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Solving differential equations with a
quantum computer

One plausible problem domain where quantum computers
could be applied is solving differential equations, for example
linear PDEs:

∂u
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∂2u
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∂x2
d

)

One reason this seems plausible is that:

PDEs are often solved by discretisation to produce a
system of linear equations;

Quantum computers could have an exponential advantage
over classical computers for linear equation problems.

Some indications there could be an advantage for PDEs:
e.g. [Leyton+Osborne 0812.4423] [Berry 1010.2745] [Cao et al 1207.2485]
[Clader et al 1301.2340] [Childs et al 2002.07868] . . .
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“Solving” linear equations

A matrix is d-sparse if it has at most d non-zero elements in
each row and column.

Solving linear equations

Given access to a d-sparse N ×N matrix A, and b ∈ RN, output
x such that Ax = b.

One “quantum” way of thinking about the problem:

“Solving” linear equations

Given the ability to produce the quantum state |b〉 =
∑N

i=1 bi|i〉,
and access to A as above, produce the state |x〉 =

∑N
i=1 xi|i〉.

Theorem: If A has condition number κ (= ‖A−1‖‖A‖), |x〉 can
be approximately produced in time poly(logN, d,κ) [Harrow et al
0811.3171] [many others]
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Some challenges for the quantum algorithm

How to produce the initial state |b〉?

How to get information out of the final state |x〉?

How to access the matrix A?

How to bound the condition number κ?

How to bound the level of accuracy achieved?

Taking these into account, and making some assumptions
about the problem solved, in [AM+Pallister 1512.05903] it was
shown that using the HHL algorithm to solve PDEs discretised
with the finite element method (FEM) can achieve at most a
polynomial speedup (in fixed “spatial” dimension).
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This talk
Today I will discuss two recent works applying quantum
algorithms to differential equations.

First, solving the heat equation in d dimensions in the region
[0,L]d × [0,T] with periodic spatial boundary conditions:

∂u
∂t

= α

(
∂2u
∂x2

1
+ · · ·+ ∂2u

∂x2
d

)

Problem
Let u(x, t) be a solution to the heat equation. Given an initial
condition u(x, 0) = u0(x), a time t, and a subset S ⊆ [0,L]d,
compute

∫
S u(x, t)dx± ε.

Will quantum algorithms outperform classical ones for this
problem?



This talk

Second, speeding up the solution of general stochastic
differential equations:

dXt = µ(Xt, t)dt + σ(Xt, t)dWt

for t ∈ [0,T], where Xt is an Itô process, and Wt is Brownian
motion.

Problem
Given an initial distribution π0, and a payoff function P(X),
compute E[P(XT) | X0 ∈ π0]± ε.

A fundamental problem in mathematical finance, where we
think of Xt as the price of some asset at time t: allows
computing option prices, risks, . . .



Heat equation: summary of results

We compared various classical and quantum methods for
solving the heat equation:

Method d = 1 d = 2 d = 3 d > 3
* Classical linear equations Õ(ε−2) Õ(ε−2.5) Õ(ε−3) Õ(ε−d/2−1.5)

* Classical time-stepping Õ(ε−1.5) Õ(ε−2) Õ(ε−2.5) Õ(ε−d/2−1)

* Classical FFT Õ(ε−0.5) Õ(ε−1) Õ(ε−1.5) Õ(ε−d/2)

Classical random walk Õ(ε−3) Õ(ε−3) Õ(ε−3) Õ(ε−3)

HHL Õ(ε−2.5) Õ(ε−2.5) Õ(ε−2.75) Õ(ε−d/4−2)

Diagonalisation Õ(ε−1.25) Õ(ε−1.5) Õ(ε−1.75) Õ(ε−d/4−1)

Coherent rw acceleration Õ(ε−1.75) Õ(ε−2) Õ(ε−2.25) Õ(ε−d/4−1.5)

Rw amplitude estimation Õ(ε−2) Õ(ε−2) Õ(ε−2) Õ(ε−2)

Only the dependence on the accuracy ε is shown.

Starred methods use space poly(1/ε), others use space
poly(log 1/ε). Õ notation hides log factors.



Methods

All of the classical and quantum algorithms are based on
discretising space and time via the finite difference method
(FTCS):

du
dx

=
u(x + h) − u(x)

h
+ O(h)

d2u
dx2 =

u(x + h) + u(x − h) − 2u(x)
h2 + O(h2)

Leads to the set of linear constraints

ũ(x,t+∆t)−ũ(x,t)
∆t = α

∆x2

∑d
i=1 ũ(. . . , xi + ∆x, . . . , t) + ũ(. . . , xi − ∆x, . . . , t) − 2ũ(x, t)

To achieve final accuracy ε, we can take ∆t = O(ε),
∆x = O(

√
ε) (assuming u is sufficiently smooth,

∂4u/∂x2
i ∂x2

j = O(L−d)).
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Linear equation methods

We have a system of N = O(ε−d/2−1) linear equations to solve.

Condition number: κ = O(ε−1).

Classical complexity: Õ(
√
κN) = O(ε−d/2−1.5).

Quantum complexity: Õ(κ) = Õ(ε−1). . .

. . . but this algorithm only produces a quantum state which is
equal to ũ/‖ũ‖2.

To approximate
∫

S u(x, t)dx, we need to know ‖ũ‖2; achieving
high enough accuracy takes time Õ(ε−d/4−2).
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√
κN) = O(ε−d/2−1.5).

Quantum complexity: Õ(κ) = Õ(ε−1). . .
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Other classical methods

We can rewrite the discretised heat equation as

ũ(x, t + ∆t) =
(

1 − 2dα∆t
∆x2 ũ(x, t)

)
+ α∆t
∆x2

∑d
i=1 ũ(. . . , xi + ∆x, . . . , t) + ũ(. . . , xi − ∆x, . . . , t).

We can simply step forward in time using sparse matrix
multiplication: time Õ(ε−d/2 · ε−1).

We can diagonalise the discretised linear system with the
FFT: time Õ(ε−d/2).

We can observe that this corresponds to a random walk
and sample from the output distribution in time Õ(ε−1).

Gives an algorithm for approximating
∫

S u(x, t)dx± ε in
time Õ(ε−1 · ε−2).
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We can observe that this corresponds to a random walk
and sample from the output distribution in time Õ(ε−1).
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Other quantum methods

Analogous to the classical ones:

We can start with an initial state |u0〉 and try to produce
the state |uτ〉 corresponding to τ steps.

We can use a coherent acceleration method for random
walks due to [Apers+Sarlette ’18], [Gilyen et al ’18] which gives
a square-root improvement in τ: time Õ(ε−d/4−1.5).

We can diagonalise the discretised linear system and solve
the diagonalised system (postselect): time Õ(ε−d/4−1).

We can speed up the classical random walk using
amplitude estimation.

Gives an algorithm for approximating
∫

S u(x, t)dx± ε in
time Õ(ε−1 · ε−1).
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We can diagonalise the discretised linear system and solve
the diagonalised system (postselect): time Õ(ε−d/4−1).
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Solving stochastic differential equations

Recall that our goal is to solve a stochastic differential
equation:

dXt = µ(Xt, t)dt + σ(Xt, t)dWt

for t ∈ [0,T], where Xt is an Itô process, Wt is Brownian
motion.

Problem
Given an initial distribution π0, and a payoff function P(X),
compute E[P(XT) | X0 ∈ π0]± ε.

A fundamental problem in mathematical finance, where we
think of Xt as the price of some asset at time t: allows
computing option prices, risks, . . .



The Monte Carlo method

A simple way to solve an SDE is to discretise time into
n = T/h steps and step the price of the asset forward in
time using a discrete random walk.

For example, Milstein discretisation takes h = O(ε),
leading to a cost of O(1/ε) per sample of XT (T = O(1)).

The expectation of a random variable with variance σ2 can
be estimated up to ε using O(σ2/ε2) samples.

So we obtain a total runtime of O(1/ε3) if σ = O(1).

We can improve this using a technique known as
Multilevel Monte Carlo [Giles ’08].
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So we obtain a total runtime of O(1/ε3) if σ = O(1).

We can improve this using a technique known as
Multilevel Monte Carlo [Giles ’08].



The Multilevel Monte Carlo method

The general idea:

We have a sequence of random variables P0, . . . ,PL that
approximates a random variable P with increasing
accuracy and cost.

We write E[PL] =
∑L

i=0 E[Pi − Pi−1].
We approximate E[Pi − Pi−1]± ε/L and take the sum.

For example, in the Milstein discretisation scheme, we might
let Pi be the payoff when discretising with step length h = 2−i.

Gives cost O(2i) for each sample at level i
We have the variance bound Var(Pi − Pi−1) = O(2−i)

Overall cost at the i’th level is
O(2−i/(ε/L)2 × 2i) = O(L2/ε2)

Overall cost is O(L3/ε2) = Õ(1/ε2).
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Quantum speedup of the multilevel Monte
Carlo method

Theorem [AM 1504.06987] (informal)
Given the ability to generate samples from a random variable
X with variance σ2, there is a quantum algorithm which
approximates E[X]± ε using Õ(σ/ε) samples from X.

We apply this algorithm to the sequence of random variables
Pi − Pi−1, as in the classical case.

Cost is still O(2i) to produce each sample at level i
We have the variance bound Var(Pi − Pi−1) = O(2−i)

Overall cost at the i’th level is
Õ(2−i/2/(ε/L)× 2i) = Õ(2i/2L/ε)

Overall cost is Õ(1/ε1.5).

Can be improved to Õ(1/ε) for a Lipschitz continuous payoff.
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Õ(2−i/2/(ε/L)× 2i) = Õ(2i/2L/ε)

Overall cost is Õ(1/ε1.5).
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Conclusions
Some intuition we gained from this work:

Quantum computers might achieve a speedup over
classical algorithms for solving the heat equation, but this
speedup is likely to be only polynomial.

Quantum algorithms might still offer an advantage in
terms of flexibility or space usage over their classical
counterparts.

The best quantum algorithms for solving PDEs might not
be based on solving a system of linear equations.

Quantum algorithms can achieve a modest speedup over
classical algorithms for solving stochastic differential
equations, as used in mathematical finance.

Thanks!
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