω)ei(ω,x)π(dω) = Eω∼πa(ω)ei(ω,x)

Let {ωj} be an i.i.d. sample of π, fm(x) = 1
m

∑m
j=1 a(ωj)e

i(ωj ,x),

E|f ∗(x)− fm(x)|2 =
var(f)

m

Note: fm(x) = 1
m

∑m
j=1 ajσ(ωT

j x) = two-layer neural network with σ(z) = eiz.

Conclusion:
Functions of the this type (i.e. can be expressed as this kind of expectation)
can be approximated by two-layer neural networks with a
dimension-independent error rate.

October 5, 2022 23 / 68

Approximation theory for the random feature model

Let φ(·;w) be a feature function parametrized by w ∈ Ω,
e.g. φ(x;w) = σ(wTx).
We will assume that φ is continuous and Ω is compact.

Let π0 be a fixed distribution for the random variable w.

Let {w0
j}mj=1 be a set of i.i.d samples drawn from π0.

The random feature model (RFM) associated with the features {φ(·;w0
j)} is given by

fm(x;a) =
1

m

m∑
j=1

ajφ(x;w0
j).

October 5, 2022 24 / 68

What spaces of functions are “well approximated” (say with the same convergence
rate as in Monte Carlo) by the random feature model?

In classical approximation theory, these are a the Sobolev or Besov spaces: They are
characterized by the convergence behavior for some specific approximation schemes.

Direct and inverse approximation theorems.

October 5, 2022 25 / 68

Define the kernel function associated with the random feature model:

k(x,x′) = Ew∼π0[φ(x;w)φ(x′;w)]

Let Hk be the reproducing kernel Hilbert space (RKHS) induced by the kernel k.

Probabilistic characterization:
f ∈ Hk if and only if there exists a(·) ∈ L2(π0) such that

f (x) =

∫
a(w)φ(x;w)dπ0(w) = Ew∼π0a(w)φ(x;w)

and

‖f‖2
Hk =

∫
a2(w)dπ0(w) = Ew∼π0a

2(w)

October 5, 2022 26 / 68

Direct approximation theorem

Theorem
For any δ ∈ (0, 1), with probability 1− δ over the samples {w0

j}mj=1, we have for any
f ∗ ∈ Hk

inf
a1,...,am

‖f ∗ − 1

m

m∑
j=1

ajφ(·;w0
j)‖L2(µ) .

‖f ∗‖Hk√
m

(1 +
√

log(1/δ)).

Proof uses:

Duality

Concentration inequality.
Example: Hoeffding inequality
Let X1, X2, · · · be i.i.d random variables with values in [a, b], Sn = X1+···+Xn

n . Then

P(|Sn − ESn| ≥ t) ≤ 2 exp

(
− nt2

(b− a)2

)

October 5, 2022 27 / 68

Inverse approximation theorem

Theorem
Let (w0

j)
∞
j=0 be a sequence of i.i.d. random samples drawn from π0. Let f ∗ be a continuous

function on X . Assume that there exist a constant C and a sequence {(aj,m),m ∈ N+,
j ∈ [m]} such that supj,m |aj,m| ≤ C and

lim
m→∞

1

m

m∑
j=1

aj,mφ(x;w0
j) = f ∗(x),

for all x ∈ X . Then with probability 1, f ∗ ∈ Hk, and there exists a function a∗ ∈ L∞(π)
such that

f ∗(x) =

∫
Ω

a∗(w)φ(x;w)dπ0(w) = Ew∼π0a
∗(w)φ(x;w)

Moreover, ‖a∗‖∞ ≤ C.

Conclusion: Roughly speaking, functions that are well approximated by the random feature
models are functions which admit the integral representation above.
Hk is about the right function space associated with the RFM.

October 5, 2022 28 / 68

Approximation theory for two-layer neural networks

Consider “scaled” two-layer neural networks:

fm(x; θ) =
1

m

m∑
j=1

ajσ(wT
j x), σ(t) = max(0, t)

What class of functions are well-approximated by two-layer neural networks?

Integral representation: Consider functions f : X = [0, 1]d 7→ R of the form

f (x) =

∫
Ω

aσ(wTx)ρ(da, dw) = Eρ[aσ(wTx)], x ∈ X

Ω = R1 × Rd+1 is the parameter space

ρ is a probability distribution on Ω

The actual values of the weights are not important. What’s important is the
probability distribution of the weights.

E, Ma and Wu (2018, 2019), (related work in Barron (1993), Klusowski and Barron (2016), Bach (2017), E

and Wojtowytsch (2020))

October 5, 2022 29 / 68

What kind of functions admit such a representation?

Theorem

Given a function f : X 7→ R. fe denotes an extension of f to Rd, and f̂e is the Fourier
transform of fe. If

Cf := inf
fe|X=f

∫
Rd
‖ω‖2

1|f̂e(ω)|dω <∞,

then f can be represented as

f (x) = f (0) + x · ∇f (0) +

∫
Ω

aσ(wTx)ρ(da, dw), ∀x ∈ X.

Furthermore, we have

E(a,w)∼ρ|a|‖w‖1 ≤ 2Cf .

Breiman (1993), Barron and Klusowski (2016)

October 5, 2022 30 / 68

The Barron space

Definition (Barron space)
Consider function f : X 7→ R. Define the “Barron norm”

‖f‖B := inf
ρ∈Ψf

Eρ|a|‖w‖1.

where Ψf = {ρ : f (x) = Eρaσ(wTx)}, the set of possible representations for f .
Define the set of Barron functions

B = {f ∈ C(X) : ‖f‖B <∞}

E, Chao Ma, Lei Wu (2019)

October 5, 2022 31 / 68

Structural theorem

Theorem
Let f be a Barron function. Then f =

∑∞
i=1 fi where fi ∈ C1(Rd \ Vi) where Vi is a

k-dimensional affine subspace of Rd for some 0 ≤ k ≤ d− 1.

As a consequence, distance functions to curved surfaces are not Barron functions.

f1(x) = dist(x,Sd−1), then f1 is not a Barron function.

f2(x) = ‖x‖, f2 is a Barron function.

E and Wojtowytsch (2020)

October 5, 2022 32 / 68

Direct approximation theorem

Theorem
For any f ∗ ∈ B, there exists a two-layer network fm(·; θ) such that

‖f ∗ − fm(·; θ)‖L2(µ) .
‖f ∗‖B√
m

.

Moreover,
‖θ‖P . ‖f ∗‖B

Path norm:

‖θ‖P =
1

m

m∑
k=1

|ak|‖wk‖1,

if fm(x; θ) = 1
m

∑m
j=1 ajσ(wT

j x)

– discrete analog of the Barron norm, but for the parameters.

October 5, 2022 33 / 68

Inverse approximation theorem

Theorem
Let f ∗ be a continuous function. Assume there exist a constant C and a sequence of
two-layer neural networks {fm} such that

1

m

m∑
k=1

|ak|‖wk‖1 ≤ C,m ∈ N+,

fm(x)→ f ∗(x)

for all x ∈ X , then f ∗ ∈ B, i.e. there exists a probability distribution ρ∗ on Ω, such that

f ∗(x) =

∫
Ω

aσ(wTx)ρ∗(da, dw) = Eρ∗aσ(wTx)

for all x ∈ X and ‖f ∗‖B ≤ C.

Conclusion: Roughly speaking, functions that are well approximated by two-layer neural
networks are functions that admit the above integral representation.
Barron space is the right function space associated with two-layer neural networks.

October 5, 2022 34 / 68

Other characterizations of Barron space can be found in Kurkova (2001), Bach (2017),
Siegel and Xu (2021), etc.

October 5, 2022 35 / 68

Extensions:

Extension to residual neural networks (E, Ma and Wu (2019, 2020)):
where in place of the Barron space, we have the “flow-induced function space”.

Extension to multi-layer neural networks, but results unsatisfactory.

Need a natural way of representing “continuous” multi-layer neural networks as expectations over

probability distributions on the parameter space, i.e. the analog of:

f (x) = Eρ[aσ(wTx)], x ∈ X

October 5, 2022 36 / 68

Estimation Error

We are minimizing the training error:

R̂n(f) =
1

n

∑
j

(f (xj)− f ∗(xj))2

But what we are really interested in is to minimize the testing error:

R(f) =

∫
X

(f (x)− f ∗(x))2dµ

October 5, 2022 37 / 68

The Runge phenomenon

What happens outside the training dataset?

Example: Polynomial interpolation on equally spaced grid points

Figure: The Runge phenomenon: f ∗(x) = 1
1+25x2

October 5, 2022 38 / 68

Generalization gap = difference between training and testing errors

generalization gap:

|R(f̂)− R̂n(f̂)| = |Ex∼µĝ(x)− 1

n

n∑
j=1

ĝ(xj)|

where ĝ(x) = (f̂ (x)− f ∗(x))2.

Naively, one might expect:

E(generalization gap)2 = O(1/n)

This is not necessarily true since f̂ is highly correlated with {xj}.

October 5, 2022 39 / 68

Bounding the generalization gap

Use the naive bound:

|R(f̂)− R̂n(f̂)| ≤ sup
f∈Hm

|R(f)− R̂n(f)|

Theorem
Given a function class H, for any δ ∈ (0, 1), with probability at least 1− δ over the random
samples S = (x1, · · · ,xn),

sup
h∈H

∣∣∣∣∣Ex [h(x)]− 1

n

n∑
i=1

h(xi)

∣∣∣∣∣ ≤ 2R̂adn(H) + sup
h∈H
‖h‖∞

√
log(2/δ)

2n
.

sup
h∈H

∣∣∣∣∣Ex [h(x)]− 1

n

n∑
i=1

h(xi)

∣∣∣∣∣ ≥ 1

2
R̂adn(H)− sup

h∈H
‖h‖∞

√
log(2/δ)

2n
.

October 5, 2022 40 / 68

Rademacher complexity of a function space H

The Rademacher complexity of a function space measures its ability to fit random noise on a
set of data points.

Definition: Let H be a set of functions, and S = (x1,x2, ...,xn) be a set of data points.
The Rademacher complexity of H with respect to S is defined as

R̂adn(H) =
1

n
Eξ

[
sup
h∈H

n∑
i=1

ξih(xi)

]
,

where {ξi}ni=1 are i.i.d. random variables taking values ±1 with equal probability.

October 5, 2022 41 / 68

If H = unit ball in C0:
R̂adn(H) ∼ O(1)

If H = unit ball in Lipschitz space:

R̂adn(H) ∼ O(1/n1/d)

Another form of CoD! (note that n is the size of the training dataset).

As d grows, the size of the training dataset needed grows exponentially fast.

October 5, 2022 42 / 68

Rademacher complexity of RKHS

Theorem

Assume that supx k(x,x) ≤ 1. Let HQ
k = {f : ‖f‖Hk ≤ Q}. Then,

R̂adn(HQ
k) ≤ Q√

n
.

October 5, 2022 43 / 68

Rademacher complexity of Barron space

Theorem
Let FQ = {f ∈ B, ‖f‖B ≤ Q}. Then we have

R̂adn(FQ) ≤ 2Q

√
2 ln(2d)

n

Neyshbur et al. (2015), Bach (2017)

October 5, 2022 44 / 68

Generalization error analysis for two-layer neural networks

Ln(θ) = R̂n(θ) + λ

√
log(2d)

n
‖θ‖P, θ̂n = argmin Ln(θ).

Theorem
Assume that the target function f ∗ : X 7→ [0, 1] ∈ B. There exist constants C0, such that if
λ ≥ C0, for any δ > 0, then with probability at least 1− δ over the choice of training set, we
have

R(θ̂n) .

(
‖f ∗‖2

B
m

+ ‖f ∗‖B

√
log(2d)

n

)
+

√
log(4C2/δ) + log(n)

n
.

For Barron functions, not only do good two-layer neural network approximations exist, they
can be found using only a finite training dataset (achieves “Monte Carlo error rate”).

E, Chao Ma and Lei Wu (2018)

October 5, 2022 45 / 68

The Training Process

Can we find good solutions efficiently using gradient descent?

min
θ
R̂n(θ) =

1

n

n∑
j=1

(f (xj, θ)− f ∗(xj))2

is a non-convex function in a high dimensional space.

1. Can gradient descent converge fast?

3rd source of CoD: the convergence rate.

2. Does the solution we obtain generalize well (i.e. have small testing error)?

October 5, 2022 46 / 68

Hardness of gradient-based training algorithms

Let h(·; θ) be any parametric model such that Q(θ) = Ex∼µ‖∇θh(x; θ)‖2
2 <∞

Let Rf(θ) = Ex∼µ[(h(x; θ)− f (x))2], the loss function associated with f .

Lemma
Let F = {f1, . . . , fM} be an orthonormal class, i.e., 〈fi, fj〉L2(µ) = δi,j. We have

1

M

M∑
i=1

[‖∇Rfi(θ)−∇Rf(θ)‖2
2] ≤ Q(θ)

M
.

where ∇Rf(θ) = 1
M

∑M
j=1∇Rfj(θ).

We only have limited ability to distinguish target functions using gradients if there are many
orthonormal functions in the function class.

If M = exp(d), then the variance of the gradients is exponentially small.

The convergence rate for gradient-based training algorithms must suffer
from CoD!

Shamir (2018)
October 5, 2022 47 / 68

Barron space is such a function class

Lemma
Let s > 0 be a fixed number, Bs = {f ∈ B : ‖f‖B . (1 + s)2d2}. Then Bs contains at least
(1 + s)d orthonormal functions.

Proof:

Consider the set of orthogonal functions:

Gm =

{
cos(2πbTx) :

d∑
i=1

bi ≤ m, bi ∈ N+

}
.

Conclusion: Barron space is the right object for approximation theory, but is too big for
training.

Barron (1993)

October 5, 2022 48 / 68

Some progress made so far

Highly over-parametrized regime m� n: degenerate to random feature model

Mean field regime: gradient flow in Wasserstein metric

Which global minimum is selected?

October 5, 2022 49 / 68

Using deep learning to solve other high dimensional problems

Scientific computing: control problems, PDEs

AI for Science: protein folding, molecular dynamics, quantum many-body problem,
multi-scale and multi-physics modeling

This began in 2016......

October 5, 2022 50 / 68

1. Stochastic control

Dynamic model:
zl+1 = zl + gl(zl,al) + ξl,

where zl = state, al = control, ξl = noise.

Objective function:

min
{al}T−1

l=0

E{ξl}
{ T−1∑

l=0

cl(zl,al) + cT (zT)
}
,

where {cl} are the running cost, cT is the terminal cost.

Look for a feedback control:
al = al(z).

The standard approach via solving the Bellman equation suffers from CoD!

Jiequn Han and E (2016)

October 5, 2022 51 / 68

Why choosing this as the first example?

There is a close analogy between stochastic control and ResNet-based deep learning.

Machine learning approximation:
al(z) = f (z, θl)

ResNet Stochastic Control

model zl+1 = zl + σ(Wlzl) zl+1 = zl + gl(zl, f (zl, θl)) + ξl

loss E‖WLzL − f ∗‖2 E{
∑
cl(zl, f (zl, θl)) + cT (zT)}

data {(xj, yj)} ξ0, . . . , ξT−1 (noise)

optimization SGD SGD

Table: Analogy between ResNet and stochastic control

October 5, 2022 52 / 68

2. Nonlinear parabolic PDEs

∂u

∂t
+

1

2
∆u + µ · ∇u + f

(
∇u
)

= 0, u(T,x) = g(x)

Reformulate as a stochastic control problem using backward stochastic differential equations
(BSDE, Pardoux and Peng (1990))

inf
Y0,{Zt}

E|g(XT)− YT |2,

s.t. Xt = X0 +

∫ t

0

µ(s,Xs) ds +

∫ t

0

dWs,

Yt = Y0 −
∫ t

0

f (Zs) ds +

∫ t

0

(Zs)
T dWs.

The unique minimizer is the solution to the PDE with:

Yt = u(t,Xt) and Zt = ∇u(t,Xt).

E, Han and Jentzen (Comm Math Stats, 2017); Han, Jentzen and E (PNAS, 2018)

October 5, 2022 53 / 68

LQG (linear quadratic Gaussian) for d = 100 with the cost J = E(
∫ T

0 ‖mt‖2
2 dt + g(XT))

dXt = 2
√
λmt dt +

√
2 dWt,

Hamilton-Jacobi-Bellman equation:

∂tu + ∆u− λ‖∇u‖2
2 = 0, u(T,x) = g(x)

Using Hopf-Cole transform, one obtains the solution:

u(t,x) = −1

λ
ln

(
E
[

exp
(
− λg(x +

√
2WT−t)

)])
.

0 10 20 30 40 50

lambda

4.0

4.1

4.2

4.3

4.4

4.5

4.6

4.7

u
(0
,0
,.
..
,0
)

Deep BSDE Solver

Monte Carlo

Figure: Optimal cost u(t=0,x=(0, . . . , 0)) for different values of λ.

October 5, 2022 54 / 68

3. AlphaFold2: Protein Folding

J. Jumper et al. (2021)
October 5, 2022 55 / 68

4. DeePMD: Molecular dynamics with ab initio accuracy

Modeling the dynamics of atoms in a material or molecule using Newton’s equation:

mi
d2xi
dt2

= −∇xiV, V = V (x1,,xN),

Key question: V =? The origin of V lies in quantum mechanics (QM).

Empirical potentials: basically guess what V should be.
Unreliable.

Compute the forces on the fly using QM models (Car and Parrinello (1985)).
As reliable as the QM model but expensive (limited to about 1000 atoms).

New paradigm:

use QM to supply the data

use neural network model to find accurate approximation of V

Behler and Parrinello (2007), Jiequn Han et al (2017), Linfeng Zhang et al (2018).

October 5, 2022 56 / 68

Accuracy comparable to QM for a wide range of materials and
molecules

Linfeng Zhang, Jiequn Han, et al (2018)

October 5, 2022 57 / 68

DeePMD simulation of 100M atoms with ab initio accuracy

Weile Jia, et al, SC20, 2020 ACM Gordon Bell Prize

October 5, 2022 58 / 68

Phase diagram of water

Linfeng Zhang, Han Wang, et al. (2021)

October 5, 2022 59 / 68

The hierarchy of physical models: The real dilemma

On one hand, these “first principles” represent the most important results of the whole
scientific endeavor.

On the other hand, to use them, we have to do a lot of fudging.

October 5, 2022 60 / 68

AI for Science: Making first principles truly reliable and useful

Machine learning provides the missing tool:

Quantum many-body problem: RBM (2017), DeePWF (2018), FermiNet (2019),
PauliNet (2019),

Density functional theory: DeePKS (2020), NeuralXC (2020), DM21 (2021),

Molecular dynamics: DeePMD (2018),

Coarse-grained molecular dynamics: DeePCG (2019)

Kinetic equation: machine learning-based moment closure (Han et al. 2019)

Continuum mechanics: DeePN2 (2020)

......

This will change the way we solve many practical problems (drug design, materials,
combustion engines, catalysts, etc) from trial and error to first principle-based.

E, Jiequn Han and Linfeng Zhang, Physics Today, 2021.

October 5, 2022 61 / 68

Concluding remarks: This is all about math in high dimension

Compared with polynomials, neural networks provide a much more effective
tool for approximating functions in high dimension.

Opens up a new subject in mathematics: high dimensional analysis.
supervised learning: high dimensional functions

unsupervised learning: high dimensional probability distributions

reinforcement learning: high dimensional Bellman equations

time series: high dimensional dynamical systems

This opens up a lot of new possibilities in science, AI, and technology.

See:
www.math.princeton.edu/ ∼ weinan

October 5, 2022 62 / 68

Training two-layer neural networks under conventional scaling

fm(x;a,W) =

m∑
j=1

ajσ(wT
j x) = aTσ(Wx),

Initialization:

aj(0) = 0, wj(0) ∼ N (0, I/d), j ∈ [m]

Define the associated Gram matrix K = (Kij):

Ki,j =
1

n
Ew∼N (0,I/d)[σ(wTxi)σ(wTxj)].

The associated random feature model: {wj} = {w0
j} are frozen, only allow {aj} to vary.

October 5, 2022 63 / 68

Gradient descent dynamics

daj
dt

(t) = −∇ajR̂n ∼ O(‖wj‖) = O(1)

dwj

dt
(t) = −∇wj

R̂n ∼ O(|aj|) = O

(
1

λnm

)
where λn = λmin(K)

In the “highly over-parametrized regime” (i.e. m� n), we have time scale separation:
the dynamics of w is effectively frozen.

October 5, 2022 64 / 68

Highly over-parametrized regime

Jacot, Gabriel and Hongler (2018): “neural tangent kernel” regime

Good news: Exponential convergence (Du et al (2018))

Bad news: converged solution is no better than that of the random feature model
(E, Ma, Wu (2019), Arora et al (2019),)

Theorem
Denote by {fm(x; ã(t),W0))} the solution of the gradient descent dynamics for the random
feature model. For any δ ∈ (0, 1), assume that m & n2λ−4

n δ
−1 ln(n2δ−1). Then with

probability at least 1− 6δ, we have

R̂n(a(t),W (t)) ≤ e−mλntR̂n(a(0),W (0))

sup
x∈Sd−1

|fm(x;a(t),W (t))− fm(x; ã(t),W0)| .
(1 +

√
ln(δ−1))2

λn
√
m

.

This is an effectively linear regime.

October 5, 2022 65 / 68

Mean-field formulation

Hm = {fm(x) =
1

m

m∑
j=1

ajσ(wT
j x)}

Let
I(u1, · · · ,um) = R̂n(fm), uj = (aj,wj)

Lemma:. {uj(·)} is a solution of the gradient descent dynamics

duj

dt
= −∇ujI(u1, · · · ,um), uj(0) = u0

j , j ∈ [m]

if and only if

ρm(du, ·) =
1

m

m∑
j=1

δuj(·)

is a solution of

∂tρ = ∇(ρ∇V), V =
δR̂n

δρ

Chizat and Bach (2018), Mei, Montanari and Nguyen (2018), Rotskoff and Vanden-Eijnden (2018), Sirignano

and Spiliopoulos (2018)
October 5, 2022 66 / 68

This is the gradient flow under the Wasserstein metric

∂tρ = ∇(ρ∇V), V =
δR̂n

δρ

Long time decay theorem under the condition of displacement convexity.

Unfortunately, in general displacement convexity does not hold in the current setting.

October 5, 2022 67 / 68

Convergence of gradient flow

If the initial condition ρ0 has full support and if the gradient flow dynamics converges, then
it must converge to a global minimizer.

Theorem
Let ρt be a solution of the Wasserstein gradient flow such that

ρ0 is a density on the cone Θ := {|a|2 ≤ |w|2}.
Every open cone in Θ has positive measure with respect to ρ0

Then the following are equivalent.
1 The velocity potentials δR

δρ (ρt, ·) converge to a unique limit as t→∞.

2 R(ρt) decays to minimum Bayes risk as t→∞.

If either condition is met, the unique limit is zero. If also ρt converges in Wasserstein metric,
then the limit ρ∞ is a minimizer.

Chizat and Bach (2018, 2020), Wojtowytsch (2020)

October 5, 2022 68 / 68

