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Wednesday: Randomized algorithms for linear algebraic computations

1. Randomized low rank approximation: “Randomized singular value
decomposition” or “RSVD”. Relatively well established material.

2. Variations of algorithms for low rank approximation: Single pass and streaming
algorithms. Structured random embeddings. Matrix approximation via sampling.

3. Samples of current research directions (time permitting): Linear solvers. Least
squares problems. Block Krylov methods. Rank structured matrices.

Friday: Randomized embeddings — theory and applications

4. Randomized embeddings: Reducing the effective dimension of point sets.
Connections to Johnson-Lindenstrauss theory. Norm estimation.

5. Analysis of the RSVD: Outline of probabilistic error analysis for the RSVD. The
relative merits of different classes of randomized embeddings.

6. The column/row selection problem: Interpolatory and CUR decompositions.
Pivoting in QR and LU factorizations.



Low rank approximation — problem formulation:
Let A be a given m× n matrix, and let k be an integer such that 1 ≤ k � n ≤ m.
We seek to compute approximate factors E and F such that

A ≈ E F∗.
m× n m× k k × n



Low rank approximation — problem formulation:
Let A be a given m× n matrix, and let k be an integer such that 1 ≤ k � n ≤ m.
We seek to compute approximate factors E and F such that

A ≈ E F∗.
m× n m× k k × n

Why?

• Fitting a hyperplane to a given set of points. Or fitting a multivariate normal
distribution to measurements (“principal component analysis”).

• Model reduction in scientific computing.

• Spectral algorithms in data analysis.

• “Fast” algorithms of various types: Fast Multipole Methods, generalizations of the
Fast Fourier Transform, fast direct solvers, etc.

• Many, many, many more.

Observe that from E and F you can compute approximate singular vectors, find
dominant eigenvectors (when A is normal at least), find spanning rows/columns, etc.

We seek only to control the residual error ‖A− EF∗‖.



Low rank approximation — problem formulation:
Let A be a given m× n matrix, and let k be an integer such that 1 ≤ k � n ≤ m.
We seek to compute approximate factors E and F such that

A ≈ E F∗.
m× n m× k k × n

Existing methods for this task are well established. Textbook methods include:

1. Compute the full singular value decomposition of A, and then truncate:
— Resulting approximation is in many regards ”optimal” — best possible fit.
— Expensive! Cost is O(mn2). Good for small n, or “expensive” data.

2. Krylov methods:
— Standard technique for large sparse matrices.
— Interacts with A only through its action on vectors. Cost ∼ k × Tmatvec.
— Theoretically optimal in important regards.

3. Execute Gram-Schmidt on the columns (or rows) of A — “column pivoted QR”:
— Simple and practical for medium size dense matrices.
— Not entirely optimal, but often good enough.
— Cost is O(mnk) since you can stop after k steps.

These methods work great! But room for improvement in important environments.



Randomized SVD:

Objective: Given an m× n matrix A, find an approximate rank-k partial SVD:

A ≈ U D V∗

m× n m× k k × k k × n
where U and V are orthonormal, and D is diagonal. (We assume k � min(m,n).)

(A) Randomized sketching:
A.1 Draw an n× k Gaussian random matrix ΩΩΩ. Omega = randn(n,k)

A.2 Form the m× k sample matrix Y = AΩΩΩ. Y = A * Omega

A.3 Form an m× k orthonormal matrix Q such that ran(Q) = ran(Y). [Q, ∼] = qr(Y)

(B) Deterministic post-processing:
B.1 Form the k × n matrix B = Q∗A. B = Q’ * A

B.2 Form the full SVD of the small matrix B: B = ÛDV∗. [Uhat, Sigma, V] = svd(B,’econ’)

B.3 Form the matrix U = QÛ. U = Q * Uhat

The objective of Stage A is to compute an ON-basis that approximately spans the
column space of A. The matrix Q holds these basis vectors and A ≈ QQ∗A.
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m× n m× k k × k k × n
where U and V are orthonormal, and D is diagonal. (We assume k � min(m,n).)

(A) Randomized sketching:
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B.1 Form the k × n matrix B = Q∗A. B = Q’ * A

B.2 Form the full SVD of the small matrix B: B = ÛDV∗. [Uhat, Sigma, V] = svd(B,’econ’)

B.3 Form the matrix U = QÛ. U = Q * Uhat

The objective of Stage A is to compute an ON-basis that approximately spans the
column space of A. The matrix Q holds these basis vectors and A ≈ QQ∗A.

Stage B is exact: ‖A−QQ∗A︸︷︷︸
=B
‖ = ‖A−Q B︸︷︷︸

=ÛDV∗
‖ = ‖A− QÛ︸︷︷︸

=U
DV∗‖ = ‖A− UDV∗‖.



Randomized SVD:

Objective: Given an m× n matrix A, find an approximate rank-k partial SVD:

A ≈ U D V∗

m× n m× k k × k k × n
where U and V are orthonormal, and D is diagonal. (We assume k � min(m,n).)

(A) Randomized sketching:
A.1 Draw an n× k Gaussian random matrix ΩΩΩ. Omega = randn(n,k)

A.2 Form the m× k sample matrix Y = AΩΩΩ. Y = A * Omega

A.3 Form an m× k orthonormal matrix Q such that ran(Q) = ran(Y). [Q, ∼] = qr(Y)

(B) Deterministic post-processing:
B.1 Form the k × n matrix B = Q∗A. B = Q’ * A

B.2 Form the full SVD of the small matrix B: B = ÛDV∗. [Uhat, Sigma, V] = svd(B,’econ’)

B.3 Form the matrix U = QÛ. U = Q * Uhat

We claim that the columns of Y form a good approximate basis for ran(A).
Observe that ran(Y) ⊆ ran(A) automatically.
Loss of accuracy can happen if ran(Y) does not capture important directions.
To avoid this, we draw p extra samples, for, say, p = 5 or p = 10.



Randomized SVD:

Objective: Given an m× n matrix A, find an approximate rank-k partial SVD:

A ≈ U D V∗

m× n m× k k × k k × n
where U and V are orthonormal, and D is diagonal. (We assume k � min(m,n).)

(A) Randomized sketching:
A.1 Draw an n× k Gaussian random matrix ΩΩΩ. Omega = randn(n,k)

A.2 Form the m× k sample matrix Y = AΩΩΩ. Y = A * Omega

A.3 Form an m× k orthonormal matrix Q such that ran(Q) = ran(Y). [Q, ∼] = qr(Y)

(B) Deterministic post-processing:
B.1 Form the k × n matrix B = Q∗A. B = Q’ * A

B.2 Form the full SVD of the small matrix B: B = ÛDV∗. [Uhat, Sigma, V] = svd(B,’econ’)

B.3 Form the matrix U = QÛ. U = Q * Uhat

Important: You only need to ensure that you do not undersample.

Over-sampling is unproblematic, since excess data gets “filtered out” in Stage B.



Randomized SVD:
Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix ΩΩΩ. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AΩΩΩ. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.



Randomized SVD:
Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix ΩΩΩ. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AΩΩΩ. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

• It is simple to adapt the scheme to the situation where the tolerance is given, and the
rank has to be determined adaptively.

• Observe how simple the interaction with A is.
Two matrix-matrix products only.
This often leads to very high practical execution speed on modern hardware.

• Accuracy of the basic scheme is good when the singular values decay reasonably
fast. When they do not, the scheme can be combined with Krylov-type ideas:
Taking one or two steps of subspace iteration vastly improves the accuracy.
For instance, use the sampling matrix Y = AA∗AΩΩΩ instead of Y = AΩΩΩ.



Randomized SVD:
Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix ΩΩΩ. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AΩΩΩ. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Let us next investigate the accuracy of the method.

To illustrate the errors, we first set p = 0 (no over-sampling), and then define

ek = ‖A− UDV∗‖ = ‖A−QQ∗A‖.

Eckart-Young theorem: ek ≥ σk+1, where σk+1 is the (k + 1)’th singular value of A.



Randomized SVD:
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The plot shows the errors from the randomized SVD. To be precise, we plot

ek = ‖A− PkA‖,

where Pk is the orthogonal projection onto the first k columns of

Y =
(
AA∗

)qAΩΩΩ,

and where ΩΩΩ is a Gaussian random matrix. (For clarity, no oversampling is done.)
The matrix A is an approximation to a scattering operator for a Helmholtz problem.



Randomized SVD:
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The plot shows the errors from the randomized SVD. To be precise, we plot

ek = ‖A− PkA‖,

where Pk is the orthogonal projection onto the first k columns of

Y =
(
AA∗

)qAΩΩΩ,

and where ΩΩΩ is a Gaussian random matrix. (For clarity, no oversampling is done.)
The matrix A now has singular values that decay slowly.



Randomized SVD: The same plot as before, but now showing 100 instantiations.
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The darker lines show the mean errors across the 100 experiments.



Randomized SVD: The same plot as before, but now showing 100 instantiations.
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Randomized SVD: Over-sampling can further improve the optimality:
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Randomized SVD: Over-sampling can further improve the optimality:
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Randomized SVD:
Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix ΩΩΩ. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AΩΩΩ. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.
Since the error in the RSVD is a random variable (it depends on the draw of ΩΩΩ),
any theoretical analysis needs to describe the probability distribution of the error.



Randomized SVD:
Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix ΩΩΩ. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AΩΩΩ. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.
Since the error in the RSVD is a random variable (it depends on the draw of ΩΩΩ),
any theoretical analysis needs to describe the probability distribution of the error.

For instance, we can bound the expectation of the error:
Theorem: Let A be an m× n matrix with singular values {σj}

min(m,n)
j=1 . Let k be a target

rank, and let p be an over-sampling parameter such that p ≥ 2 and k + p ≤ min(m,n).
Let ΩΩΩ be a Gaussian random matrix of size n× (k + p) and set Q = orth(AΩΩΩ).
Then the average error satisfies

E
[
‖A−QQ∗A‖Fro

]
≤
(
1 +

k
p− 1

)1/2
min(m,n)∑

j=k+1
σ2j

1/2

,

E
[
‖A−QQ∗A‖

]
≤

1 +

√
k

p− 1

σk+1 +
e
√

k + p
p

min(m,n)∑
j=k+1

σ2j

1/2

.



Randomized SVD:
Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix ΩΩΩ. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AΩΩΩ. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.
Since the error in the RSVD is a random variable (it depends on the draw of ΩΩΩ),
any theoretical analysis needs to describe the probability distribution of the error.

There are also bounds on the likelihood of a large deviation from the expectation.
(It turns out to decay super-exponentially fast as p increases!)

References (very incomplete!!):
• Martinsson, Rokhlin, Tygert, Yale-CS-1361, 2006.
• Halko, Martinsson, Tropp, SIREV, 2011. Survey, focus on RSVD.
• Witten/Candès, Algorithmica, 2015.
• Gu, SISC, 2015. Analysis of randomized subspace iteration.
• Musco, Musco, NIPS, 2015. Analysis of block Krylov methods.
• Saibaba, SIMAX, 2019. Accuracy of singular vectors.
• Martinsson, Tropp, Acta Numerica, 2020. Survey. Broader perspective.
• Nakatsukasa, arXiv:2009.11392, 2020. Generalized Nyström method.
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4. Randomized embeddings: Reducing the effective dimension of point sets.
Connections to Johnson-Lindenstrauss theory. Norm estimation.

5. Analysis of the RSVD: Outline of probabilistic error analysis for the RSVD. The
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Randomized SVD: A reformulation
Task: Find a rank-k approximation to a given m× n matrix A.
Algorithm: (Merely a restatement of what has already been described.)
Fix an over-sampling parameter p, say p = 5.
Draw a Gaussian random matrix ΩΩΩ ∈ Rm×(k+p).
Form the sample matrix Y = AΩΩΩ.
Orthonormalize the columns of Y to form an ON matrix Q.
Then A ≈ QQ∗A.



Randomized SVD: A reformulation
Task: Find a rank-k approximation to a given m× n matrix A.
Algorithm: (Merely a restatement of what has already been described.)
Fix an over-sampling parameter p, say p = 5.
Draw a Gaussian random matrix ΩΩΩ ∈ Rm×(k+p).
Form the sample matrix Y = AΩΩΩ.
Orthonormalize the columns of Y to form an ON matrix Q.
Then A ≈ QQ∗A.
We seek to eliminate the intermediate matrices Y and Q from the description.
We will use the notion of a Moore-Penrose pseudoinverse. Brief recap:
Let X be an m× n matrix of rank k, with singular value decomposition

X = U D V∗.
m× n m× k k × k k × n

Then the Moore-Penrose pseudoinverse is

X† = V D−1 U∗.
n×m n× k k × k k ×m

When X is invertible, X† = X−1.
The property we need is: XX† is the orthogonal projection onto col(X).



Randomized SVD: A reformulation
Task: Find a rank-k approximation to a given m× n matrix A.
Algorithm: (Merely a restatement of what has already been described.)
Fix an over-sampling parameter p, say p = 5.
Draw a Gaussian random matrix ΩΩΩ ∈ Rm×(k+p).
Form the sample matrix Y = AΩΩΩ.
Orthonormalize the columns of Y to form an ON matrix Q.
Then A ≈ QQ∗A.
Using the notion of a Moore-Penrose pseudoinverse, we can eliminate the intermediate
matrices Y and Q from the description:

A ≈ QQ∗A = YY†A = (AΩΩΩ) (AΩΩΩ)†A.

Key claim: The columns of AΩΩΩ approximately span the column space of A.



Randomized SVD: A reformulation
Task: Find a rank-k approximation to a given m× n matrix A.
Algorithm: (Merely a restatement of what has already been described.)
Fix an over-sampling parameter p, say p = 5.
Draw a Gaussian random matrix ΩΩΩ ∈ Rm×(k+p).
Form the sample matrix Y = AΩΩΩ.
Orthonormalize the columns of Y to form an ON matrix Q.
Then A ≈ QQ∗A.
Using the notion of a Moore-Penrose pseudoinverse, we can eliminate the intermediate
matrices Y and Q from the description:

A ≈ QQ∗A = YY†A = (AΩΩΩ) (AΩΩΩ)†A.

Key claim: The columns of AΩΩΩ approximately span the column space of A.
Next, let us also approximate the row space: Draw a (k + p)×m Gaussian matrix ΨΨΨ,
then the rows of ΨΨΨA approximately span the row space of A. Then:

A ≈ (AΩΩΩ) (AΩΩΩ)†A(ΨΨΨA)† (ΨΨΨA).



Randomized SVD: A reformulation
Task: Find a rank-k approximation to a given m× n matrix A.
Algorithm: (Merely a restatement of what has already been described.)
Fix an over-sampling parameter p, say p = 5.
Draw a Gaussian random matrix ΩΩΩ ∈ Rm×(k+p).
Form the sample matrix Y = AΩΩΩ.
Orthonormalize the columns of Y to form an ON matrix Q.
Then A ≈ QQ∗A.
Using the notion of a Moore-Penrose pseudoinverse, we can eliminate the intermediate
matrices Y and Q from the description:

A ≈ QQ∗A = YY†A = (AΩΩΩ) (AΩΩΩ)†A.

Key claim: The columns of AΩΩΩ approximately span the column space of A.
Next, let us also approximate the row space: Draw a (k + p)×m Gaussian matrix ΨΨΨ,
then the rows of ΨΨΨA approximately span the row space of A. Then:

A ≈ (AΩΩΩ) (AΩΩΩ)†A(ΨΨΨA)† (ΨΨΨA).

Simplify: A ≈ (AΩΩΩ) (AΩΩΩ)†A(ΨΨΨA)† (ΨΨΨA) = · · · = (AΩΩΩ)
(
ΨΨΨAΩΩΩ

)†
(ΨΨΨA).



Randomized SVD: Double-sided approximation (“generalized Nyström”)
Task: Find a rank-k approximation to a given m× n matrix A.
Algorithm: Draw Gaussian random matrices ΩΩΩ ∈ Rm×(k+p) and ΨΨΨ ∈ R(k+p)×n.
Form approximation A ≈ (AΩΩΩ)

(
ΨΨΨAΩΩΩ

)†
(ΨΨΨA) =: Aapprox.

Yuji Nakatsukasa, arXiv:2009.11392, 2020



Randomized SVD: Double-sided approximation (“generalized Nyström”)
Task: Find a rank-k approximation to a given m× n matrix A.
Algorithm: Draw Gaussian random matrices ΩΩΩ ∈ Rm×(k+p) and ΨΨΨ ∈ R(k+p)×n.
Form approximation A ≈ (AΩΩΩ)

(
ΨΨΨAΩΩΩ

)†
(ΨΨΨA) =: Aapprox.

Observation 1:
The matrix Aapprox can be built in a single pass over A.
In other words, we need to view each matrix entry of A only once.
This cannot be done using deterministic methods (as far as I know).
“Streaming” or “single-view” algorithm.

Note: Using different over-sampling parameters for the row and column spaces is often better.

References: Alon, Gibbons, Matias and Szegedy (2002); Woolfe, Liberty, Rokhlin, and Tygert (2008);
Clarkson and Woodruff (2009); Li, Nguyen and Woodruff (2014); Boutsidis, Woodruff and Zhong (2016),
Tropp, Yurtsever, Udell and Cevher (2017); Pourkamali-Anaraki and Becker (2019); Wang, Gittens and
Mahoney (2019); Nakatsukasa, arXiv:2009.11392, 2020; Dong & Martinsson, arXiv:2104.05877, 2021;
. . .many more . . .



Randomized SVD: Double-sided approximation (“generalized Nyström”)
Task: Find a rank-k approximation to a given m× n matrix A.
Algorithm: Draw Gaussian random matrices ΩΩΩ ∈ Rm×(k+p) and ΨΨΨ ∈ R(k+p)×n.
Form approximation A ≈ (AΩΩΩ)

(
ΨΨΨAΩΩΩ

)†
(ΨΨΨA) =: Aapprox.

Observation 2:
Using Gaussian random matrices, evaluating AΩΩΩ and ΨΨΨA requires O(mnk) flops.

O(mnk) matches the flop count of Gram-Schmidt, or of a Krylov method applied to a
dense matrix.



Randomized SVD: Double-sided approximation (“generalized Nyström”)
Task: Find a rank-k approximation to a given m× n matrix A.
Algorithm: Draw Gaussian random matrices ΩΩΩ ∈ Rm×(k+p) and ΨΨΨ ∈ R(k+p)×n.
Form approximation A ≈ (AΩΩΩ)

(
ΨΨΨAΩΩΩ

)†
(ΨΨΨA) =: Aapprox.

Observation 2:
Using Gaussian random matrices, evaluating AΩΩΩ and ΨΨΨA requires O(mnk) flops.
Instead of Gaussian random matrices, we can use structured random matrices ΨΨΨ and ΩΩΩ

with the property that AΩΩΩ and ΨΨΨA can be evaluated using asymptotically fewer flops!



Randomized SVD: Double-sided approximation (“generalized Nyström”)
Task: Find a rank-k approximation to a given m× n matrix A.
Algorithm: Draw Gaussian random matrices ΩΩΩ ∈ Rm×(k+p) and ΨΨΨ ∈ R(k+p)×n.
Form approximation A ≈ (AΩΩΩ)

(
ΨΨΨAΩΩΩ

)†
(ΨΨΨA) =: Aapprox.

Observation 2:
Using Gaussian random matrices, evaluating AΩΩΩ and ΨΨΨA requires O(mnk) flops.
Instead of Gaussian random matrices, we can use structured random matrices ΨΨΨ and ΩΩΩ

with the property that AΩΩΩ and ΨΨΨA can be evaluated using asymptotically fewer flops!
• Randomized trigonometric transforms (FFT, Hadamard, etc). Cost is O(mn log(k)).
• Chains of Given’s rotations (“Kac’s random walk”). Cost is O(mn log(k)).
• “Sparse sign matrix”. Place r random entries in each row of ΩΩΩ. (Say r ∈ {2, 3, 4, 5}.)
Cost is now O(mn)!
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A ΩΩΩ AΩΩΩ

The matrix ΩΩΩ is a sparse random matrix. Two nonzero entries are placed randomly in
each row. In consequence, each column of A contributes to precisely two columns of the
sample matrix Y = AΩΩΩ. This structured random map has O(mn) complexity, is easy to
work with practically, and often provides good accuracy.



Randomized SVD: Double-sided approximation (“generalized Nyström”)
Task: Find a rank-k approximation to a given m× n matrix A.
Algorithm: Draw Gaussian random matrices ΩΩΩ ∈ Rm×(k+p) and ΨΨΨ ∈ R(k+p)×n.
Form approximation A ≈ (AΩΩΩ)

(
ΨΨΨAΩΩΩ

)†
(ΨΨΨA) =: Aapprox.

Observation 2:
Using Gaussian random matrices, evaluating AΩΩΩ and ΨΨΨA requires O(mnk) flops.
Instead of Gaussian random matrices, we can use structured random matrices ΨΨΨ and ΩΩΩ

with the property that AΩΩΩ and ΨΨΨA can be evaluated using asymptotically fewer flops!
• Randomized trigonometric transforms (FFT, Hadamard, etc). Cost is O(mn log(k)).
• Chains of Given’s rotations (“Kac’s random walk”). Cost is O(mn log(k)).
• “Sparse sign matrix”. Place r random entries in each row of ΩΩΩ. (Say r ∈ {2, 3, 4, 5}.)
Cost is now O(mn)!

When a structured random matrix is used, overall cost can be reduced to O(mn + k3).
Despite the pseudo-inverse, this can be done in a numerically stable way.
References: Ailon & Chazelle (2006); Liberty, Rokhlin, Tygert, and Woolfe (2006); Halko, Martinsson,

Tropp (2011); Clarkson & Woodruff (2013); Meng & Mahoney (2013); Nelson & Nguyen (2013); Urano

(2013); Nakatsukasa, arXiv:2009.11392, 2020; Dong & Martinsson, arXiv:2104.05877, 2021. Much

subsequent work — “Fast Johnson-Lindenstrauss transform.”



Low rank approximation via sampling:
Task: Find a rank-k approximation to a given m× n matrix A.
Question: Can we be even more aggressive? Complexity less than O(mn + k3)?

Sampling approach:
1. Draw vectors J and I holding k samples from the column and row indices, resp.
2. Form matrices C and R consisting of the corresponding columns and rows

C = A( : , J), and R = A(I, : ).

3. Use the approximation A ≈ CUR where U is computed from information in A(I, J).
(U should be an approximation to the optimal choice U = C†AR†.)

The computational profile depends crucially on the probability distribution that is used.
Uniform probabilities: Can be very cheap. But not reliable in the general case.
Probabilities from “leverage scores”: Optimal distributions can be computed using the
information in the top left and right singular vectors of A. Quite strong theorems can be
proven on the quality of this approximation. Problem: Computing the probability
distribution requires computing a partial SVD. (Sometimes there are shortcuts.)
References: Drineas, Kannan & Mahoney (2006); Drineas, Mahoney & Muthukrishnan (2008); Kannan &

Vempala (2017); Drineas & Mahoney (2018); Martinsson & Tropp (2020); . . .
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information in the top left and right singular vectors of A. Quite strong theorems can be
proven on the quality of this approximation. Problem: Computing the probability
distribution requires computing a partial SVD. (Sometimes there are shortcuts.)
References: Drineas, Kannan & Mahoney (2006); Drineas, Mahoney & Muthukrishnan (2008); Kannan &

Vempala (2017); Drineas & Mahoney (2018); Martinsson & Tropp (2020); . . .



Low rank approximation via sampling: Connection to structured embeddings
Task: Find a rank k approximation to a given m× n matrix A.
Sampling approach (now single sided again): Draw a subset of k columns
C = A(:, J) where J is drawn at random. Consider the approximant

Aapprox = CC†A.

As we have seen, this is not reliable in the general case. But it does work well for the
class of matrices for which uniform sampling is optimal.

We can turn A into such a
matrix! Let U be a matrix drawn from a uniform distribution on the set of n× n unitary
matrices (the “Haar distribution”). Then form

Ã = AU.

Now each column of Ã has exactly the same distribution! We may as well pick J = 1 : k,
and can then pick a well behaved sample through

C = Ã(:, J) = AU(:, J).

The n× k “slice” U(:, J) is in a sense an optimal random embedding.

Fact: Using a Gaussian matrix is mathematically equivalent to using U(:, J).

Observation: A structured random embedding seeks to mimic the action of U(:, J).
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Ã = AU.

Now each column of Ã has exactly the same distribution! We may as well pick J = 1 : k,
and can then pick a well behaved sample through
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Wednesday: Randomized algorithms for linear algebraic computations

1. Randomized low rank approximation: “Randomized singular value
decomposition” or “RSVD”. Relatively well established material.

2. Variations of algorithms for low rank approximation: Single pass and streaming
algorithms. Structured random embeddings. Matrix approximation via sampling.

3. Samples of current research directions (time permitting): Linear solvers. Least
squares problems. Block Krylov methods. Rank structured matrices.

Friday: Randomized embeddings — theory and applications

4. Randomized embeddings: Reducing the effective dimension of point sets.
Connections to Johnson-Lindenstrauss theory. Norm estimation.

5. Analysis of the RSVD: Outline of probabilistic error analysis for the RSVD. The
relative merits of different classes of randomized embeddings.

6. The column/row selection problem: Interpolatory and CUR decompositions.
Pivoting in QR and LU factorizations.



Solving least squares problems, linear systems, . . .

• Overdetermined least squares problems.
Suppose A ∈ Rm×n for m� n, and that you seek to solve min

x
‖Ax− b‖.
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Solving least squares problems, linear systems, . . .

• Overdetermined least squares problems.
Suppose A ∈ Rm×n for m� n, and that you seek to solve min

x
‖Ax− b‖.

Draw a random embedding ΩΩΩ ∈ Rd×m and construct a smaller sketched system.

A bold approach — “sketch-to-solve”:
Find the vector x that solves the sketched system.
A safe approach — “sketch-to-precondition”:
Build a preconditioner M ∈ Rn×n by factorizing ΩΩΩA so that ΩΩΩA = QM.
Iterate on the preconditioned linear system (AM−1) (Mx) = b.

Rokhlin/Tygert (2008), Avron/Maymounkov/Toledo (2010), many more



Solving least squares problems, linear systems, . . .

• Overdetermined least squares problems. Sketch-to-precondition paradigm.

• Randomized Kaczmarz: Randomization in a classical algorithm. Particularly
effective when randomized embeddings are incorporated. (Strohmer/Vershynnin 2009,

Needell/Ward/Srebro 2014, Gower/Richtarik 2015, Liu/Wright 2016, . . . )

• Eliminating pivoting in Gaussian elimination: D. Stott Parker showed in 1995
that you can eschew pivoting in Gaussian elimination if you first “scramble” the
coefficient matrix through “pre-conditioning” via random unitary maps. Early
example of fast J-L transform! Related work by Demmel/Dumitriu/Holtz (2007).

• Graph Laplacians: Linear systems whose coefficient matrix is a graph Laplacian
can be solved using randomized methods in close to linear (in the number of edges)
complexity. The idea is to compute an approximate Cholesky factorization A ≈ CC∗,
and then use C as a preconditioner in conjugate gradients. Can be hybridized with
ideas from nested dissection to achieve high practical speed for problems in
scientific computing. (Spielman/Teng 2004, Kyng/Sachdeva 2016, Koutis/Miller/Tolliver 2011,

Livne/Brandt 2012, Spielman 2020, Chen/Liang/Biros 2020, . . . ).



Randomized methods for solving Ax = b: Graph Laplacians
Let us consider a linear system

Ax = b

involving a coefficient matrix that is a graph Laplacian with n nodes and m edges.
• A = A∗ ∈ Rn×n.
• A(i, j) ≤ 0 when i 6= j.
• A(i, i) = −

∑
j 6=i A(i, j)

We assume that the underlying graph is connected, in which case A has a 1-dimensional
nullspace. We enforce that

∑
i x(i) = 0 and

∑
i b(i) = 0 in everything that follows.



α + β + γ −α −β − γ 0 0
−α α + δ + ζ −δ 0 0
−β − γ −δ β + γ + δ −ζ 0

0 0 −ζ ζ + η −η
0 0 0 −η η


(a) A graph with n = 5 vertices, and m =

6 edges. The conductivities of each edge
is marked with a Greek letter.

(b) The 5×5 graph Laplacian matrix associated
with the graph shown in (a).



Randomized methods for solving Ax = b: Graph Laplacians
Let us consider a linear system

Ax = b

involving a coefficient matrix that is a graph Laplacian with n nodes and m edges.
Standard solution techniques:

• Multigrid: Works great for certain classes of matrices.

• Cholesky: Compute a decomposition

A = CC∗,

with C lower triangular. Always works. Numerically stable (when pivoting is used).
Can be expensive since the factor C typically has far more non-zero entries than A.

• Incomplete Cholesky: Compute an approximate factorisation

A ≈ CC∗,

where C is constrained to be as sparse as A (typically the same pattern). Then use
CG to solve a system with the preconditioned coefficient matrix C−1AC−∗. Can work
very well, hard to analyze.



Randomized methods for solving Ax = b: Graph Laplacians
Let us consider a linear system

Ax = b

involving a coefficient matrix that is a graph Laplacian with n nodes and m edges.
Randomized solution techniques:
• Spielman-Teng (2004): Complexity O(mpoly(log n) log(1/ε)).
Relies on graph theoretical constructs (low-stretch trees, graph sparsification,
explicit expander graphs, . . . ). Important theoretical results.

• Kyng-Lee-Sachdeva-Spielman (2016): O(m (log n)2).
Relies on local sampling only. Much closer to a realistic algorithm.

The idea is to build an approximate sparse Cholesky factor that is accurate with high
probability. For instance, the 2016 paper proposes to build factors for which

1
2A 4 CC∗ 4 3

2A.

When this bound holds, CG converges as O(γn) with γ =
√
3−1√
3+1
≈ 0.27.

Sparsity is maintained by performing inexact rank-1 updates in the Cholesky procedure.
As a group of edges in the graph is removed, a set of randomly drawn new edges are
added, in a way that is correct in expectation.



Research snapshots: Approximation of kernel matrices

Consider a matrix of the form A(i, j) = k(xi,xj) for some kernel k and some set of points
or vectors {xi}Ni=1. (Very loose definition . . . )

Matrices of this type arise frequently in both data analysis and in scientific computing.

It is generally speaking impossible to form all entries of A explicitly. Sampling methods
become essential.



Research snapshots: Approximation of kernel matrices

Consider a matrix of the form A(i, j) = k(xi,xj) for some kernel k and some set of points
or vectors {xi}Ni=1. (Very loose definition . . . )

Matrices of this type arise frequently in both data analysis and in scientific computing.

It is generally speaking impossible to form all entries of A explicitly. Sampling methods
become essential.

Option 1: Approximate A as a matrix of global low rank

Typically leads to low accuracy, but can be “good enough” for pre-conditioning, for
capturing essential features in learning problems, etc.

The types of random embeddings we have discussed in this talk that intermix all matrix
elements are rarely applicable. Instead, sampling is necessary.

Example — Kernel Ridge Regression: Need to solve a linear system
(
A + µI

)
x = b

where A is a kernel matrix. Techniques based on Nyström approximation combined with
randomized sampling have proven highly effective. (Alaoui/Mahoney 2015,

Avron/Clarkson/Woodruff 2017, Musco/Musco 2017, Rudi/Calandriello/Carratino/Rosasco 2018, . . . )



Research snapshots: Approximation of kernel matrices

Consider a matrix of the form A(i, j) = k(xi,xj) for some kernel k and some set of points
or vectors {xi}Ni=1. (Very loose definition . . . )

Matrices of this type arise frequently in both data analysis and in scientific computing.

It is generally speaking impossible to form all entries of A explicitly. Sampling methods
become essential.

Option 2: Tessellate A into blocks that each have low rank — “O(n) data”

A representative tessellation of a rank-structured ma-
trix. Each off-diagonal block (gray) has low numerical
rank. The diagonal blocks (red) are full rank, but are
small in size. Matrices of this type allow efficient matrix-
vector multiplication, matrix inversion, etc.

Keywords: H-matrices, Hierarchically Semi-Separable matrices, Hierarchically Block Separable matrices,

Hierarchically off-diagonal low rank matrices, Fast Multipole Method, Barnes-Hut, . . .



Research snapshots: Approximation of kernel matrices

Consider a matrix of the form A(i, j) = k(xi,xj) for some kernel k and some set of points
or vectors {xi}Ni=1. (Very loose definition . . . )

Matrices of this type arise frequently in both data analysis and in scientific computing.

It is generally speaking impossible to form all entries of A explicitly. Sampling methods
become essential.

Option 2: Tessellate A into blocks that each have low rank — “O(n) data”

Randomized sampling strategies can be used to build a data sparse representation.

In scientific computing, we sometimes have technique for evaluating global
matrix-vector products. In such cases, randomized embedding techniques do apply, and
can lead to high accuracy approximations to the matrix.

(Martinsson 2011, March/Xiao/Biros 2015, Ambikasaran/Foreman-Mackey/Greengard/Hogg/O’Neil 2015,

Ghysels/Li/Gorman/Rouet 2016, Yu/Levitt/Reiz/Biros 2017, Rebrova/Chávez/Liu/Ghysels/Li 2018,

Geoga/Anitescu/Stein 2019, . . . )



Research snapshots: Randomized Krylov methods

Given an n× n matrix A (say symmetric), how build a subspace that captures its range?

Option 1: Classical Krylov method

Start with one random vector ω, and use V = span{ω, Aω, A2ω, . . . , Ak−1ω}.

Option 2: Basic RSVD

Start with k random vectors {ωj}kj=1, and use V = span{Aω1, Aω2, . . . , Aωk}.

Intermediate options: In between is a rich design space. We discussed “powering” in the
context of the RSVD. You can also consider variations of block Krylov methods, where
we start with a tall thin random matrix ΩΩΩ, and then use

V = span{AΩΩΩ, A2ΩΩΩ, . . . , AqΩΩΩ}.

How choose parameters to optimize storage vs. flops vs. matrix accesses? What errors
would you expect? How avoid numerical instability? Etc.

Musco & Musco; Tropp; Wang, Zhang, Zhang; Yuan, Gu, Li; Drineas, Ipsen,
Kontopoulou, Magdon-Ismail; . . .
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Wednesday: Randomized algorithms for linear algebraic computations

1. Randomized low rank approximation: “Randomized singular value
decomposition” or “RSVD”. Relatively well established material.

2. Variations of algorithms for low rank approximation: Single pass and streaming
algorithms. Structured random embeddings. Matrix approximation via sampling.

3. Samples of current research directions (time permitting): Linear solvers. Least
squares problems. Block Krylov methods. Rank structured matrices.

Friday: Randomized embeddings — theory and applications

4. Randomized embeddings: Reducing the effective dimension of point sets.
Connections to Johnson-Lindenstrauss theory. Norm estimation.

5. Analysis of the RSVD: Outline of probabilistic error analysis for the RSVD. The
relative merits of different classes of randomized embeddings.

6. The column/row selection problem: Interpolatory and CUR decompositions.
Pivoting in QR and LU factorizations.



Randomized embeddings: What are they?

Let V = {xj}nj=1 be a set of points in Rm, and let f : V → Rd be a map, where d < m.
Think of m as a “large” dimension, and d as a “small” dimension.

We say that f is an embedding if: ‖f (xi)− f (xj)‖ ≈ ‖xi − xj‖, ∀ i, j ∈ {1,2, . . . ,n}.

Lemma [Johnson-Lindenstrauss]: For d ∼ log(n), there exists a well-behaved
embedding f that “approximately” preserves distances.
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Randomized embeddings: Applications

Consider a case where we are given a set {a(j)}nj=1 of points in Rm, where m is very
large. Now suppose that we need to solve tasks such as:

• Suppose the points almost live on a linear subspace of (small) dimension k.
Find a basis for the “best” subspace. (Principal component analysis.)
• Given k, find the subset of k vectors with maximal spanning volume.
• Suppose the points almost live on a low-dimensional nonlinear manifold.
Find a parameterization of the manifold.
• Given k, find for each vector a(j) its k closest neighbors.
• Partition the points into clusters.

(Note: Some problems have well-defined solutions; some do not. The first can be solved
with algorithms with moderate complexity; some are combinatorially hard.)

If we can embed the given set of points in a lower dimensional space, while
approximately preserving distances, then a variety of algorithms for solving these
problems become available.



Randomized embeddings: Gaussian embeddings

We will next describe how random matrices can be used to build embeddings.

Recall: We say that an m× n matrix G is a “Gaussian matrix” if each entry is drawn
independently from a standard normal distribution. A “Gaussian vector” is defined
analogously.

Warm up problem: Given x ∈ Rn, estimate its `2 norm.



Randomized embeddings: Gaussian embeddings

We will next describe how random matrices can be used to build embeddings.

Recall: We say that an m× n matrix G is a “Gaussian matrix” if each entry is drawn
independently from a standard normal distribution. A “Gaussian vector” is defined
analogously.

Warm up problem: Given x ∈ Rn, estimate its `2 norm.

Note: This problem is very simple to solve directly!
The purpose of the randomized method we will discuss is to introduce concepts.
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independently from a standard normal distribution. A “Gaussian vector” is defined
analogously.

Warm up problem: Given x ∈ Rn, estimate its `2 norm.

Algorithm:

1. Draw a Gaussian vector g ∈ Rn.
2. Set y = g · x and use the estimate ‖x‖2 ≈ y2.

Claim: The expectation of y2 equals ‖x‖2. (I.e. y2 is an “unbiased estimate” for ‖x‖2.)
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independently from a standard normal distribution. A “Gaussian vector” is defined
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Warm up problem: Given x ∈ Rn, estimate its `2 norm.
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2. Set y = g · x and use the estimate ‖x‖2 ≈ y2.

Claim: The expectation of y2 equals ‖x‖2. (I.e. y2 is an “unbiased estimate” for ‖x‖2.)

E
[
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j=1
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E
[
gigj

]
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n∑
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δi,j xixj =
n∑

j=1
x2j .
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We will next describe how random matrices can be used to build embeddings.

Recall: We say that an m× n matrix G is a “Gaussian matrix” if each entry is drawn
independently from a standard normal distribution. A “Gaussian vector” is defined
analogously.

Warm up problem: Given x ∈ Rn, estimate its `2 norm.

Algorithm:

1. Draw a Gaussian vector g ∈ Rn.
2. Set y = g · x and use the estimate ‖x‖2 ≈ y2.
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Problem: y2 is not a practically useful estimate for ‖x‖2, since the variance is large.

(g · x)2 = (cos θ)2 × ‖g‖2 × ‖x‖2

∼ 1
n ∼ n



Randomized embeddings: Gaussian embeddings

We will next describe how random matrices can be used to build embeddings.

Recall: We say that an m× n matrix G is a “Gaussian matrix” if each entry is drawn
independently from a standard normal distribution. A “Gaussian vector” is defined
analogously.

Warm up problem: Given x ∈ Rn, estimate its `2 norm.

Algorithm:

1. Draw a Gaussian vector g ∈ Rn.
2. Set y = g · x and use the estimate ‖x‖2 ≈ y2.

Claim: The expectation of y2 equals ‖x‖2. (I.e. y2 is an “unbiased estimate” for ‖x‖2.)
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]

=
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E
[
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]
xixj =

n∑
i,j=1

δi,j xixj =
n∑

j=1
x2j .

Problem: y2 is not a practically useful estimate for ‖x‖2, since the variance is large.
Any one experiment is likely to give a substantial error.
Question: How can we improve the quality of the estimate?



Randomized embeddings: Gaussian embeddings

Recall warm up problem: Given x ∈ Rn, estimate its `2 norm.

Improved algorithm:
1. Pick a positive integer d. (As d grows, cost grows, and accuracy improves.)
2. Draw a d × n Gaussian matrix G.
3. Set y = 1√

d
Gx and use ‖x‖2 ≈ ‖y‖2.

Claim: The random variable ‖y‖2 is an “unbiased” estimate for ‖x‖2:
Proof: An elementary computation shows that

‖y‖2 =
d∑
j=1

y2j =
1
d

d∑
j=1

(G(j, :)x)2.

Now observe that G(j, :) is a Gaussian vector, so by the proof on the previous slide,
the random variable (G(j, :)x)2 has expectation ‖x‖2.

Since ‖y‖2 is the average of d random variables, each with expectation ‖x‖2,
its expectation is also ‖x‖2.

Important: The variance of ‖y‖2 goes to zero as d grows.
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Randomized embeddings: Gaussian embeddings

We are now ready to return to our real question of how to embed a set V = {xj}nj=1 into
a lower dimensional space.

For a positive integer d, draw a d × n Gaussian matrix G and set f (x) = 1√
d
Gx.

We know that E
[
‖f (x)− f (y)‖2

]
= ‖x− y‖2, and that as d grows, the probability

distribution will concentrate around the expectation.
Claim: Given an ε > 0, pick a positive integer

(1) d ≥ 4
(
ε2

2 −
ε3

3

)−1
log(n).

Then with positive probability, we have

(2) (1− ε) ‖xi − xj‖2 ≤ ‖f (xi)− f (xj)‖2 ≤ (1 + ε) ‖xi − xj‖2, ∀ i, j ∈ {1,2, . . . ,n}.

Sketch of proof:
(1) Establish that d

‖x‖2‖Gx‖2 has a χ2 distribution of degree d.

(2) Use known properties of the χ2 distribution.
(3) Apply a simple union bound.



Randomized embeddings: Gaussian embeddings

To summarize, we have outlined a proof for:

Lemma [Johnson-Lindenstrauss]: Let ε be a real number such that ε ∈ (0, 1), let n be
a positive integer, and let d be an integer such that

(3) d ≥ 4
(
ε2

2 −
ε3

3

)−1
log(n).

Then for any set V of n points in Rm, there is a map f : Rm→ Rd such that

(4) (1− ε) ‖u− v‖2 ≤ ‖f (u)− f (v)‖2 ≤ (1 + ε) ‖u− v‖2, ∀ u, v ∈ V .

Practical problem: You have two bad choices:
(1) Pick a small ε; then you get small distortions, but a huge d since d ∼ 8

ε2
log(n).

(2) Pick ε that is not close to 0; then distortions are large.

The behavior is analogous to classical Monte Carlo methods.
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Matrix approximation by sampling

Suppose that A =
∑T

t=1At where each At is “simple” in some sense.



Matrix approximation by sampling

Suppose that A =
∑T

t=1At where each At is “simple” in some sense.

Example: Sparse matrix written as a sum over its nonzero entries
5 −2 0
0 0 −3
1 0 0


︸ ︷︷ ︸

=A

=


5 0 0
0 0 0
0 0 0


︸ ︷︷ ︸

=A1

+


0 −2 0
0 0 0
0 0 0


︸ ︷︷ ︸

=A2

+


0 0 0
0 0 −3
0 0 0


︸ ︷︷ ︸

=A3

+


0 0 0
0 0 0
1 0 0


︸ ︷︷ ︸

=A4

Example: Each Ai could be a column of the matrix
5 −2 7
1 3 −3
1 −1 1


︸ ︷︷ ︸

=A

=


5 0 0
1 0 0
1 0 0


︸ ︷︷ ︸

=A1

+


0 −2 0
0 3 0
0 −1 0


︸ ︷︷ ︸

=A2

+


0 0 7
0 0 −3
0 0 1


︸ ︷︷ ︸

=A3

.

Example: Matrix-matrix multiplication broken up as a sum of rank-1 matrices:

A = BC =
∑
t

B( : , t)C(t, : ).



Matrix approximation by sampling

Suppose that A =
∑T

t=1At where each At is “simple” in some sense.

Let {pt}Tt=1 be a probability distribution on the index vector {1,2, . . . ,T}.
Draw an index t ∈ {1,2, . . . ,T} according to the probability distribution given, and set

X =
1
pt
At.

Then from the definition of the expectation, we have

E
[
X
]

=
T∑
t=1

pt ×
1
pt
At =

T∑
t=1

At = A,

so X is an unbiased estimate of A.
Clearly, a single draw is not a good approximation — unrepresentative, large variance.
Instead, draw several samples and average:

X̄ =
1
k

k∑
t=1

Xt,

where Xt are independent samples from the same distribution.
As k grows, the variance will decrease, as usual. Various Bernstein inequalities apply.



Matrix approximation by sampling

As an illustration of the theory, we cite a matrix-Bernstein result from J. Tropp (2015):

Theorem: Let A ∈ Rm×n. Construct a probability distribution for X ∈ Rm×n that satisfies

E
[
X
]

= A and ‖X‖ ≤ R.

Define the per-sample second-moment: v(X) := max{‖E[XX∗]‖, ‖E[X∗X]‖}.
Form the matrix sampling estimator: X̄k =

1
k
∑k

t=1Xi where Xt ∼ X are iid.

Then E‖X̄k − A‖ ≤
√

2v(X) log(m + n)

k +
2R log(m + n)

3k .

Furthermore, for all s ≥ 0: P
[
‖X̄k − A‖ ≥ s

]
≤ (m + n) exp

(
−ks2/2

v(X) + 2Rs/3

)
.

Suppose that we want E‖A− X̄‖ ≤ 2ε. The theorem says to pick

k ≥ max

{
2v(X) log(m + n)

ε2
,
2R log(m + n)

3ε

}
In other words, the number k of samples should be proportional to both v(X) and to the
upper bound R.

The scaling k ∼ 1
ε2

is discouraging, and unavoidable.



Matrix approximation by sampling: Matrix matrix multiplication

Given two matrices B and C, consider the task of evaluating

A = B C.
m× n m× T T × n

Sampling approach:
1. Fix a probability distribution {pt}Tt=1 on the index vector {1,2, . . . ,T}.
2. Draw a subset of k indices J = {t1, t2, . . . , tk} ⊆ {1,2, . . . ,T}.
3. Use Ā =

∑k
i=1

1
pti
B( : , ti)C(ti, : ) to approximate A.

You get an unbiased estimator regardless of the probability distribution. But the
computational profile depends critically how which one you choose. Common choices:

Uniform distribution: Very fast. Not very reliable or accurate.

Sample according to column/row norms: Cost is O(mnk), which is much better than
O(mnT ) when k � T . Better outcomes than uniform, but still not particularly good.

In either case, you need k ∼ 1
ε2

to attain precision ε.



Matrix approximation by sampling: Low rank approximation.

Given an m× n matrix A, we seek a rank-k matrix Ā such that ‖A− Ā‖ is small.

Sampling approach:
1. Draw vectors J and I holding k samples from the column and row indices, resp.
2. Form matrices C and R consisting of the corresponding columns and rows

C = A( : , J), and R = A(I, : ).

3. Use as your approximation
Ā = C U R,

m× n m× k k × k k × n
where U is computed from information in A(I, J). (It should be an approximation to
the optimal choice U = C†AR†.)

The computational profile depends crucially on the probability distribution that is used.

Uniform probabilities: Can be very cheap. But in general not reliable.

Probabilities from “leverage scores”: Optimal distributions can be computed using the
information in the top left and right singular vectors of A. Then quite strong theorems
can be proven on the quality of the approximation. Problem: Computing the probability
distribution is as expensive as computing a partial SVD.



Wednesday: Randomized algorithms for linear algebraic computations

1. Randomized low rank approximation: “Randomized singular value
decomposition” or “RSVD”. Relatively well established material.

2. Variations of algorithms for low rank approximation: Single pass and streaming
algorithms. Structured random embeddings. Matrix approximation via sampling.

3. Samples of current research directions (time permitting): Linear solvers. Least
squares problems. Block Krylov methods. Rank structured matrices.

Friday: Randomized embeddings — theory and applications

4. Randomized embeddings: Reducing the effective dimension of point sets.
Connections to Johnson-Lindenstrauss theory. Norm estimation.

5. Analysis of the RSVD: Outline of probabilistic error analysis for the RSVD. The
relative merits of different classes of randomized embeddings.

6. The column/row selection problem: Interpolatory and CUR decompositions.
Pivoting in QR and LU factorizations.



Recall the randomized SVD (RSVD) algorithm:

Objective: Given an m× n matrix A, find an approximate rank-k partial SVD:

A ≈ U D V∗

m× n m× k k × k k × n
where U and V are orthonormal, and D is diagonal. (We assume k � min(m,n).)

(A) Randomized sketching:
A.1 Draw an n× k Gaussian random matrix G. G = randn(n,k)

A.2 Form the m× k sample matrix Y = AG. Y = A * G

A.3 Form an m× k orthonormal matrix Q such that ran(Q) = ran(Y). [Q, ∼] = qr(Y)

(B) Deterministic post-processing:
B.1 Form the k × n matrix B = Q∗A. B = Q’ * A

B.2 Form the full SVD of the small matrix B: B = ÛDV∗. [Uhat, Sigma, V] = svd(B,’econ’)

B.3 Form the matrix U = QÛ. U = Q * Uhat

Observe that the final approximation is

Aapprox = UDV∗ = QQ∗A

where the columns of Q form an ON basis for col(AG). In other words, Q = orth(AG).



Bound on the expectation of the error for Gaussian test matrices
Let A denote an m× n matrix with singular values {σj}

min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter such that p ≥ 2.
Let G denote an n× (k + p) Gaussian matrix.
Let Q denote the m× (k + p) matrix Q = orth(AG). Then

E‖A−QQ∗A‖Frob ≤
(
1 +

k
p− 1

)1/2
min(m,n)∑

j=k+1
σ2j

1/2

,

E‖A−QQ∗A‖ ≤

1 +

√
k

p− 1

σk+1 +
e
√
k + p
p

min(m,n)∑
j=k+1

σ2j

1/2

.

Notes:
• The bounds depend only on the singular values of A.
• The spectral norm bound indicates substantial suboptimality in the algorithm in
cases where the singular values decay slowly.
• Observe that the numbers of samples is only slightly larger than k. No “1/ε2” term.



Proofs — Overview:

Let A denote an m× n matrix with singular values {σj}
min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter. Set ` = k + p.
Let ΩΩΩ denote an n× ` “test matrix”, and let Q denote the m× ` matrix Q = orth(AΩΩΩ).

We seek to bound the error ek = ek(A,ΩΩΩ) = ‖A−QQ∗A‖, which is a random variable.

1. Make no assumption on ΩΩΩ. Construct a deterministic bound of the form

‖A−QQ∗A‖ ≤ · · ·A · · ·ΩΩΩ · · ·

2. Assume that ΩΩΩ is drawn from a normal Gaussian distribution.
Take expectations of the deterministic bound to attain a bound of the form

E
[
‖A−QQ∗A‖

]
≤ · · ·A · · ·

3. Assume that ΩΩΩ is drawn from a normal Gaussian distribution.
Take expectations of the deterministic bound conditioned on “bad behavior” in ΩΩΩ to
get that

‖A−QQ∗A‖ ≤ · · ·A · · ·

holds with probability at least · · · .
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Part 1 (out of 3) — deterministic bound:

Let A denote an m× n matrix with singular values {σj}
min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter. Set ` = k + p.
Let ΩΩΩ denote an n× ` “test matrix”, and let Q denote the m× ` matrix Q = orth(AΩΩΩ).

Partition the SVD of A as follows:
k n− k

A = U
[
D1

D2

][
V∗1
V∗2

]
k

n− k
Define ΩΩΩ1 and ΩΩΩ2 via

ΩΩΩ1 = V∗1 ΩΩΩ

k × (k + p) k × n n× (k + p)
and

ΩΩΩ2 = V∗2 ΩΩΩ.

(n− k)× (k + p) (n− k)× n n× (k + p)

Theorem: [HMT2009,HMT2011] Assuming that ΩΩΩ1 is not singular, it holds that

|||A−QQ∗A|||2 ≤ |||D2|||
2︸ ︷︷ ︸

theoretically minimal error
+ |||D2ΩΩΩ2ΩΩΩ

†
1|||

2.

Here, ||| · ||| represents either `2-operator norm, or the Frobenius norm.
Note: A similar result appears in Boutsidis, Mahoney, Drineas (2009).



Recall: A = U
[
D1 0
0 D2

][
V∗1
V∗2

]
,
[

ΩΩΩ1
ΩΩΩ2

]
=

[
V∗1ΩΩΩ

V∗2ΩΩΩ

]
, Y = AΩΩΩ, P projn onto Ran(Y).

Thm: Suppose D1ΩΩΩ1 has full rank. Then ‖A− PA‖2 ≤ ‖D2‖
2 + ‖D2ΩΩΩ2ΩΩΩ

†
1‖

2.

Proof: The problem is rotationally invariant⇒We can assume U = I and so A = DV∗.

Simple calculation: ‖(I− P)A‖2 = ‖A∗(I− P)2A‖ = ‖D(I− P)D‖.

Ran(Y) = Ran
([

D1ΩΩΩ1
D2ΩΩΩ2

])
= Ran

([
I

D2ΩΩΩ2ΩΩΩ
†
1D
−1
1

]
D1ΩΩΩ1

)
= Ran

([
I

D2ΩΩΩ2ΩΩΩ
†
1D
−1
1

])

Set F = D2ΩΩΩ2ΩΩΩ
†
1D
−1
1 . Then P =

[
I
F

]
(I + F∗F)−1[I F∗]. (Compare to Pideal =

[
I 0
0 0

]
.)

Use properties of psd matrices: I− P 4 · · · 4

[
F∗F −(I + F∗F)−1F∗

−F(I + F∗F)−1 I

]

Conjugate by D to get D(I− P)D 4

[
D1F∗FD1 −D1(I + F∗F)−1F∗D2

−D2F(I + F∗F)−1D1 D2
2

]

Diagonal dominance: ‖D(I− P)D‖ ≤ ‖D1F∗FD1‖ + ‖D2
2‖ = ‖D2ΩΩΩ2ΩΩΩ

†
1‖

2 + ‖D2‖2.



Part 2 (out of 3) — bound on expectation of error when ΩΩΩ is Gaussian:

Let A denote an m× n matrix with singular values {σj}
min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter. Set ` = k + p.
Let ΩΩΩ denote an n× ` “test matrix”, and let Q denote the m× ` matrix Q = orth(AΩΩΩ).

Recall: |||A−QQ∗A|||2 ≤ |||D2|||2 + |||D2ΩΩΩ2ΩΩΩ
†
1|||

2, where ΩΩΩ1 = V∗1ΩΩΩ and ΩΩΩ2 = V∗2ΩΩΩ.

Assumption: ΩΩΩ is drawn from a normal Gaussian distribution.

Since the Gaussian distribution is rotationally invariant, the matrices ΩΩΩ1 and ΩΩΩ2 also
have a Gaussian distribution. (As a consequence, the matrices U and V do not enter the
analysis and one could simply assume that A is diagonal, A = diag(σ1, σ2, . . . ). )

What is the distribution of ΩΩΩ
†
1 when ΩΩΩ1 is a k × (k + p) Gaussian matrix?

If p = 0, then ‖ΩΩΩ†1‖ is typically large, and is very unstable.



Scatter plot showing distribution of 1/σmin for k × (k + p) Gaussian matrices. p = 0
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Scatter plot showing distribution of 1/σmin for k × (k + p) Gaussian matrices. p = 2
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Scatter plot showing distribution of 1/σmin for k × (k + p) Gaussian matrices. p = 5
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Scatter plot showing distribution of 1/σmin for k × (k + p) Gaussian matrices. p = 10
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Scatter plot showing distribution of k × (k + p) Gaussian matrices.
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Simplistic proof that a rectangular Gaussian matrix is well-conditioned:
Let G denote a k × ` Gaussian matrix where k < `. Let “g” denote a generic N (0,1)
variable and let “rj” denote a generic random variable distributed like the square root of a
χ2j variable. Then

G ∼



g g g g g g · · ·
g g g g g g · · ·
g g g g g g · · ·
g g g g g g · · ·
... ... ... ... ... · · ·


∼



r` 0 0 0 0 0 · · ·
g g g g g g · · ·
g g g g g g · · ·
g g g g g g · · ·
... ... ... ... ... · · ·



∼



r` 0 0 0 0 0 · · ·
rk−1 g g g g g · · ·
0 g g g g g · · ·
0 g g g g g · · ·
... ... ... ... ... · · ·


∼



r` 0 0 0 0 · · ·
rk−1 r`−1 0 0 0 · · ·
0 g g g g · · ·
0 g g g g · · ·
... ... ... ... ... · · ·



∼



r` 0 0 0 0 · · ·
rk−1 r`−1 0 0 0 · · ·
0 rk−2 g g g · · ·
0 0 g g g · · ·
... ... ... ... ... · · ·


∼ · · · ∼



r` 0 0 0 0 · · ·
rk−1 r`−1 0 0 0 · · ·
0 rk−2 r`−2 0 0 · · ·
0 0 rk−3 r`−3 0 · · ·
... ... ... ... ... · · ·


Gershgorin’s circle theorem will now show that G is highly likely to be well-conditioned if,
e.g., ` = 2k. More sophisticated methods are required to get to ` = k + 2.



Some results on Gaussian matrices. Adapted from HMT 2009/2011; Gordon (1985,1988) for
Proposition 1; Chen & Dongarra (2005) for Propositions 2 and 4; Bogdanov (1998) for Proposition 3.

Proposition 1: Let G be a Gaussian matrix. Then(
E
[
‖SGT‖2F

])1/2 ≤‖S‖F ‖T‖F
E
[
‖SGT‖

]
≤‖S‖ ‖T‖F + ‖S‖F ‖T‖

Proposition 2: Let G be a Gaussian matrix of size k × k + p where p ≥ 2. Then

(
E
[
‖G†‖2F

])1/2 ≤√ k
p− 1

E
[
‖G†‖

]
≤e
√
k + p
p .

Proposition 3: Suppose h is Lipschitz |h(X)− h(Y)| ≤ L‖X − Y‖F and G is Gaussian. Then

P
[
h(G) > E[h(G)] + L u] ≤ e−u2/2.

Proposition 4: Suppose G is Gaussian of size k × k + p with p ≥ 4. Then for t ≥ 1:

P
[
‖G†‖F ≥

√
3k

p + 1t
]
≤t−p

P
[
‖G†‖ ≥ e

√
k + p

p + 1 t
]
≤t−(p+1)



Recall: ‖A−QQ∗A‖2 ≤ ‖D2‖2 + ‖D2ΩΩΩ2ΩΩΩ
†
1‖

2, where ΩΩΩ1 and ΩΩΩ2 are Gaussian and ΩΩΩ1 is
k × k + p.

Theorem: E
[
‖A−QQ∗A‖

]
≤

1 +

√
k

p− 1

σk+1 +
e
√
k + p
p

min(m,n)∑
j=k+1

σ2j

1/2

.

Proof: First observe that

E‖A−QQ∗A‖ = E
(
‖D2‖

2 + ‖D2ΩΩΩ2ΩΩΩ
†
1‖

2)1/2 ≤ ‖D2‖ + E‖D2ΩΩΩ2ΩΩΩ
†
1‖.

Condition on ΩΩΩ1 and use Proposition 1:

E‖D2ΩΩΩ2ΩΩΩ
†
1‖ ≤ E

[
‖D2‖ ‖ΩΩΩ

†
1‖F + ‖D2‖F ‖ΩΩΩ

†
1‖
]

≤ {Hölder} ≤ ‖D2‖
(
E‖ΩΩΩ†1‖

2
F
)1/2

+ ‖D2‖FE‖ΩΩΩ†1‖.

Proposition 2 now provides bounds for E‖ΩΩΩ†1‖
2
F and E‖ΩΩΩ†1‖ and we get

E‖D2ΩΩΩ2ΩΩΩ
†
1‖ ≤

√
k

p− 1‖D2‖ +
e
√
k + p
p ‖D2‖F =

√
k

p− 1σk+1 +
e
√

k + p
p

∑
j>k

σ2j

1/2

.
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Recall: ‖A−QQ∗A‖2 ≤ ‖D2‖2 + ‖D2ΩΩΩ2ΩΩΩ†1‖
2, where ΩΩΩ1 and ΩΩΩ2 are Gaussian and ΩΩΩ1 is k × k + p.

Theorem: With probability at least 1− 2 t−p − e−u2/2 it holds that

‖A−QQ∗A‖ ≤

1 + t

√
3k

p + 1 + u t e
√
k + p

p + 1

 σk+1 +
t e
√
k + p

p + 1

∑
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1/2
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Proof: Set Et =

{
‖ΩΩΩ1‖ ≤

e
√

k+p
p+1 t and ‖ΩΩΩ†1‖F ≤

√
3k
p+1 t

}
. By Proposition 4: P(Ec

t ) ≤ 2 t−p.

Set h(X) = ‖D2XΩΩΩ†1‖. A direct calculation shows

|h(X)− h(Y)| ≤ ‖D2‖ ‖ΩΩΩ†1‖ ‖X − y‖F.

Hold ΩΩΩ1 fixed and take the expectation on ΩΩΩ2. Then Proposition 1 applies and so

E
[
h
(
ΩΩΩ2
) ∣∣ ΩΩΩ1

]
≤ ‖D2‖ ‖ΩΩΩ†1‖F + ‖D2‖F ‖ΩΩΩ†1‖.

Now use Proposition 3 (concentration of measure)

P
[
‖D2ΩΩΩ2ΩΩΩ†1‖︸ ︷︷ ︸

=h(ΩΩΩ2)

> ‖D2‖ ‖ΩΩΩ†1‖F + ‖D2‖F ‖ΩΩΩ†1‖︸ ︷︷ ︸
=E[h(ΩΩΩ2)]

+ ‖D2‖ ‖ΩΩΩ†1‖︸ ︷︷ ︸
=L

u
∣∣ Et

]
< e−u2/2.

When Et holds true, we have bounds on the “badness” of ΩΩΩ†1:

P
[
‖D2ΩΩΩ2ΩΩΩ†1‖ > ‖D2‖

√
3k

p + 1t + ‖D2‖F
e
√

k + p
p + 1 t + ‖D2‖

e
√

k + p
p + 1 ut

∣∣ Et

]
< e−u2/2.

The theorem is obtained by using P(Ec
t ) ≤ 2 t−p to remove the conditioning of Et.



Power method for improving accuracy:

The error depends on how quickly the singular values decay.

The faster the singular values decay — the stronger the relative weight of the dominant
modes in the samples.

Idea: The matrix (AA∗)qA has the same left singular vectors as A, and its singular
values are

σj((AA∗)qA) = (σj(A))2q+1.

Much faster decay — so let us use the sample matrix

Y = (AA∗)qAG

instead of
Y = AG.



Input: An m× n matrix A, a target rank `, and a small integer q.
Output: Rank-` factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× ` Gaussian matrix G. (4) Form the small matrix B = Q∗A.
(2) Form the m× ` sample matrix Y = (AA∗)qAG. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

• Detailed (and, we believe, close to sharp) error bounds have been proven.
For instance, with Acomputed = UDV∗, the expectation of the error satisfies:

(5) E
[
‖A− Acomputed‖

]
≤

(
1 + 4

√
2 min(m,n)

k − 1

)1/(2q+1)

σk+1(A).

Reference: Halko, Martinsson, Tropp (2011).

• The improved accuracy from the modified scheme comes at a cost;
2q + 1 passes over the matrix are required instead of 1.
However, q can often be chosen quite small in practice, q = 2 or q = 3, say.

• The bound (5) assumes exact arithmetic.
To handle round-off errors, variations of subspace iterations can be used.
These are entirely numerically stable and achieve the same error bound.



Structured randomized embeddings “Fast J-L transforms”

Recall that the RSVD can be accelerated by using a random distribution of test matrices
that can be applied more rapidly to vectors than Gaussian matrices.
Some options we mentioned that improve on the O(mnk) cost of Gaussian matrices:

• Randomized trigonometric transforms (FFT, Hadamard, etc). Cost is O(mn log(k)).
• Chains of Given’s rotations (“Kac’s random walk”). Cost is O(mn log(k)).
• “Sparse sign matrix”. Place r random entries in each row of ΩΩΩ. (Say r{2, 3, 4, 5}.)
Cost is now O(mn)!

Question: Which type of random matrix should I use for the sketching?

The theory for structured maps is quite weak — it appears to indicate that enormous
over-sampling is required.

Instead of invoking theory, we will attempt to answer the question via numerical
experiments. We will compare:

• Optimality: How good of a basis for the column space do you get?

• Computational cost: What is the practical speed?
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Comparison of different random matrices — accuracy

Compare picking ΩΩΩ as (1) Gaussian, (2) SRFT, (3) sparse random.
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The “MNIST” test matrix is dense and of size 784× 60 000 where each column holds one hard drawn digit

between 0 and 9. The matrix is 80% sparse.



Comparison of different random matrices — accuracy

Compare picking ΩΩΩ as (1) Gaussian, (2) SRFT, (3) sparse random.
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The “large” test matrix is taken from a linear programming example. It is sparse, of size 4 282× 8 617,

with 20 635 nonzero entries.



Comparison of different random matrices — accuracy

Compare picking ΩΩΩ as (1) Gaussian, (2) SRFT, (3) sparse random.
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The “snn” test matrix has been used in the CUR literature before. It is an artificial sparse matrix of size

1 000× 1 000.



Comparison of different random matrices — execution time

The runtime of applying different subspace embeddings ΩΩΩ ∈ R`×m to an arbitrary dense
matrix of size m× n, scaled with respect to the ambient dimension m, at different
embedding dimension l and a fixed number of columns n = 100.
(Note: This n is artificially small, but the scaling with n is linear.)

Note: Observe that the dimension of the sketch is quite high in these examples.



Take-aways from numerical experiments:

• Gaussian matrices are highly recommended. Excellent general purpose tools.

• “Sparse random” is very fast in all environments. Slightly less accurate.

• Subsampled trigonometric transforms are about as accurate as Gaussians.
When the rank is large (say 500 or 1000), you see substantial speed gain.



Wednesday: Randomized algorithms for linear algebraic computations

1. Randomized low rank approximation: “Randomized singular value
decomposition” or “RSVD”. Relatively well established material.

2. Variations of algorithms for low rank approximation: Single pass and streaming
algorithms. Structured random embeddings. Matrix approximation via sampling.

3. Samples of current research directions (time permitting): Linear solvers. Least
squares problems. Block Krylov methods. Rank structured matrices.

Friday: Randomized embeddings — theory and applications

4. Randomized embeddings: Reducing the effective dimension of point sets.
Connections to Johnson-Lindenstrauss theory. Norm estimation.

5. Analysis of the RSVD: Outline of probabilistic error analysis for the RSVD. The
relative merits of different classes of randomized embeddings.

6. The column/row selection problem: Interpolatory and CUR decompositions.
Pivoting in QR and LU factorizations.



Finding spanning rows and columns — CUR and interpolatory decompositions
In some applications, finding sets of columns/rows that span the column/row space is
the primary task. To illustrate, suppose that we are given an m× n matrix A, a rank
k < min(m,n), and seek to compute a column interpolatory decomposition (ID)

A ≈ C Z,
m× n m× k k × n

where C = A(:, Js) holds a subset of k columns of A.



Finding spanning rows and columns — CUR and interpolatory decompositions
In some applications, finding sets of columns/rows that span the column/row space is
the primary task. To illustrate, suppose that we are given an m× n matrix A, a rank
k < min(m,n), and seek to compute a column interpolatory decomposition (ID)

A ≈ C Z,
m× n m× k k × n

where C = A(:, Js) holds a subset of k columns of A.

Why insist on using the columns as a basis?
• The index vector Js is useful in data interpretation.
• If A is sparse, then C is sparse.
• If A is non-negative, then C is non-negative.
• Storage efficient in that C often does not need to be formed.
• Can be faster to compute than randomized SVD, and other competitors.



Finding spanning rows and columns — CUR and interpolatory decompositions
In some applications, finding sets of columns/rows that span the column/row space is
the primary task. To illustrate, suppose that we are given an m× n matrix A, a rank
k < min(m,n), and seek to compute a column interpolatory decomposition (ID)

A ≈ C Z,
m× n m× k k × n

where C = A(:, Js) holds a subset of k columns of A.

Variations: You can of course use rows to span the row space instead / as well:

• The row interpolatory decomposition takes the form

A ≈ XR

where R = A(Is, : ) holds a subset of k rows of A.
• The two sided interpolatory decomposition takes the form

A ≈ XA(Is, Js)Z.

• The CUR decomposition takes the form

A ≈ CUR,

where C = A( : , Js), where R = A(Is, : ), and where U is some k × k matrix.



Finding spanning rows and columns — CUR and interpolatory decompositions
In some applications, finding sets of columns/rows that span the column/row space is
the primary task. To illustrate, suppose that we are given an m× n matrix A, a rank
k < min(m,n), and seek to compute a column interpolatory decomposition (ID)

A ≈ C Z,
m× n m× k k × n

where C = A(:, Js) holds a subset of k columns of A.

Traditional algorithms:
• Column pivoted QR (“Gram Schmidt”).
• Fully pivoted LU (closely related to “cross approximation”).

Cost is O(mnk), which is good. But communication intensive→ large prefactors.
Can in theory be far from optimal, but tends to work well in practice.
(Provably close to optimal methods do exist — e.g. Gu-Eisenstat.)

Note: Faster factorizations (unpivoted QR, partially pivoted LU,. . . ) do not work.



Finding spanning rows and columns — CUR and interpolatory decompositions
In some applications, finding sets of columns/rows that span the column/row space is
the primary task. To illustrate, suppose that we are given an m× n matrix A, a rank
k < min(m,n), and seek to compute a column interpolatory decomposition (ID)

A ≈ C Z,
m× n m× k k × n

where C = A(:, Js) holds a subset of k columns of A.

Randomized sampling:
The idea is to draw an index vector Js by through random sampling from {1,2, . . . , n}.

A uniform distribution sometimes works well. More typically, for this to be reliable, you
need to rely on so called leverage scores. These are expensive to compute accurately,
but can sometimes be approximated at low cost.

The number of samples required is typically substantially larger than the minimal
number. A two-step approach where you first sample generously, and then pick the best
columns among the sample can sometimes work.

Attractive for huge matrices where you cannot afford to form the entire matrix.



Finding spanning rows and columns — CUR and interpolatory decompositions
In some applications, finding sets of columns/rows that span the column/row space is
the primary task. To illustrate, suppose that we are given an m× n matrix A, a rank
k < min(m,n), and seek to compute a column interpolatory decomposition (ID)

A ≈ C Z,
m× n m× k k × n

where C = A(:, Js) holds a subset of k columns of A.

Random embedding + classical pivoting:
(1) Apply a random embedding ΩΩΩ to the columns of A.
(2) Execute a classical pivoting method on ΩΩΩA.



Finding spanning rows and columns — CUR and interpolatory decompositions
In some applications, finding sets of columns/rows that span the column/row space is
the primary task. To illustrate, suppose that we are given an m× n matrix A, a rank
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(1) Apply a random embedding ΩΩΩ to the columns of A.
(2) Execute a classical pivoting method on ΩΩΩA.



The column selection problem — through a sketch
Simple theorem: Let A be an m× n matrix of exact rank k. Suppose:
(1) We have by some means computed a factorization

A = E F.
m× n m× k k × n

(2) We have solved the column selection problem for F, so that

F = F(:, Js) Z.
k × n k × k k × n

Then, automatically, we have also solved the column selection problem for A:

A = A(:, Js) Z.
m× n m× k k × n



The column selection problem — through a sketch
Simple theorem: Let A be an m× n matrix of exact rank k. Suppose:
(1) We have by some means computed a factorization

A = E F.
m× n m× k k × n

(2) We have solved the column selection problem for F, so that

F = F(:, Js) Z.
k × n k × k k × n

Then, automatically, we have also solved the column selection problem for A:

A = A(:, Js) Z.
m× n m× k k × n

Proof: Assume that

(*) A = EF

and that

(**) F = F(:, Js)Z.

Then
A( : , Js)Z

(∗)
= EF( : , Js)Z

(∗∗)
= EF = A.



The column selection problem — through a sketch
Simple theorem: Let A be an m× n matrix of exact rank k. Suppose:
(1) We have by some means computed a factorization

A = E F.
m× n m× k k × n

(2) We have solved the column selection problem for F, so that

F = F(:, Js) Z.
k × n k × k k × n

Then, automatically, we have also solved the column selection problem for A:

A = A(:, Js) Z.
m× n m× k k × n

Randomized embedding: Ideal way to find the matrix F!
Draw a k ×m Gaussian random matrix ΩΩΩ and set

F = ΩΩΩA.

When A has exact rank, A = EF holds with probability one (for some E).
In the general case, the accuracy is as specified by the analysis of the RSVD.

Important: We do not need to know the factor E. It just never enters the computation.



Algorithm: Select spanning columns through a sketch
Inputs: An m× n matrix A, a target rank k, and an over-sampling parameter p. (Say p = 5 or p = 10.)
Outputs: An index vector Js and a k × n interpolation matrix Z such that A ≈ A(:, Js)Z.
(1) Draw a (k + p)×m random matrix ΩΩΩ;
(2) Form a (k + p)× n matrix F holding samples from the row space, F = ΩΩΩA;
(3) Do k steps of Gram-Schmidt on the columns of F to form the factorization F ≈ F(:, Js)Z.

• High flexibility in terms of choice of random matrix. Gaussian works great and is well
supported by theory. Sparse random is super fast, and often works well.

• When a Gaussian distribution is used, power iteration can improve the alignment of
F with the space spanned by the top k right singular vectors.

• Step (3) can be modified to use methods other than G-S on the columns:
• Sophisticated methods like the “strong rank-revealing QR” of Gu and Eisenstat can be used to pick

columns that are provably “close” to optimal.
• The discrete empirical interpolation method (DEIM) of Sorensen and Embree slightly improves on

the optimality of the selected indices, at the cost that the full RSVD has to be run first.
• Remarkably, it is ok to use partially pivoted LU on F. This is much faster when the rank is large.

“Poor main’s DEIM.”
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Numerical experiments

Question: How should I postprocess the matrix, once I have extracted a sketch?

We will compare:

• Column pivoted QR

• DEIM: Form approximate SVD, then partially pivoted LU on the singular vectors.

• Partially pivoted LU directly on the sketching matrix. (“Poor man’s DEIM”)

• (Form approximate RSVD, then compute “leverage scores”, then draw columns
based on the leverage scores.)

In these experiments, we use Gaussian random matrices.



Comparison of different methods for solving the column selection problem

We compare different ways to “postprocess” the extracted sketch F = ΩΩΩA.

These are experiments to test the runtime.

The runtime of various pivoting schemes on the sketches of size n× `, scaled with
respect to the problem size n, at different embedding dimension `.

Observe that the dimension of the sketch is quite high in the last two examples.



Comparison of different methods for solving the column selection problem

We compare different ways to “postprocess” the extracted sketch F = ΩΩΩA.

These are experiments to test the accuracy / optimality.

The “MNIST” test matrix is dense and of size 784× 60 000 where each column holds one hard drawn digit

between 0 and 9. The matrix is 80% sparse.



Comparison of different methods for solving the column selection problem

We compare different ways to “postprocess” the extracted sketch F = ΩΩΩA.

These are experiments to test the accuracy / optimality.

The “YaleFace64x64” test matrix holds 165 face images, each with 64× 64 pixels. The pictures have

been normalized, to create a dense matrix of size 165× 4096.



Comparison of different methods for solving the column selection problem

We compare different ways to “postprocess” the extracted sketch F = ΩΩΩA.

These are experiments to test the accuracy / optimality.

The “snn” test matrix has been used in the CUR literature before. It is an artificial sparse matrix of size

1 000× 1 000.
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We compare different ways to “postprocess” the extracted sketch F = ΩΩΩA.

These are experiments to test the accuracy / optimality.
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with 20 635 nonzero entries.



Comparison of different methods for solving the column selection problem

We compare different ways to “postprocess” the extracted sketch F = ΩΩΩA.

These are experiments to test the accuracy / optimality.

The “largesparse” test matrix is a synthetic non-negative matrix. It is sparse, of size 106 × 106.



Take-aways from numerical experiments:

We tested three methods for picking columns from the sketch matrix:

1. Column pivoted QR.
2. DEIM. (Compute approximate RSVD, then do LU with partial pivoting.)
3. Partially pivoted LU directly on the sketch. It works because of randomization!!

Observations:

• The three methods are about equally good at picking columns.
DEIM perhaps slight winner.
• All work quite well in practice.
• In terms of speed, partially pivoted LU (“Poor man’s DEIM”) is the fastest by a
margin.
• For very large matrices, you sometimes lose lots of approximation accuracy by using
“natural bases” instead of the singular vectors.

Dong & Martinsson, arXiv:2104.05877 [math.NA]



Randomized pivoting in Householder QR

The column selection strategies described can also be applied to resolve a classical
problem in numerical linear algebra: How do you pick groups of pivots when executing
column pivoted QR? The purpose is to move flops from BLAS2 to BLAS3 operations.



Randomized pivoting in Householder QR

Given a dense n× n matrix A, compute a column pivoted QR factorization
A P ≈ Q R,

n× n n× n n× n n× n
where, as usual, Q should be ON, P is a permutation, and R is upper triangular.

The technique proposed is based on a blocked version of classical Householder QR:

A0 = A A1 = Q∗1A0P1 A2 = Q∗2A1P2 A3 = Q∗3A2P3 A4 = Q∗4A3P4
Each Pj is a permutation matrix computed via randomized sampling.
Each Qj is a product of Householder reflectors.

The key challenge has been to find good permutation matrices.
We seek Pj so that the set of b chosen columns has maximal spanning volume.

The pivot selection problem is very closely related to the problem of finding spanning
columns that we started with! The likelihood that any block of columns is “hit” by the
random vectors is directly proportional to its volume. Perfect optimality is not required.
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Randomized pivoting in Householder QR
How to do block pivoting using randomization:
Let A be of size m× n, and let b be a block size.

→
A Q∗AP

Q is a product of b Householder reflectors.
P is a permutation matrix that moves b “pivot” columns to the leftmost slots.
We seek P so that the set of chosen columns has maximal spanning volume.
Draw a Gaussian random matrix G of size b×m and form

F = G A
b× n b×m m× n

The rows of F are random linear combinations of the rows of A.
Then compute the pivot matrix P for the first block by executing traditional column
pivoting on the small matrix F:

F P = Qtrash Rtrash

b× n n× n b× b b× n



Randomized pivoting in Householder QR
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Speedup attained by our randomized algorithm HQRRP for computing a full column pivoted
QR factorization of an n × n matrix. The speed-up is measured versus LAPACK’s faster
routine dgeqp3 as implemented in Netlib (left) and Intel’s MKL (right). Our implementation
was done in C, and was executed on an Intel Xeon E5-2695. Joint work with G. Quintana-
Ortí, N. Heavner, and R. van de Geijn. Available at: https://github.com/flame/hqrrp/

References: Martinsson arXiv:1505.08115; Duersch/Gu arXiv:1509.06820; Martinsson/Quintana-Ortí/Heavner/van de Geijn

SISC 2017; Duersch/Gu SISC 2017 and SIREV 2020.



Epilogue



Nature of different randomized algorithms

Monte Carlo algorithms: Output is a random variable.

• Large variability in output, sensitive to poor random number generators, etc.
• Slow convergence. The error ε scales as 1/

√
n where n is number of instantiations.

In consequence, n ∼ 1/ε2 number of samples required.
• Enable the solution of many otherwise intractable problems.

Las Vegas algorithms: Certain to find correct answer. Runtime is stochastic.

• Archetypical example is QuickSort.
• Randomized pre-conditioning is an LV algorithm in that the residual is controlled.

Many of the recently proposed randomized methods are “intermediate”.

• Output is a random variable, but errors are very small and concentrated.
• Robust to quality of random number generators, etc.
• Large errors can be caught → only problem is occasionally excessive runtime.



Randomized algorithms come with different degrees of acceleration and reliability
Ac

ce
le
ra
tio

n
co

m
pa

re
d
to

de
te
rm

in
is
tic

m
et
ho

d

Accuracy or reliability compared to deterministic method

This graphic is not to be taken too seriously. . .



Surveys:

• J. Tropp 2019, “Matrix concentration and computational linear algebra.” CMS
Lecture Notes 2019-01,
• P. Drineas and M.W. Mahoney, “Lectures on Randomized Numerical Linear
Algebra”, Amer. Math. Soc., 2018.
• M.W. Mahoney and P. Drineas, “RandNLA : Randomized Numerical Linear Algebra”,
Communications of the ACM, 2016.
• R. Kannan and S. Vempala, “Randomized Algorithms in Numerical Linear Algebra”,
Acta Numerica, 2017.
• J. Tropp, “An introduction to matrix concentration inequalities”, Found. Trends
Mach. Learn., 2015.
• D. Woodruff, Sketching as a Tool for Numerical Linear Algebra , Foundations and
Trends in Theoretical Computer Science, 2014.
• M.W. Mahoney, Randomized Algorithms for Matrices and Data , Foundations and
Trends in Machine Learning, 2011.



Surveys directly related to the material presented:
• P.G. Martinsson and J. Tropp, “Randomized Numerical Linear Algebra: Foundations & Algorithms”.

Acta Numerica, 2020. (Arxiv report 2002.01387)

Long survey summarizing major findings in the field in the past decade.
• P.G. Martinsson, “Randomized methods for matrix computations.” The Mathematics of Data,

IAS/Park City Mathematics Series, 25(4), pp. 187 - 231, 2018.
Book chapter that is written to be accessible to a broad audience. Focused on practical aspects.

• N. Halko, P.G. Martinsson, J. Tropp, “Finding structure with randomness: Probabilistic algorithms for
constructing approximate matrix decompositions.” SIAM Review, 53(2), 2011, pp. 217-288.
Survey that describes the randomized SVD and its variations.

Tutorials, summer schools, etc:
• 2020: 3 lecture mini course on randomized linear algebra, KTH, Stockholm. Videos available.
• 2016: Park City Math Institute (IAS): The Mathematics of Data.
• 2014: CBMS summer school at Dartmouth College. 10 lectures on YouTube.
• 2009: NIPS tutorial lecture, Vancouver, 2009. Online video available.

Software:
• ID: http://tygert.com/software.html (ID, SRFT, CPQR, etc)
• RSVDPACK: https://github.com/sergeyvoronin (RSVD, randomized ID and CUR)
• HQRRP: https://github.com/flame/hqrrp/ (LAPACK compatible randomized CPQR)
• Randomized UTV: https://github.com/flame/randutv

DOE report on randomized algorithms: https://arxiv.org/abs/2104.11079 (2021)


