## RUB

## An introduction to numerical homogenization beyond scale separation

Patrick Henning
Ruhr-University Bochum and KTH Stockholm

## 6-8 October

2021 Woudschoten Conference

1 Galerkin approximations and multiscale problems. (what is the issue? how can we explain it [mathematically]?)

## Outline

1 Galerkin approximations and multiscale problems. (what is the issue? how can we explain it [mathematically]?)

2 Idealized numerical homogenization and localization. (approaching the state of the art)

1 Galerkin approximations and multiscale problems. (what is the issue? how can we explain it [mathematically]?)

2 Idealized numerical homogenization and localization. (approaching the state of the art)

3 Survey and more advanced applications.

## 1. Galerkin approximations and multiscale problems

An introduction to the topic

# What are multiscale problems? 

## Motivation

## Multiscale problems



- Hydrological simulations (groundwater).
- Two-phase flow in porous media.
- Wave propagation in heterogeneous materials.
- Anderson localization of superfluids in disorder potentials.

Characteristic features on multiple non-separable scales $\Rightarrow$ standard numerical methods fail in under-resolved regimes.

## Motivation: simple numerical example

Find: $u$ with $u(0)=u(1)=0$ and

$$
-\left(A(x) u^{\prime}(x)\right)^{\prime}=1 \quad \text { in } \quad(0,1)
$$

where $A(x)=2+\sin (2 \pi x / \varepsilon)$ with $\varepsilon=2^{-6}$.


## Motivation: simple numerical example

Find: $u$ with $u(0)=u(1)=0$ and

$$
-\left(A(x) u^{\prime}(x)\right)^{\prime}=1 \quad \text { in } \quad(0,1)
$$

where $A(x)=2+\sin (2 \pi x / \varepsilon)$ with $\varepsilon=2^{-6}$.
Standard P1-FEM estimate: $\left\|u-u_{h}\right\|_{H^{1}(0,1)} \lesssim h\|u\|_{H^{2}(0,1)}$



## Motivation: simple numerical example

Find: $u$ with $u(0)=u(1)=0$ and

$$
-\left(A(x) u^{\prime}(x)\right)^{\prime}=1 \quad \text { in } \quad(0,1)
$$

where $A(x)=2+\sin (2 \pi x / \varepsilon)$ with $\varepsilon=2^{-6}$.
Standard P1-FEM estimate: $\left\|u-u_{h}\right\|_{H^{1}(0,1)} \lesssim h\|u\|_{H^{2}(0,1)}$



## Motivation: simple numerical example

Find: $u$ with $u(0)=u(1)=0$ and

$$
-\left(A(x) u^{\prime}(x)\right)^{\prime}=1 \quad \text { in } \quad(0,1)
$$

where $A(x)=2+\sin (2 \pi x / \varepsilon)$ with $\varepsilon=2^{-6}$.
Standard P1-FEM estimate: $\left\|u-u_{h}\right\|_{H^{1}(0,1)} \lesssim h\|u\|_{H^{2}(0,1)}$



## Motivation: simple numerical example

Find: $u$ with $u(0)=u(1)=0$ and

$$
-\left(A(x) u^{\prime}(x)\right)^{\prime}=1 \quad \text { in } \quad(0,1)
$$

where $A(x)=2+\sin (2 \pi x / \varepsilon)$ with $\varepsilon=2^{-6}$.
Standard P1-FEM estimate: $\left\|u-u_{h}\right\|_{H^{1}(0,1)} \lesssim h\|u\|_{H^{2}(0,1)}$



## Motivation: simple numerical example

Find: $u$ with $u(0)=u(1)=0$ and

$$
-\left(A(x) u^{\prime}(x)\right)^{\prime}=1 \quad \text { in } \quad(0,1),
$$

where $A(x)=2+\sin (2 \pi x / \varepsilon)$ with $\varepsilon=2^{-6}$.
Standard P1-FEM estimate: $\left\|u-u_{h}\right\|_{H^{1}(0,1)} \lesssim h\|u\|_{H^{2}(0,1)}$



## Motivation: simple numerical example

Find: $u$ with $u(0)=u(1)=0$ and

$$
-\left(A(x) u^{\prime}(x)\right)^{\prime}=1 \quad \text { in } \quad(0,1)
$$

where $A(x)=2+\sin (2 \pi x / \varepsilon)$ with $\varepsilon=2^{-6}$.
Standard P1-FEM estimate: $\left\|u-u_{h}\right\|_{H^{1}(0,1)} \lesssim h\|u\|_{H^{2}(0,1)}$



## Motivation: simple numerical example

Find: $u$ with $u(0)=u(1)=0$ and

$$
-\left(A(x) u^{\prime}(x)\right)^{\prime}=1 \quad \text { in } \quad(0,1)
$$

where $A(x)=2+\sin (2 \pi x / \varepsilon)$ with $\varepsilon=2^{-6}$.
Standard P1-FEM estimate: $\left\|u-u_{h}\right\|_{H^{1}(0,1)} \lesssim h\|u\|_{H^{2}(0,1)}$



## Motivation: simple numerical example

Find: $u$ with $u(0)=u(1)=0$ and

$$
-\left(A(x) u^{\prime}(x)\right)^{\prime}=1 \quad \text { in } \quad(0,1)
$$

where $A(x)=2+\sin (2 \pi x / \varepsilon)$ with $\varepsilon=2^{-6}$.
Standard P1-FEM estimate: $\left\|u-u_{h}\right\|_{H^{1}(0,1)} \lesssim h\|u\|_{H^{2}(0,1)}$



## Motivation: simple numerical example

Find: $u$ with $u(0)=u(1)=0$ and

$$
-\left(A(x) u^{\prime}(x)\right)^{\prime}=1 \quad \text { in } \quad(0,1)
$$

where $A(x)=2+\sin (2 \pi x / \varepsilon)$ with $\varepsilon=2^{-6}$.
Standard P1-FEM estimate: $\left\|u-u_{h}\right\|_{H^{1}(0,1)} \lesssim h\|u\|_{H^{2}(0,1)}$



## Motivation: simple numerical example

Find: $u$ with $u(0)=u(1)=0$ and

$$
-\left(A(x) u^{\prime}(x)\right)^{\prime}=1 \quad \text { in } \quad(0,1),
$$

where $A(x)=2+\sin (2 \pi x / \varepsilon)$ with $\varepsilon=2^{-6}$.
Standard P1-FEM estimate: $\left\|u-u_{h}\right\|_{H^{1}(0,1)} \lesssim h\|u\|_{H^{2}(0,1)}$



## Motivation: simple numerical example

Find: $u$ with $u(0)=u(1)=0$ and

$$
-\left(A(x) u^{\prime}(x)\right)^{\prime}=1 \quad \text { in } \quad(0,1),
$$

where $A(x)=2+\sin (2 \pi x / \varepsilon)$ with $\varepsilon=2^{-6}$.
Standard P1-FEM estimate: $\left\|u-u_{h}\right\|_{H^{1}(0,1)} \lesssim h\|u\|_{H^{2}(0,1)}$



## Problem setting and notation

## Notation - Let

■ $\mathcal{D} \subset \mathbb{R}^{d}$ bounded Lipschitz-domain $(d \in\{1,2,3\})$,

- $A \in L^{\infty}\left(\mathcal{D}, \mathbb{R}^{d \times d}\right)$ multiscale coefficient
- matrix-valued;
- possibly non-symmetric;
- and elliptic, i.e. there is $\alpha>0$ so that for a.e. $x \in \mathcal{D}$

$$
\alpha|\xi|^{2} \leq A(x) \xi \cdot \xi \quad \text { for all } \xi \in \mathbb{R}^{d} .
$$

- highly oscillatory and not smooth;
- possibly heterogenous (no scale separation);


## Elliptic model problem (multiscale)

Find $u: \mathcal{D} \rightarrow \mathbb{R}$ with $u=0$ on $\partial \mathcal{D}$ such that

$$
-\nabla \cdot(A \nabla u)=F
$$

for some $F \in H^{-1}(\mathcal{D})$.
Differential operator expressed as coercive and bounded bilinear form on $H_{0}^{1}(\mathcal{D})$

$$
a(u, v)=\int_{\mathcal{D}} A \nabla u \cdot \nabla v .
$$

Problem in variational form:
Find $u \in H_{0}^{1}(\mathcal{D})$ such that

$$
a(u, v)=\langle F, v\rangle \quad \text { for all } v \in H_{0}^{1}(\mathcal{D}) .
$$

## Galerkin method

Find $u \in H_{0}^{1}(\mathcal{D})$ such that

$$
a(u, v)=\langle F, v\rangle \quad \text { for all } v \in H_{0}^{1}(\mathcal{D}) .
$$

Numerical approximation?
Idea of Galerkin methods: Replace infinite dim space $H_{0}^{1}(\mathcal{D})$ by finite $\operatorname{dim}$ subspace $V_{H} \subset H_{0}^{1}(\mathcal{D})$.

Find $u_{H} \in V_{H}$ such that

$$
a\left(u_{H}, v_{H}\right)=\left\langle F, v_{H}\right\rangle \quad \text { for all } v_{H} \in V_{H} .
$$

## Galerkin method

Find $u \in H_{0}^{1}(\mathcal{D})$ such that

$$
a(u, v)=\langle F, v\rangle \quad \text { for all } v \in H_{0}^{1}(\mathcal{D}) .
$$

Find $u_{H} \in V_{H}$ such that

$$
a\left(u_{H}, v_{H}\right)=\left\langle F, v_{H}\right\rangle \quad \text { for all } v_{H} \in V_{H} .
$$

How big is the error $e_{H}=u-u_{H}$ ? Galerkin orthogonality

$$
a\left(u-u_{H}, v_{H}\right)=0 \quad \text { for all } v_{H} \in V_{H},
$$

implies (Céa's lemma):

$$
\left\|u-u_{H}\right\|_{H^{1}(\mathcal{D})} \leq \frac{\beta}{\alpha} \inf _{v_{H} \in V_{H}}\left\|u-v_{H}\right\|_{H^{1}(\mathcal{D})},
$$

i.e. $u_{H}$ is always the $H^{1}$-quasi best approximation of $u$ in $V_{H}$.

## Theorem (Aubin-Nitsche lemma)

In our setting we have
where $z^{(r)} \in H_{0}^{1}(\mathcal{D})$ is the solution to the dual problem

$$
a\left(v, z^{(r)}\right)=(v, r)_{L^{2}(\mathcal{D})} \quad \text { for all } v \in H_{0}^{1}(\mathcal{D})
$$

For $F \in L^{2}(\mathcal{D})$ and $P 1$-FEM, the theorem says roughly

$$
\left\|u-u_{H}\right\|_{L^{2}(\mathcal{D})} \simeq\left\|u-u_{H}\right\|_{H^{1}(\mathcal{D})}^{2} .
$$

Message:
If $u_{H}$ is a poor $H^{1}$-approximation, then it is also a poor $L^{2}$-approximation.

# Finite element approximations 

## Quantified error estimates

## Galerkin method (summary)

Find $u \in H_{0}^{1}(\mathcal{D})$ such that

$$
a(u, v)=\langle F, v\rangle \quad \text { for all } v \in H_{0}^{1}(\mathcal{D}) .
$$

Galerkin approximation in $V_{H} \subset H_{0}^{1}(\mathcal{D})$ :
Find $u_{H} \in V_{H}$ such that

$$
a\left(u_{H}, v_{H}\right)=\left\langle F, v_{H}\right\rangle \quad \text { for all } v_{H} \in V_{H} .
$$

Abstract error estimate:

$$
\left\|u-u_{H}\right\|_{H^{1}(\mathcal{D})} \leq \frac{\beta}{\alpha} \inf _{v_{H} \in V_{H}}\left\|u-v_{H}\right\|_{H^{1}(\mathcal{D})}=?
$$

( $\mathrm{H}^{1}$-quasi-best approximation)

## RUHR-UNIVERSITÄT BOCHUM

P1-FEM - A typical choice for $V_{H}$

Let $\mathcal{T}_{H}$ be a regular quasi-uniform triangulation of $\mathcal{D}$.
On the mesh $\mathcal{T}_{H}$ we define the $P 1$ finite element space as

$$
\begin{aligned}
& V_{H}:=\left\{v \in C^{0}(\mathcal{D}) \cap H_{0}^{1}(\mathcal{D}) \mid\right. \\
&\left.\forall K \in \mathcal{T}_{H}: v_{K K} \text { is polynomial of degree } 1\right\} .
\end{aligned}
$$



## The $L^{2}$-projection

We consider the $L^{2}$-projection

$$
P_{H}: H_{0}^{1}(\mathcal{D}) \rightarrow V_{H} .
$$

It yields the $L^{2}$-best approximation and is defined by

$$
\left(P_{H}(v), v_{H}\right)_{L^{2}(\mathcal{D})}=\left(v, v_{H}\right)_{L^{2}(\mathcal{D})} \quad \text { for all } v_{H} \in V_{H} .
$$

On quasi-uniform meshes it fulfils the estimates for all $v \in H_{0}^{1}(\mathcal{D})$

$$
\left\|P_{H}(v)-v\right\|_{L^{2}} \leq C H\|v\|_{H^{1}} \quad \text { and } \quad\left\|P_{H}(v)-v\right\|_{H^{1}} \leq C\|v\|_{H^{1}}
$$

and for all $v \in H_{0}^{1}(\mathcal{D}) \cap H^{2}(\mathcal{D})$ :

$$
\left\|P_{H}(v)-v\right\|_{L^{2}} \leq C H^{2}\|v\|_{H^{2}} \quad \text { and } \quad\left\|P_{H}(v)-v\right\|_{H^{1}} \leq C H\|v\|_{H^{2}} \text {. }
$$

[Bank, Yserentant, Numer. Math. 126 (2014)]

## Quantified error estimates - $H^{2}(\mathcal{D})$ case

Conclusion:
Let $V_{H}$ be the P1-FEM space, then we have the error estimate $\left\|u-u_{H}\right\|_{H^{1}(\mathcal{D})} \leq \frac{\beta}{\alpha} \inf _{v_{H} \in V_{H}}\left\|u-v_{H}\right\|_{H^{1}(\mathcal{D})} \leq \frac{\beta}{\alpha}\left\|u-P_{H}(u)\right\|_{H^{1}(\mathcal{D})}$.

If $u \in H_{0}^{1}(\mathcal{D}) \cap H^{2}(\mathcal{D})$ we have $\left\|u-P_{H}(u)\right\|_{H^{1}(\mathcal{D})} \leq C H\|u\|_{H^{2}(\mathcal{D})}$ and hence

$$
\left\|u-u_{H}\right\|_{H^{1}(\mathcal{D})} \leq C H\|u\|_{H^{2}(\mathcal{D})} .
$$

## Quantified error estimates - $H^{1}(\mathcal{D})$ case

Conclusion:
Let $V_{H}$ be the P1-FEM space, then we have the error estimate $\left\|u-u_{H}\right\|_{H^{1}(\mathcal{D})} \leq \frac{\beta}{\alpha} \inf _{V_{H} \in V_{H}}\left\|u-v_{H}\right\|_{H^{1}(\mathcal{D})} \leq \frac{\beta}{\alpha}\left\|u-P_{H}(u)\right\|_{H^{1}(\mathcal{D})}$.

If only $u \in H_{0}^{1}(\mathcal{D})$ we have by density

$$
\lim _{H \rightarrow 0}\left\|u-u_{H}\right\|_{H^{1}(\mathcal{D})} \leq \frac{\beta}{\alpha} \lim _{H \rightarrow 0} \inf _{v_{H} \in V_{H}}\left\|u-v_{H}\right\|_{H^{1}(\mathcal{D})}=0 .
$$

But with $\left\|u-P_{H}(u)\right\|_{H^{1}(\mathcal{D})} \leq C\|u\|_{H^{1}(\mathcal{D})}$ and Aubin-Nitsche

$$
\left\|u-u_{H}\right\|_{H^{1}} \leq C\|u\|_{H^{1}} \quad \text { and } \quad\left\|u-u_{H}\right\|_{L^{2}} \leq C\|u\|_{H^{1}} \text {. }
$$

# Quantified error estimates - $H^{1}(\mathcal{D})$ case 

Observation:
If $u \in H_{0}^{1}(\mathcal{D})$ we have

$$
\left\|u-u_{H}\right\|_{L^{2}} \leq C\|u\|_{H^{1}}
$$

but

$$
\left\|u-P_{H}(u)\right\|_{L^{2}} \leq C H\|u\|_{H^{1}} .
$$

## Contradiction?

## Quantified error estimates - $H^{1}(\mathcal{D})$ case

## Summary:

If only $u \in H_{0}^{1}(\mathcal{D})$ we have

$$
\left\|u-u_{H}\right\|_{H^{1}} \leq C\|u\|_{H^{1}}
$$

and if $u \in H_{0}^{1}(\mathcal{D}) \cap H^{2}(\mathcal{D})$

$$
\left\|u-u_{H}\right\|_{H^{1}} \leq C H\|u\|_{H^{2}} .
$$

Question:
When do we have $u \in H^{2}(\mathcal{D})$ and how big is $\|u\|_{H^{2}}$ ?

## Regularity estimates (without proof)

Let $F \in H^{-1}(\mathcal{D})$, then

$$
\|u\|_{H^{1}(\mathcal{D})} \leq C_{\mathcal{D}} \frac{\|F\|_{H^{-1}(\mathcal{D})}}{\alpha}
$$

- Let $F \in L^{2}(\mathcal{D})$;
- $\mathcal{D}$ be convex (or a $C^{1,1}$-domain);
- $A \in W^{1, \infty}\left(\mathcal{D}, \mathbb{R}^{d \times d}\right)$;
then we have $u \in H^{2}(\mathcal{D})$ and it holds the estimate

$$
\|u\|_{H^{2}(\mathcal{D})} \leq C_{\mathcal{D}} \frac{1}{\alpha^{2}}\|A\|_{W^{1, \infty}(\mathcal{D})}\|F\|_{L^{2}(\mathcal{D})} .
$$

## Effective error estimates

From

$$
\left\|u-u_{H}\right\|_{H^{1}} \leq C H\|u\|_{H^{2}},
$$

we conclude (for somme $C=C(\mathcal{D}, \alpha, \beta))$

$$
\left\|u-u_{H}\right\|_{H^{1}} \leq C \min \left\{H\|A\|_{W^{1, \infty}}, 1\right\}\|F\|_{L^{2}} .
$$

If $A$ is multiscale and rapidly oscillating on a scale $\varepsilon$, then

$$
\|A\|_{W^{1, \infty}} \simeq\left\|A^{\prime}\right\|_{L^{\infty}} \simeq \varepsilon^{-1} .
$$

Hence

$$
\left\|u-u_{H}\right\|_{H^{1}} \lesssim C \min \left\{\frac{H}{\varepsilon}, 1\right\}
$$

Consequently, we have only linear convergence of $H<\varepsilon$.

## Effective error estimates - Conclusion

If $A$ is a (realistic) multiscale coefficient, then either

$$
u \notin H^{2}(\mathcal{D}) \quad \text { (if } A \text { is discontinuous) }
$$

or

$$
\left\|u-u_{H}\right\|_{H^{1}} \lesssim C \min \left\{\frac{H}{\varepsilon}, 1\right\} .
$$

Hence
Galerkin approximations $u_{H}$ are not reliable for coarse mesh sizes $H$.
"Paradox": even in worst case scenarios we always have:

$$
\inf _{v_{H} \in V_{H}}\left\|u-v_{H}\right\|_{L^{2}} \leq C H\|F\|_{H^{-1}(\mathcal{D})} .
$$

## Effective error estimates - Conclusion

If $A$ is a (realistic) multiscale coefficient, then either

$$
u \notin H^{2}(\mathcal{D}) \quad \text { (if } A \text { is discontinuous) }
$$

or

$$
\left\|u-u_{H}\right\|_{H^{1}} \lesssim C \min \left\{\frac{H}{\varepsilon}, 1\right\} .
$$

We need at least

$$
H<\varepsilon,
$$

hence, the space $V_{H}$ needs to have a dimension of at least

$$
\operatorname{dim} V_{H}=\mathcal{O}\left(H^{-d}\right) \gtrsim \mathcal{O}\left(\varepsilon^{-d}\right) .
$$

Can exceed computation powers of available computers!

# Finite elements and multiscale problems 

## Another numerical experiment

## Model problem in 1d

## Consider

$$
\mathcal{D}=(0,1) \quad \text { and } \quad F \equiv 1
$$

and the multiscale coefficient for very small $0<\varepsilon \ll 1$ :

$$
A^{\varepsilon}(x)=\left(2+\cos \left(2 \pi \frac{x}{\varepsilon}\right)\right)^{-1}
$$



## Model problem in 1d

Exact solution (multiscale structure):

$$
u^{\varepsilon}(x)=(1-x) x+\varepsilon u_{1}\left(x, \frac{x}{\varepsilon}\right)+\varepsilon^{2} u_{2}\left(\frac{x}{\varepsilon}\right)
$$

Macroscopic behavior - coarsest level:

$$
u_{0}(x)=(1-x) x .
$$

- can be well-approximated in coarse $V_{H}$ :

$$
\inf _{v_{H} \in V_{H}}\left\|u_{0}-v_{H}\right\|_{L^{2}} \leq C H^{2} \quad \text { and } \quad \inf _{v_{H} \in V_{H}}\left\|u_{0}-v_{H}\right\|_{H^{1}} \leq C H \text {. }
$$

Microscopic behavior - hierarchical fine levels:

$$
\varepsilon u_{1}\left(x, \frac{x}{\varepsilon}\right)=\frac{\varepsilon}{2 \pi} \sin \left(2 \pi \frac{x}{\varepsilon}\right)\left(\frac{1}{2}-x\right) \quad \text { and } \quad \varepsilon^{2} u_{2}\left(\frac{x}{\varepsilon}\right)=\frac{\varepsilon^{2}}{4 \pi^{2}}\left(1-\cos \left(2 \pi \frac{x}{\varepsilon}\right)\right)
$$

- hardly visible $L^{2}(\mathcal{D})$; important contribution in $H^{1}(\mathcal{D})$;
- rapidly oscillating (period $\varepsilon$ ); cannot be captured in coarse $V_{H}$;


## Model problem in $1 d$ - P1-FEM

We solve the problem with P1-FEM in $V_{H}$ and for $\varepsilon=2^{-7}=0.0078125$.

- Note: when assembling the integrals in the system matrix, we use a quadrature rule of order 18 (to capture the oscillations).
$H^{1}$-error estimates: Since

$$
\left(A^{\varepsilon}\right)^{\prime}(x)=\frac{2 \pi}{\varepsilon}\left(2+\cos \left(2 \pi \frac{x}{\varepsilon}\right)\right)^{-2} \sin \left(2 \pi \frac{x}{\varepsilon}\right)
$$

we have

$$
\left\|A^{\varepsilon}\right\|_{W^{1, \infty}}=\left\|\left(A^{\varepsilon}\right)^{\prime}\right\|_{L^{\infty}}=\mathcal{O}\left(\varepsilon^{-1}\right)
$$

The previously derived $H^{1}$-estimate becomes in this case

$$
\begin{aligned}
\left\|u^{\varepsilon}-u_{H}\right\|_{H^{1}} & \leq C \min \left\{H\left\|A^{\varepsilon}\right\|_{W^{1, \infty}}, 1\right\}\|F\|_{L^{2}} \\
& \simeq C \min \left\{\frac{H}{\varepsilon}, 1\right\} .
\end{aligned}
$$

Model problem - $L^{2}$ - and $H^{1}$-error estimates
$H^{1}$-error estimate:

$$
\left\|u^{\varepsilon}-u_{H}\right\|_{H^{1}} \leq C \begin{cases}\frac{H}{\varepsilon} & \text { if } H<\varepsilon \\ 1 & \text { if } H \geq \varepsilon\end{cases}
$$

$L^{2}$-error estimate:

$$
\left\|u^{\varepsilon}-u_{H}\right\|_{L^{2}} \leq C \begin{cases}\left(\frac{H}{\varepsilon}\right)^{2} & \text { if } H<\varepsilon \\ 1 & \text { if } H \geq \varepsilon\end{cases}
$$

Asymptotic vs. pre-asymptotic regime!

## Model problem in $1 d$



Relative $L^{2}$ - and $H^{1}$-errors for the model problem solved with Galerkin $P 1$-FEM and for various mesh sizes $H=h$.


## Model problem in 1d - Conclusions

- There is a clearly visible pre-asymptotic regime (for $H \geq \varepsilon$ ).
- In the asymptotic regime (for $H<\varepsilon$ ) all errors show the expected convergence rates.
- In the pre-asymptotic regime, we observe (visually) a false convergence, i.e. it looks as if the numerical solutions $u_{H}$ approach a converged state. !!!
- This "false state" is the solution obtained by replacing $A^{\varepsilon}$ by its arithmetic average.
- Note: the correct coarse part $u_{0}$ is obtained by replacing $A^{\varepsilon}$ by the harmonic average.


## Disclaimer

There is a vast literature on different approaches for tackling multiscale problems.

A (biased) list of important examples contains (in alphabetic order):

- Approximate Component Mode Synthesis, Hetmaniuk, Lehoucq, Klawonn, Rheinbach ...

■ Classical Multiscale Finite Element Method (MsFEM), Efendiev, Hou, Le Bris, Legoll, Wu ...

- Generalized MsFEM (GMsFEM), Chung, Efendiev, Hou, ...
- Heterogenous Multiscale Method (HMM), Abdulle, E, Engquist, Ohlberger, ...
- Localized Orthogonal Decomposition (LOD), Henning, Målqvist, Peterseim, ...
- Operator-adapted wavelets (gamblets), Owhadi, Scovel, ...

■ Optimal local subspaces, Babuska, Lipton, Patera, Scheichl, Smetana, ...
■ Rough polyharmonic splines, Owhadi, Zhang, ...
In the following we only follow one of the paths.

# 2. Idealized numerical homogenization of ellliptic multiscale problems 

## Back to the general problem

We follow a special case of the general framework described in:
R. Altmann, P. Henning and D. Peterseim.

Numerical homogenization beyond scale separation.
Acta Numerica, 30:1-86, 2021.

## Reminder

For realistic (discontinuous) multiscale coefficients $A$, we typically have $u \notin H^{2}(\mathcal{D})$ and

$$
\left\|u-u_{H}\right\|_{L^{2}} \lesssim C \min \left\{\left(\frac{H}{\varepsilon}\right)^{\delta}, 1\right\}\|F\|_{L^{2}(\mathcal{D})} \quad \text { for some } 0<\delta \ll 2
$$

■ "Paradox": even in worst case scenarios we always have:

$$
\inf _{v_{H} \in V_{H}}\left\|u-v_{H}\right\|_{L^{2}} \leq C H\|F\|_{H^{-1}(\mathcal{D})} .
$$

- But: Galerkin methods in $V_{H}$ fail to find these approximations, because they aim for $H^{1}$-quasi best approximations.
■ Since the variations of $u$ are invisible (unresolved) in $V_{H}$, a $H^{1}$-quasi best approximation is a meaningless function.
- Question: Is it possible to formulate a variational method that yields the $L^{2}$-best approximation?


## Corrector Green's Operators

## An equation for the $L^{2}$-projection

## Analytical setting

Recall the setting:
■ $\mathcal{D} \subset \mathbb{R}^{d}$ bounded Lipschitz domain;

- $F \in H^{-1}(\mathcal{D})$;
- differential operator

$$
a(u, v)=\int_{\mathcal{D}} A \nabla u \cdot \nabla v
$$

is a coercive and bounded on $H_{0}^{1}(\mathcal{D})$
■ Find $u \in H_{0}^{1}(\mathcal{D})$ with $a(u, v)=\langle F, v\rangle$ for all $v \in H_{0}^{1}(\mathcal{D})$.

- $A$ is multiscale and admits no regularity.


## Discrete setting

Recall the setting:

- $\mathcal{T}_{H}$ is a regular and quasi-uniform triangulation of $\mathcal{D}$;
- $V_{H} \subset H_{0}^{1}(\mathcal{D})$ is corresponding P1-FEM space on $T_{H}$;
- $H$ is the mesh size (max diameter of $\mathcal{T}_{\boldsymbol{H}}$-elements),
- $L^{2}$-projection $P_{H}: H_{0}^{1}(\mathcal{D}) \rightarrow V_{H}\left(L^{2}\right.$-best approx.), i.e.

$$
\left(P_{H}(u), v_{H}\right)_{L^{2}(\mathcal{D})}=\left(u, v_{H}\right)_{L^{2}(\mathcal{D})} \quad \text { for all } v_{H} \in V_{H} .
$$

- Note: the $L^{2}$-projection on $V_{H}$ is $H^{1}$-stable (in this case):

$$
\left\|P_{H}(v)\right\|_{H^{1}(\mathcal{D})} \leq C\|v\|_{H^{1}(\mathcal{D})} \quad \text { for all } v \in H_{0}^{1}(\mathcal{D}) \text {. }
$$

(with $C$ independent of $H$ )

## Goal

The space $V_{H}$ defines a coarse scale of our problem.
The best-coarse scale approximation (in the $L^{2}$-sense) to the exact solution $u$ is $P_{H}(u) \in V_{H}$.

Goal: Construct a homogenized differential operator $a_{0}(\cdot, \cdot)$, so that the unique solution $u_{H} \in V_{H}$ with

$$
a_{0}\left(u_{H}, v_{H}\right)=\left\langle F_{0}, v_{H}\right\rangle \quad \text { for all } v_{H} \in V_{H}
$$

just gives the $L^{2}$-best coarse scale approximation, i.e.

$$
u_{H}=P_{H}(u) .
$$

Recall: $\left\|P_{H}(u)-u\right\|_{L^{2}(\mathcal{D})} \leq C H\|F\|_{H^{-1}(\mathcal{D})}$.

## Corrector Green's Operator Theory

## Corrector Green’s Operator Theory

Consider the (exact) fine-scale problem:

$$
a(u, v)=\langle F, v\rangle \quad \text { for all } v \in H_{0}^{1}(\mathcal{D}) .
$$

Goal: express $u$ explicitly in terms of its coarse part $\mathcal{P}_{H}(u)$ and the data $A$ and $F$.

Tool: Corrector Green's Operators.

We define the kernel of the $L^{2}$-projection $\mathcal{P}_{H}$ by

$$
W:=\left\{w \in H_{0}^{1}(\mathcal{D}) \mid \mathcal{P}_{H}(w)=0\right\} .
$$

With this, the Corrector Green's Operator

$$
\mathcal{G}: H^{-1}(\mathcal{D}) \rightarrow W
$$

with $\mathcal{G}(\mathcal{F}) \in W$ for $\mathcal{F} \in H^{-1}(\mathcal{D})$ is given by

$$
a(\mathcal{G}(\mathcal{F}), w)=\langle\mathcal{F}, w\rangle \quad \text { for all } w \in W .
$$

The image of dual operator $\mathcal{G}^{*}$ is given by

$$
a\left(w, \mathcal{G}^{*}(\mathcal{F})\right)=\langle\mathcal{F}, w\rangle \quad \text { for all } w \in W .
$$

## Corrector Green’s Operator

Note:

$$
W:=\left\{w \in H_{0}^{1}(\mathcal{D}) \mid \mathcal{P}_{H}(w)=0\right\}
$$

is a closed subspace, because it is the kernel of a linear, $H^{1}$-continuous operator.

Hence, the Corrector Green's Operator $\mathcal{G}: H^{-1}(\mathcal{D}) \rightarrow W$ with

$$
\mathcal{G}(\mathcal{F}) \in W: \quad a(\mathcal{G}(\mathcal{F}), w)=\langle\mathcal{F}, w\rangle \quad \text { for all } w \in W
$$

is well-defined by the Lax-Milgram theorem.

## Corrector Green's Operator Theory

With $W:=\left\{w \in H_{0}^{1}(\mathcal{D}) \mid \mathcal{P}_{H}(w)=0\right\}, \mathcal{G}(\mathcal{F}) \in W$ solves

$$
a(\mathcal{G}(\mathcal{F}), w)=\langle\mathcal{F}, w\rangle \quad \text { for all } w \in W
$$

The following representation of $u \in H_{0}^{1}(\mathcal{D})$ holds true.

## Lemma (Representation of exact solution)

With $\mathcal{A}:=-\nabla \cdot(A \nabla \cdot)$ (in the sense of distributions) it holds

$$
u=u_{H}-(\mathcal{G} \circ \mathcal{A}) u_{H}+\mathcal{G}(F),
$$

where $u_{H} \in V_{H}$ is the $L^{2}$-projection of $u$ in the coarse space, i.e.

$$
u_{H}:=\mathcal{P}_{H}(u) .
$$

## Proof of Representation of fine-scale solution

Since $\mathcal{P}_{H}: H_{0}^{1}(\mathcal{D}) \rightarrow V_{H}$ is a projection, we can write

$$
u \in H_{0}^{1}(\mathcal{D})=V_{H} \oplus W
$$

uniquely as

$$
u=u_{H}+u_{\mathrm{f}}, \quad \text { where } u_{H}:=\mathcal{P}_{H}(u) \text { and } u_{\mathrm{f}}:=u-\mathcal{P}_{H}(u) \in W \text {. }
$$

By definition we have

$$
a\left(u_{H}+u_{\mathrm{f}}, w\right)=\langle F, w\rangle \quad \text { for all } w \in W .
$$

Together with the definition of $\mathcal{G}$ (and $\left.\mathcal{A}\left(u_{H}\right)=a\left(u_{H}, \cdot\right)\right)$ we have

$$
a\left(u_{\mathrm{f}}, w\right)=\left\langle F-\mathcal{A}\left(u_{H}\right), w\right\rangle=a\left(\mathcal{G}(F)-(\mathcal{G} \circ \mathcal{A})\left(u_{H}\right), w\right) .
$$

Since $u_{\mathrm{f}} \in W$ and $\mathcal{G}(F)-(\mathcal{G} \circ \mathcal{A})\left(u_{H}\right) \in W$, we conclude

$$
u_{\mathrm{f}}=\mathcal{G}(F)-(\mathcal{G} \circ \mathcal{A})\left(u_{H}\right),
$$

which finishes the proof. $\square$

## Proof of Representation of fine-scale solution

Since $\mathcal{P}_{H}: H_{0}^{1}(\mathcal{D}) \rightarrow V_{H}$ is a projection, we can write

$$
u \in H_{0}^{1}(\mathcal{D})=V_{H} \oplus W
$$

uniquely as

$$
u=u_{H}+u_{\mathrm{f}}, \quad \text { where } u_{H}:=\mathcal{P}_{H}(u) \text { and } u_{\mathrm{f}}:=u-\mathcal{P}_{H}(u) \in W \text {. }
$$

By definition we have

$$
a\left(u_{H}+u_{\mathrm{f}}, w\right)=\langle F, w\rangle \quad \text { for all } w \in W .
$$

Together with the definition of $\mathcal{G}$ (and $\left.\mathcal{A}\left(u_{H}\right)=a\left(u_{H}, \cdot\right)\right)$ we have

$$
a\left(u_{\mathrm{f}}, w\right)=\left\langle F-\mathcal{A}\left(u_{H}\right), w\right\rangle=a\left(\mathcal{G}(F)-(\mathcal{G} \circ \mathcal{A})\left(u_{H}\right), w\right) .
$$

Since $u_{\mathrm{f}} \in W$ and $\mathcal{G}(F)-(\mathcal{G} \circ \mathcal{A})\left(u_{H}\right) \in W$, we conclude

$$
u_{\mathrm{f}}=\mathcal{G}(F)-(\mathcal{G} \circ \mathcal{A})\left(u_{H}\right),
$$

which finishes the proof. $\square$

## Proof of Representation of fine-scale solution

Since $\mathcal{P}_{H}: H_{0}^{1}(\mathcal{D}) \rightarrow V_{H}$ is a projection, we can write

$$
u \in H_{0}^{1}(\mathcal{D})=V_{H} \oplus W
$$

uniquely as

$$
u=u_{H}+u_{\mathrm{f}}, \quad \text { where } u_{H}:=\mathcal{P}_{H}(u) \text { and } u_{\mathrm{f}}:=u-\mathcal{P}_{H}(u) \in W \text {. }
$$

By definition we have

$$
a\left(u_{H}+u_{\mathrm{f}}, w\right)=\langle F, w\rangle \quad \text { for all } w \in W .
$$

Together with the definition of $\mathcal{G}$ (and $\left.\mathcal{A}\left(u_{H}\right)=a\left(u_{H}, \cdot\right)\right)$ we have

$$
a\left(u_{\mathrm{f}}, w\right)=\left\langle F-\mathcal{A}\left(u_{H}\right), w\right\rangle=a\left(\mathcal{G}(F)-(\mathcal{G} \circ \mathcal{A})\left(u_{H}\right), w\right) .
$$

Since $u_{\mathrm{f}} \in W$ and $\mathcal{G}(F)-(\mathcal{G} \circ \mathcal{A})\left(u_{H}\right) \in W$, we conclude

$$
u_{\mathrm{f}}=\mathcal{G}(F)-(\mathcal{G} \circ \mathcal{A})\left(u_{H}\right),
$$

which finishes the proof. $\square$

## Proof of Representation of fine-scale solution

Since $\mathcal{P}_{H}: H_{0}^{1}(\mathcal{D}) \rightarrow V_{H}$ is a projection, we can write

$$
u \in H_{0}^{1}(\mathcal{D})=V_{H} \oplus W
$$

uniquely as

$$
u=u_{H}+u_{\mathrm{f}}, \quad \text { where } u_{H}:=\mathcal{P}_{H}(u) \text { and } u_{\mathrm{f}}:=u-\mathcal{P}_{H}(u) \in W \text {. }
$$

By definition we have

$$
a(u, w)=\langle F, w\rangle \quad \text { for all } w \in W .
$$

Together with the definition of $\mathcal{G}$ (and $\left.\mathcal{A}\left(u_{H}\right)=a\left(u_{H}, \cdot\right)\right)$ we have

$$
a\left(u_{\mathrm{f}}, w\right)=\left\langle F-\mathcal{A}\left(u_{H}\right), w\right\rangle=a\left(\mathcal{G}(F)-(\mathcal{G} \circ \mathcal{A})\left(u_{H}\right), w\right) .
$$

Since $u_{\mathrm{f}} \in W$ and $\mathcal{G}(F)-(\mathcal{G} \circ \mathcal{A})\left(u_{H}\right) \in W$, we conclude

$$
u_{\mathrm{f}}=\mathcal{G}(F)-(\mathcal{G} \circ \mathcal{A})\left(u_{H}\right),
$$

which finishes the proof. $\square$

Representation: $u=u_{H}-(\mathcal{G} \circ \mathcal{A}) u_{H}+\mathcal{G}(F) \quad$ RUB

We define the corrector operator $\mathcal{C}: V_{H} \rightarrow W$ as

$$
\mathcal{C}:=-(\mathcal{G} \circ \mathcal{A}) .
$$

Let $v_{H} \in V_{H}$. Observe that $\mathcal{C}\left(v_{H}\right) \in W$ solves

$$
\begin{aligned}
a\left(\mathcal{C}\left(v_{H}\right), w\right) & =-a\left((\mathcal{G} \circ \mathcal{A}) v_{H}, w\right)=-\left\langle\mathcal{A} v_{H}, w\right\rangle \\
& =-a\left(v_{H}, w\right)
\end{aligned}
$$

for all $w \in W$. Hence, $\mathcal{C}\left(v_{H}\right) \in W$ solves

$$
a\left(v_{H}+C\left(v_{H}\right), w\right)=0 \quad \text { for all } w \in W .
$$

Note similarity to homogenization theory!

## Corrector Green’s Operator Theory

Plug representation $u=(\mathrm{I}+\mathcal{C}) u_{H}+\mathcal{G}(F)$ into problem formulation and test only with coarse functions $v_{H} \in V_{H}$ :

## Lemma

The (coarse) $L^{2}$-projection $u_{H}=\mathcal{P}_{H}(u) \in V_{H}$ can be characterized as the solution to the coarse scale problem

$$
a\left((\mathrm{I}+C) u_{H}, v_{H}\right)=\left\langle F, v_{H}\right\rangle-a\left(\mathcal{G}(F), v_{H}\right) \quad \text { for all } v_{H} \in V_{H} .
$$

As a matter of fact:

$$
\begin{aligned}
\left\|u-u_{H}\right\|_{L^{2}(\mathcal{D})} & =\left\|u-\mathcal{P}_{H}(u)\right\|_{L^{2}(\mathcal{D})} \\
& \leq C H\|\nabla u\|_{L^{2}(\mathcal{D})} \leq C H \alpha^{-1}\|F\|_{H^{-1}(\mathcal{D})} .
\end{aligned}
$$

## Corrector Green’s Operator Theory

We have

$$
a\left((I+C) u_{H}, v_{H}\right)=\left\langle F, v_{H}\right\rangle-a\left(\mathcal{G}(F), v_{H}\right) \quad \text { for all } v_{H} \in V_{H} .
$$

Next step: reformulate coarse-scale equation in more convenient way.

1. Observe that for any $v_{H} \in V_{H}$ we have

$$
\begin{equation*}
a\left(\mathcal{G}(F), v_{H}\right)=-a\left(\mathcal{G}(F), \mathcal{C}^{*}\left(v_{H}\right)\right)=-\left\langle F, C^{*}\left(v_{H}\right)\right\rangle \tag{*}
\end{equation*}
$$

with $\mathcal{C}^{*}\left(v_{H}\right) \in W$ given by

$$
a\left(w, \mathcal{C}^{*} v_{H}\right)=-a\left(w, v_{H}\right) \quad \text { for all } w \in W
$$

2. It obviously holds

$$
\begin{equation*}
a\left((I+C) u_{H}, v_{H}\right)=a\left(u_{H},\left(I+C^{*}\right) v_{H}\right), \tag{**}
\end{equation*}
$$

From (*) and ( $* *$ ) we have

$$
a\left(u_{H},\left(\mathrm{I}+C^{*}\right) v_{H}\right)=\left\langle F,\left(\mathrm{I}+C^{*}\right) v_{H}\right\rangle \quad \text { for all } v_{H} \in V_{H} .
$$

## Corrector Green’s Operator Theory

We have seen $u_{H}=\mathcal{P}_{H}(u) \in V_{H}$ solves

$$
a\left((I+C) u_{H}, v_{H}\right)=\left\langle F, v_{H}\right\rangle-a\left(\mathcal{G}(F), v_{H}\right) \quad \text { for all } v_{H} \in V_{H}
$$

but also

$$
a\left(u_{H},\left(I+C^{*}\right) v_{H}\right)=\left\langle F,\left(I+C^{*}\right) v_{H}\right\rangle \quad \text { for all } v_{H} \in V_{H} .
$$

We define

$$
V_{H}^{\mathrm{ms}, *}:=\left\{\left(\mathrm{I}+\mathrm{C}^{*}\right) v_{H} \mid v_{H} \in V_{H}\right\}
$$

and obtain

$$
a\left(u_{H}, v_{H}^{\mathrm{ms}}\right)=\left\langle F, v_{H}^{\mathrm{ms}}\right\rangle \quad \text { for all } v_{H}^{\mathrm{ms}} \in V_{H}^{\mathrm{ms}, *} .
$$

Hence:

Theorem (Multiscale Finite Element Method 1)
Let $u_{H} \in V_{H}$ denote the coarse interpolation of $u$ into $V_{H}$, then it is a solution to the Petrov-Galerkin problem

$$
a\left(u_{H}, v_{H}^{\mathrm{ms}}\right)=\left\langle F, v_{H}^{\mathrm{ms}}\right\rangle \quad \text { for all } v_{H}^{\mathrm{ms}} \in V_{H}^{\mathrm{ms}, *},
$$

where

$$
V_{H}^{\mathrm{ms}, *}:=\left\{\left(\mathrm{I}+\mathrm{C}^{*}\right) v_{H} \mid v_{H} \in V_{H}\right\} .
$$

By the properties of $\mathcal{P}_{H}$ it holds

$$
\left\|u-u_{H}\right\|_{L^{2}(\mathcal{D})} \leq C H \alpha^{-1}\|F\|_{H^{-1}(\mathcal{D})} .
$$

## Corrector Green’s Operator Theory

## What if we want more,

i.e. a $H^{1}$-approximation?

## Corrector Green’s Operator Theory

It holds for all $w \in W$

$$
a\left(w, C^{*} v_{H}\right)=-a\left(w, v_{H}\right)
$$

Hence, with $w=\mathcal{C} u_{H}$ we have

$$
a\left(C u_{H}, v_{H}+\mathcal{C}^{*} v_{H}\right)=0 .
$$

We conclude that $u_{H} \in V_{H}$ is also solution to

$$
a\left((\mathrm{I}+\mathcal{C}) u_{H},\left(\mathrm{I}+\mathcal{C}^{*}\right) v_{H}\right)=a\left(u_{H},\left(\mathrm{I}+\mathcal{C}^{*}\right) v_{H}\right) .
$$

Recalling that $u=u_{H}+\mathcal{C} u_{H}+\mathcal{G}(F)$, we summarize the results in the following corollary.

## Corollary (Multiscale Finite Element Method 2)

Let

$$
\begin{aligned}
V_{H}^{\mathrm{ms}} & :=\left\{v_{H}+C v_{H} \mid v_{H} \in V_{H}\right\} \quad \text { and } \\
V_{H}^{\mathrm{ms}, *}: & :=\left\{v_{H}+C^{*} v_{H} \mid v_{H} \in V_{H}\right\} .
\end{aligned}
$$

Then there exists $u_{H}^{\mathrm{ms}} \in V_{H}^{\mathrm{ms}}$ with

$$
a\left(u_{H}^{\mathrm{ms}}, v_{H}^{\mathrm{ms}}\right)=\left\langle F, v_{H}^{\mathrm{ms}}\right\rangle \quad v_{H}^{\mathrm{ms}} \in V_{H}^{\mathrm{ms}, *} .
$$

Furthermore, it holds

$$
u_{H}^{\mathrm{ms}}=u_{H}+C u_{H} \quad \text { and } \quad u-u_{H}^{\mathrm{ms}}=\mathcal{G}(F),
$$

where $u_{H} \in V_{H}$ is given by $u_{H}=\mathcal{P}_{H}(u)$.

## Corrector error estimate

Solving for $u_{H}^{\text {ms }} \in V_{H}^{\text {ms }}$ with

$$
a\left(u_{H}^{\mathrm{ms}}, v_{H}^{\mathrm{ms}}\right)=\left\langle F, v_{H}^{\mathrm{ms}}\right\rangle \quad v_{H}^{\mathrm{ms}} \in V_{H}^{\mathrm{ms}, *}
$$

we obtain a coarse scale solution plus a fine scale corrector $\mathcal{C} u_{H}$, i.e.

$$
\begin{gathered}
u_{H}^{\mathrm{ms}}=u_{H}+C u_{H} \quad \text { and } \quad u-u_{H}^{\mathrm{ms}}=\mathcal{G}(F) . \\
\text { Improved estimates? }
\end{gathered}
$$

## Corrector error estimate $-F \in H^{-1}(\mathcal{D})$

We saw the error is precisely given by

$$
u-u_{H}^{\mathrm{ms}}=\mathcal{G}(F) .
$$

Since $\mathcal{G}(F) \in W$ (i.e. $\mathcal{P}_{H}(\mathcal{G}(F))=0$ ) we have the $L^{2}$-error estimate

$$
\begin{aligned}
\left\|u-u_{H}^{\mathrm{ms}}\right\|_{L^{2}(\mathcal{D})} & =\|\mathcal{G}(F)\|_{L^{2}(\mathcal{D})} \\
& =\left\|\mathcal{G}(F)-\mathcal{P}_{H}(\mathcal{G}(F))\right\|_{L^{2}(\mathcal{D})} \\
& \leq C H\|\mathcal{G}(F)\|_{H^{1}(\mathcal{D})} \\
& \leq C H\|F\|_{H^{-1}(\mathcal{D})} .
\end{aligned}
$$

This is the best we can expect for $F \in H^{-1}(\mathcal{D})$.

## Corrector error estimate $-F \in L^{2}(\mathcal{D})$ or more RUB

$$
\text { error }=u-u_{H}^{\mathrm{ms}}=\mathcal{G}(F) .
$$

Let $F=f \in L^{2}(\mathcal{D})(s=0)$ or

$$
F=f \in H_{0}^{1}(\mathcal{D}) \cap H^{s}(\mathcal{D})(\text { for } s \in\{1,2\})
$$

we have (by definition of $\mathcal{G}$ ):

$$
\begin{aligned}
\alpha\|\nabla \mathcal{G}(f)\|_{L^{2}(\mathcal{D})}^{2} & \leq a(\mathcal{G}(f), \mathcal{G}(f))=(f, \mathcal{G}(f))_{L^{2}(\mathcal{D})} \\
& =\left(f, \mathcal{G}(f)-\mathcal{P}_{H}(\mathcal{G}(f))\right)_{L^{2}(\mathcal{D})} \\
& =\left(f-\mathcal{P}_{H}(f), \mathcal{G}(f)-\mathcal{P}_{H}(\mathcal{G}(f))\right)_{L^{2}(\mathcal{D})} \\
& \leq C H^{s+1}\|f\|_{H^{s}(\mathcal{D})}\|\nabla \mathcal{G}(f)\|_{L^{2}(\mathcal{D})} .
\end{aligned}
$$

Dividing by $\|\nabla \mathcal{G}(f)\|_{L^{2}(\mathcal{D})}$ yields

$$
\|\nabla \mathcal{G}(f)\|_{L^{2}(\mathcal{D})} \leq C H^{s+1} \alpha^{-1}\|f\|_{H^{s}(\mathcal{D})}
$$

and again with $\mathcal{P}_{H}(\mathcal{G}(f))=0$

$$
\|\mathcal{G}(f)\|_{L^{2}(\mathcal{D})} \leq C H\|\nabla \mathcal{G}(f)\|_{L^{2}(\mathcal{D})} \leq C H^{s+2} \alpha^{-1}\|f\|_{H^{s}(\mathcal{D})} .
$$

## Corrector error estimate

Summary for multiscale approx.

$$
u_{H}^{\mathrm{ms}}=u_{H}+\mathcal{C} u_{H} .
$$

If

- $F \in H^{s}(\mathcal{D})$ for $s \in\{-1,0,1,2\}$ and

■ $F \in H_{0}^{1}(\mathcal{D})$ if $s \in\{1,2\}$,
we have

$$
\left\|u-u_{H}^{\mathrm{ms}}\right\|_{L^{2}(\mathcal{D})}+H\left\|u-u_{H}^{\mathrm{ms}}\right\|_{H^{1}(\mathcal{D})} \leq C H^{s+2}\|F\|_{H^{s}(\mathcal{D})} .
$$

and

$$
\left\|u-u_{H}\right\|_{L^{2}(\mathcal{D})} \leq C H\|F\|_{H^{-1}(\mathcal{D})} .
$$

## From Petrov-Galerkin to Galerkin

Petrov-Galerkin form: find $u_{H}^{\mathrm{ms}} \in V_{H}^{\mathrm{ms}}$ with

$$
a\left(u_{H}^{\mathrm{ms}}, v_{H}^{\mathrm{ms}}\right)=\left(f, v_{H}^{\mathrm{ms}}\right)_{L^{2}(\mathcal{D})} \quad \text { for all } v_{H}^{\mathrm{ms}} \in V_{H}^{\mathrm{ms}, *},
$$

If $a(\cdot, \cdot)$ is symmetric, then $V_{H}^{\mathrm{ms}}=V_{H}^{\mathrm{ms}, *}$ and we have a Galerkin method.
If $a(\cdot, \cdot)$ is not symmetric, we can still solve for $\tilde{u}_{H}^{m s} \in V_{H}^{\text {ms }}$ with

$$
a\left(\tilde{u}_{H}^{\mathrm{ms}}, v_{H}^{\mathrm{ms}}\right)=\left(f, v_{H}^{\mathrm{ms}}\right)_{L^{2}(\mathcal{D})} \quad \text { for all } v_{H}^{\mathrm{ms}} \in V_{H}^{\mathrm{ms}} .
$$

Since Galerkin methods are $H^{1}$-quasi optimal, we still have the optimal convergence order (for $s \in\{0,1,2\}$ ) as

$$
\left\|u-\tilde{u}_{H}^{\mathrm{ms}}\right\|_{H^{1}(\mathcal{D})} \leq C\left\|u-u_{H}^{\mathrm{ms}}\right\|_{H^{1}(\mathcal{D})} \leq C H^{s+1} \alpha^{-1}\|f\|_{H^{s}(\mathcal{D})} .
$$

This is computationally favorable, since only $V_{H}^{\mathrm{ms}}$ is computed!

## Basis functions

We have

$$
V_{H}^{\mathrm{ms}}=(I+C) V_{H} .
$$

$$
\begin{array}{lllll}
0 & 0.25 & 0.5 & 0.75 \\
-0.2 & 1.1
\end{array}
$$



$$
(I+\mathcal{C}) \Phi_{z}
$$


$\mathcal{C}\left(\Phi_{z}\right)$

## Summary: Equivalent problem formulations RUB

Find $u_{H} \in V_{H}$ with

$$
a\left(u_{H}, v_{H}^{\mathrm{ms}}\right)=\left\langle F, v_{H}^{\mathrm{ms}}\right\rangle \quad \text { for all } v_{H}^{\mathrm{ms}} \in V_{H}^{\mathrm{ms}, *} .
$$

Find $u_{H} \in V_{H}$ with

$$
\underbrace{a\left(u_{H},\left(I+C^{*}\right) v_{H}\right)}_{=: a_{0}\left(u_{H}, v_{H}\right)}=\left\langle F,\left(I+C^{*}\right) v_{H}\right\rangle \quad \text { for all } v_{H} \in V_{H} \text {. }
$$

Find $u_{H}^{\mathrm{ms}} \in V_{H}^{\mathrm{ms}}$ with

$$
a\left(u_{H}^{\mathrm{ms}}, v_{H}^{\mathrm{ms}}\right)=\left\langle F, v_{H}^{\mathrm{ms}}\right\rangle \quad \text { for all } v_{H}^{\mathrm{ms}} \in V_{H}^{\mathrm{ms}, *} .
$$

Recall $u_{H}=P_{H}\left(u_{H}^{\mathrm{ms}}\right)$.
Remark: It can be proved that the problems are inf-sup stable (well-posedness).

## Localized Orthogonal Decomposition

## Question: Can we compute the corrector $\mathcal{C}$ through local problems?

P. Henning and D. Peterseim.

Oversampling for the Multiscale Finite Element Method.
SIAM Multiscale Model. Simul., 11(4):1149-1175, 2013.
$\equiv$ P. Henning and A. Målqvist.
Localized orthogonal decomposition techniques for boundary value problems.
SIAM Journal of Scientific Computing, 36(4):A1609-A1634, 2014.

## Localization of $\mathcal{C}$

Decoupling idea:
For each triangle $T \in \mathcal{T}_{H}$, solve for $C_{T}^{k}\left(v_{H}\right) \in W\left(U_{k}(T)\right)$ with

$$
a\left(C_{T}^{k}\left(v_{H}\right), w\right)=-a_{T}\left(v_{H}, w\right) \quad \forall w \in W\left(U_{k}(T)\right) .
$$

$$
\overbrace{\text { local source term! }}
$$

and set

$$
C^{k}\left(v_{H}\right)=\sum_{T \in \mathcal{T}_{H}} C_{T}^{k}\left(v_{H}\right)
$$



Advantage: solution $\mathcal{C}_{T}\left(v_{H}\right)$ decays (exponentially) outside of $T$ to zero! Replace $\mathcal{D}$ by $U_{k}(T)$, a $k$-layer environment of $T$.

## Approximation with exponential convergence

## Theorem

Let $k \in \mathbb{N}_{>0}$, and $C_{T}^{k}\left(v_{H}\right) \in W\left(U_{k}(T)\right)$ solve (in parallel)

$$
a\left(C_{T}^{k}\left(v_{H}\right), w\right)=a_{T}\left(v_{H}, w\right) \quad \forall w \in W\left(U_{k}(T)\right)
$$

and set

$$
C^{k}\left(v_{H}\right):=\sum_{T \in \mathcal{T}_{H}} C_{T}^{k}\left(v_{H}\right)
$$

then

$$
\left\|C\left(v_{H}\right)-\mathcal{C}^{k}\left(v_{H}\right)\right\|_{H^{1}(\mathcal{D})} \lesssim e^{-c k}\left\|\nabla v_{H}\right\|_{L^{2}(\mathcal{D})} .
$$

$L^{2}$-projection nicht benötigt for Berechnung; kern $\left(I_{H} \mid V_{h}\right)$ äquivalent ausdrückbar durch Quasi-Interpolationsoperator vom Clément-Typ (cf. Carstensen, Verforth, sinum Vol. 36, '99).

## Approximation with exponential convergence

## Theorem

Let $k \in \mathbb{N}_{>0}$, and $C_{T}^{k}\left(v_{H}\right) \in W\left(U_{k}(T)\right)$ solve (in parallel)

$$
a\left(C_{T}^{k}\left(v_{H}\right), w\right)=a_{T}\left(v_{H}, w\right) \quad \forall w \in W\left(U_{k}(T)\right)
$$

and set

$$
C^{k}\left(v_{H}\right):=\sum_{T \in \mathcal{T}_{H}} C_{T}^{k}\left(v_{H}\right)
$$

then

$$
\left\|C\left(v_{H}\right)-C^{k}\left(v_{H}\right)\right\|_{H^{1}(\mathcal{D})} \lesssim e^{-c k}\left\|\nabla v_{H}\right\|_{L^{2}(\mathcal{D})} .
$$

The choice $k \approx s|\ln (H)|$ preserves convergence rate $H^{s}$.

## Approximation with exponential convergence

## Theorem

Let $k \in \mathbb{N}_{>0}$, and $C_{T}^{k}\left(v_{H}\right) \in W\left(U_{k}(T)\right)$ solve (in parallel)

$$
a\left(C_{T}^{k}\left(v_{H}\right), w\right)=a_{T}\left(v_{H}, w\right) \quad \forall w \in W\left(U_{k}(T)\right)
$$

and set

$$
C^{k}\left(v_{H}\right):=\sum_{T \in \mathcal{T}_{H}} C_{T}^{k}\left(v_{H}\right)
$$

then

$$
\left\|C\left(v_{H}\right)-\mathcal{C}^{k}\left(v_{H}\right)\right\|_{H^{1}(\mathcal{D})} \lesssim e^{-c k}\left\|\nabla v_{H}\right\|_{L^{2}(\mathcal{D})} .
$$

Instead of $V_{H}^{\mathrm{ms}}:=(I+\mathcal{C}) V_{H}$ use $V_{H, k}^{\mathrm{ms}}:=\left(I+\mathcal{C}^{k}\right) V_{H}$.

## A priori error estimates for symmetric $a(\cdot, \cdot)$ RUB

## Theorem

Let $V_{H, k}^{\mathrm{ms}}:=\left(I+\mathcal{C}^{k}\right) V_{H}$ and $k \gtrsim|\ln (H)|$. Find $u_{H, k}^{\mathrm{ms}} \in V_{H, k}^{\mathrm{ms}}$ with

$$
a\left(u_{H, k}^{\mathrm{ms}}, v\right)=\langle F, v\rangle \quad \text { for all } v \in V_{H, k}^{\mathrm{ms}} .
$$

Then it holds (generically) for $F \in H_{0}^{1}(\mathcal{D}) \cap H^{s}(\mathcal{D})$ where $s \in\{1,2\}$ :

$$
\left\|u-u_{H, k}^{\mathrm{ms}}\right\|_{L^{2}(\mathcal{D})}+H\left\|u-u_{H, k}^{\mathrm{ms}}\right\|_{H^{1}(\mathcal{D})} \lesssim\|F\|_{H^{s}(\mathcal{D})} H^{2+s},
$$

for $F \in L^{2}(\mathcal{D})$ :

$$
\left\|u-u_{H, k}^{\mathrm{ms}}\right\|_{L^{2}(\mathcal{D})}+H\left\|u-u_{H, k}^{\mathrm{ms}}\right\|_{H^{1}(\mathcal{D})} \lesssim\|F\|_{L^{2}(\mathcal{D})} H^{2},
$$

and for $F \in H^{-1}(\mathcal{D})$ :

$$
\left\|u-u_{H, k}^{\mathrm{ms}}\right\|_{L^{2}(\mathcal{D})}+H\left\|u-u_{H, k}^{\mathrm{ms}}\right\|_{H^{1}(\mathcal{D})} \lesssim\|F\|_{H^{-1}(\mathcal{D})} H .
$$

Remark: the $H^{1}$-estimates remain valid if $a(\cdot, \cdot)$ is non-symmetric. For optimal order $L^{2}$-convergence, the test function space $V_{H, k}^{\mathrm{ms}}$ must be replaced by a dual version $V_{H, k}^{\mathrm{ms}, *}$.

# Localized Orthogonal Decomposition 

## Numerical experiment

## Numerical experiment - Model Problem

Let $\mathcal{D}:=[0,1]^{2}$. Find $u \in H^{1}(\mathcal{D})$ with

$$
\begin{aligned}
-\nabla \cdot(A \nabla u) & =F \quad \text { in } \mathcal{D}, \\
u & =x_{1} \quad \text { on } \partial \mathcal{D} .
\end{aligned}
$$

$A$ given by

and for $c:=\left(\frac{1}{2}, \frac{1}{2}\right)$ and $r:=0.05$

$$
F(x):= \begin{cases}20 & \text { if }|x-c| \leq r \\ 0 & \text { else }\end{cases}
$$

## RUHR-UNIVERSITÄT BOCHUM

## Numerical experiment - Model Problem

Let $\mathcal{D}:=[0,1]^{2}$. Find $u \in H^{1}(\mathcal{D})$ with

$$
\begin{aligned}
-\nabla \cdot(A \nabla u) & =F \quad \text { in } \mathcal{D}, \\
u & =x_{1} \quad \text { on } \partial \mathcal{D} .
\end{aligned}
$$

$A$ given by


Green/yellow region: $A(x)=\frac{1}{10}\left(2+\cos \left(2 \pi \frac{x_{\mathbf{1}}}{\varepsilon}\right)\right)$ for $\varepsilon=0.05$.
Isolator (blue region) $A(x)=0.01$.
Circular layers in the middle: $A=1$ (red region) and $A=0.1$ (cyan region).

## Numerical experiment - Model Problem

Let $\mathcal{D}:=[0,1]^{2}$. Find $u \in H^{1}(\mathcal{D})$ with

$$
\begin{aligned}
-\nabla \cdot(A \nabla u) & =F \quad \text { in } \mathcal{D}, \\
u & =x_{1} \quad \text { on } \partial \mathcal{D} .
\end{aligned}
$$

$A$ given by

and for $c:=\left(\frac{1}{2}, \frac{1}{2}\right)$ and $r:=0.05$

$$
F(x):= \begin{cases}20 & \text { if }|x-c| \leq r \\ 0 & \text { else }\end{cases}
$$



## Results

| $H$ | $k$ | $\left\\|u_{h}-u_{H, k}^{\mathrm{ms}}\right\\| \\|_{L^{2}(\mathcal{D})}^{\mathrm{rel}}$ | $\left\\|u_{h}-u_{H, k}^{\mathrm{ms}}\right\\|_{H^{1}(\mathcal{D})}^{\mathrm{rel}}$ |
| :---: | :---: | :---: | :---: |
| $2^{-3}$ | 1 | 0.01708 | 0.12064 |
| $2^{-3}$ | 2 | 0.00655 | 0.07400 |
| $2^{-3}$ | 3 | 0.00557 | 0.06996 |
| $2^{-4}$ | 1 | 0.00908 | 0.09389 |
| $2^{-4}$ | 2 | 0.00159 | 0.03066 |
| $2^{-4}$ | 3 | 0.00091 | 0.02269 |
| $2^{-4}$ | 4 | 0.00074 | 0.02011 |

Table: Reference computations for $h=2^{-8}$. $k$ denotes the number of Coarse Element Layers to create the localization patch.

| $H$ | k | $\left\\|u_{h}-u_{H, k}^{\mathrm{ms}}\right\\|_{L^{2}(\mathcal{D})}^{\mathrm{rel}}$ | $\left\\|u_{h}-u_{H, k}^{\mathrm{ms}}\right\\| \\|_{H^{1}(\mathcal{D})}^{\mathrm{rel}}$ |
| :---: | :---: | :---: | :---: |
| $2^{-3}$ | 1 | 0.01708 | 0.12064 |
| $2^{-3}$ | 2 | 0.00655 | 0.07400 |
| $2^{-3}$ | 3 | 0.00557 | 0.06996 |
| $2^{-4}$ | 1 | 0.00908 | 0.09389 |
| $2^{-4}$ | 2 | 0.00159 | 0.03066 |
| $2^{-4}$ | 3 | 0.00091 | 0.02269 |
| $2^{-4}$ | 4 | 0.00074 | 0.02011 |

Table: Reference computations for $h=2^{-8} . k$ denotes the number of Coarse Element Layers to create the localization patch.

## Results



Figure: Fine grid with $h=2^{-8}$. LOD approximation for $H=2^{-3}$ and $k=1$.

## Results



Figure: Fine grid with $h=2^{-8}$. LOD approximation for $H=2^{-3}$ and $k=2$.

## Results



Figure: Fine grid with $h=2^{-8}$. LOD approximation for $H=2^{-4}$ and $k=1$.

## Results



Figure: Fine grid with $h=2^{-8}$. LOD approximation for $H=2^{-4}$ and $k=2$.

# 3. Some further multiscale problems 

## Survey and more advanced applications

## Localized Orthogonal Decomposition (LOD)

- general references

The approach was originally proposed in
E A. Målqvist and D. Peterseim.
Localization of elliptic multiscale problems.
Math. Comp., 83:2583-2603, 2014.
and further developed (especially with regard to localization) in
E P. Henning and D. Peterseim.
Oversampling for the Multiscale Finite Element Method.
SIAM Multiscale Model. Simul., 11(4):1149-1175, 2013.
辰 P. Henning and $A$. Målqvist.
Localized orthogonal decomposition techniques for boundary value problems.
SIAM Journal of Scientific Computing, 36(4):A1609-A1634, 2014.
A survey on the methodology is given in:
E R. Altmann, P. Henning and D. Peterseim.
Numerical homogenization beyond scale separation.
Acta Numerica, 30:1-86, 2021.
ㄹ A. Målqvist and D. Peterseim.
Numerical homogenization by localized orthogonal decomposition.
SIAM Spotlights, 5:xii+108 2021.

## Some applications -

## Wave phenomena in multiscale media

$\triangleright$ Acoustic wave propagation in heterogenous media.
碊 A. Abdulle and P. Henning. Localized orthogonal decomposition method for the wave equation with a continuum of scales. Math. Comp., 86(304):549-587, 2017.

$\triangleright$ Electromagnetic waves (Maxwell's equations, Nédélec FEM)
三 D. Gallistl, P. Henning and B. Verfürth. Numerical homogenization of H(curl)-problems. SIAM J. Numer. Anal., 56(3):1570-1596, 2018.
\# P. Henning and A. Persson. Computational homogenization of time-harmonic Maxwell's equations. SIAM J. Sci. Comput., 42(3):B581-B607, 2020.

## Some applications -

 Hydrological simulations$\triangleright$ Darcy flow (problems in mixed formulation, $H($ div $)$-conforming Raviart-Thomas FEM). Local mass conservation.

辰 F. Hellman, P. Henning, and A. Målqvist. Multiscale mixed finite elements. Discrete Contin. Dyn. Syst. Ser. S, 9(5):1269-1298, 2016.

$\triangleright$ Two-phase flow (Buckley-Leverett equation, DG-FEM)
$\equiv$ D. Elfverson, V. Ginting, and P. Henning. On multiscale methods in Petrov-Galerkin
formulation. Numer. Math.,131(4):643-682, 2015 . formulation. Numer. Math.,131(4):643-682, 2015.

## Some applications - Superfluids in complex potentials

Find quantum state of condensate

$$
u: \mathcal{D} \times[0, T] \rightarrow \mathbb{C}
$$

where $u(\cdot, 0)=v$ with $\int_{\mathcal{D}}|v|^{2}=1$ and eigenvalue $\mu \in \mathbb{R}$ solves

$$
-\Delta v+W v+\mathrm{i} \Omega \cdot(\mathbf{x} \times \nabla) v+\kappa\left(|v|^{2}\right) v=\mu v .
$$

and $u(\cdot, t)$ (for $t>0$ ) solves the nonlinear Schrödinger equation

$$
\mathrm{i} \partial_{t} u=-\triangle u+V u+\gamma\left(|u|^{2}\right) u
$$

- $V$ and $W$ are multiscale trapping potentials.

Super-convergence in LOD spaces ( $P 1$-FEM based) for nonlinear eigenvalue problem: 3rd order in $H^{1}$-norm and 4th order in $L^{2}$-norm.
P. Henning, A. Målqvist, and D. Peterseim. Two-Level discretization techniques for ground state
computations of Bose-Einstein condensates. SIAM J. Numer. Anal.,52(4):1525-1550, 2014.

## Some applications - Superfluids in complex potentials

Find quantum state of condensate

$$
u: \mathcal{D} \times[0, T] \rightarrow \mathbb{C}
$$

where $u(\cdot, 0)=v$ with $\int_{\mathcal{D}}|v|^{2}=1$ and eigenvalue $\mu \in \mathbb{R}$ solves

$$
-\triangle v+W v+\mathrm{i} \Omega \cdot(\mathbf{x} \times \nabla) v+\kappa\left(|v|^{2}\right) v=\mu v
$$

and $u(\cdot, t)$ (for $t>0)$ solves the nonlinear Schrödinger equation

$$
\mathrm{i} \partial_{t} u=-\triangle u+V u+\gamma\left(|u|^{2}\right) u
$$

- $V$ and $W$ are multiscale trapping potentials.

Super-convergence in LOD spaces ( $P 1$-FEM based) for time-dependent NLS: 6rd order convergence for energy and mass.

[^0]
## Motivating example: a multisoliton

## Soliton:

- wave (packet) that does not change its shape over time and which propagates with constant velocity;
- can interact with other solitons, and emerge from the collision unchanged (except for a phase shift).
- Nonlinear Schrödinger equations model wave propagation in nonlinear media and have solitons as solutions.



## Example: two interacting solitons in 1D

[Aktosun et al. Exact solutions to the nonlinear Schrödinger equation. Birkhäuser Verlag, 2010.]
We consider the model equation

$$
\mathrm{i} \partial_{t} u=-\partial_{x x} u-2|u|^{2} u \quad \text { in } \mathbb{R} \times(0, T] .
$$

Single soliton solutions to the equation are of the form

$$
u(x, t)=\sqrt{\alpha} e^{\mathrm{i}\left(\frac{1}{2} c x-\left(\frac{1}{4} c^{2}-\alpha\right) t\right)} \operatorname{sech}(\sqrt{\alpha}(x-c t))
$$

where, sech is the hyperbolic secant and

- $\alpha$ : shape parameter of the soliton (also determines amplitude $\sqrt{\alpha}$ );
- $c$ : the velocity with which the soliton moves.

However, we consider the problem with a multisoliton solution, that consists of two stationary interacting solitons:

$$
u(x, t)=\frac{8 e^{4 \mathrm{i} t}\left(9 e^{-4 x}+16 e^{4 x}\right)-32 e^{16 \mathrm{i} t}\left(4 e^{-2 x}+9 e^{2 x}\right)}{-128 \cos (12 t)+4 e^{-6 x}+16 e^{6 x}+81 e^{-2 x}+64 e^{2 x}}
$$

## Example: two interacting solitons in 1D

[Aktosun et al. Exact solutions to the nonlinear Schrödinger equation. Birkhäuser Verlag, 2010.]
Model equation

$$
\mathrm{i} \partial_{t} u=-\partial_{x x} u-2|u|^{2} u \quad \text { in } \mathbb{R} \times(0, T]
$$

Multisoliton solution consistingg of two stationary interacting solitons:

$$
u(x, t)=\frac{8 e^{4 i t}\left(9 e^{-4 x}+16 e^{4 x}\right)-32 e^{16 i t}\left(4 e^{-2 x}+9 e^{2 x}\right)}{-128 \cos (12 t)+4 e^{-6 x}+16 e^{6 x}+81 e^{-2 x}+64 e^{2 x}} .
$$

## Example: two interacting solitons in 1D

$$
\mathrm{i} \partial_{t} u=-\partial_{x x} u-2|u|^{2} u \quad \text { in } \mathbb{R} \times(0, T] .
$$

Multisoliton solution consisting of two stationary interacting solitons:

$$
u(x, t)=\frac{8 e^{4 i t}\left(9 e^{-4 x}+16 e^{4 x}\right)-32 e^{16 i t}\left(4 e^{-2 x}+9 e^{2 x}\right)}{-128 \cos (12 t)+4 e^{-6 x}+16 e^{6 x}+81 e^{-2 x}+64 e^{2 x}} .
$$

We can compute the energy and the mass with

$$
E(u)=-48 \quad \text { and } \quad M(u)=12 .
$$

Recall: interacting solitons emerge unchanged from collisions.
From the values of the energy and the formula for single soliton solutions, we find that $u$ is the interaction of the two individual solitons

$$
u_{1}(x, t)=2 e^{4 i t} \operatorname{sech}(2 x) \quad \text { and } \quad u_{2}(x, t)=4 e^{16 i t} \operatorname{sech}(4 x) .
$$

Details: [H. and Wärnegård. Math Comp (early view), 2021]

## Example: two interacting solitons in 1D

Details: [H. and Wärnegård. Math Comp (early view), 2021]

$$
\mathrm{i} \partial_{t} u=-\partial_{x x} u-2|u|^{2} u \quad \text { in } \mathbb{R} \times(0, T] .
$$

Consider again the multisoliton consisting of two stationary interacting solitons and assume that we repeat the same calculations with an energy perturbation of order $\epsilon_{h}$ (discretization error), i.e.

$$
E(u)=-48+\epsilon_{h} .
$$

In this case we obtain the following two individual solitons:

$$
u_{1}(x, t)=2 e^{\mathrm{i}\left(\frac{1}{2} c_{1} x-\left(\frac{1}{4} c_{1}^{2}-4\right) t\right)} \operatorname{sech}\left(2\left(x-c_{1} t\right)\right), \quad \text { where } c_{1}=-\sqrt{\frac{2}{3} \epsilon_{h}}
$$

and

$$
u_{2}(x, t)=4 e^{\mathrm{i}\left(\frac{1}{2} c_{2} x-\left(\frac{1}{4} c_{2}^{2}-16\right) t\right)} \operatorname{sech}\left(4\left(x-c_{2} t\right)\right), \quad \text { where } c_{2}=\sqrt{\frac{1}{6} \epsilon_{h}}
$$

Hence, both solitons drift apart with a speed proportional to the square root of the energy error.

## Example: two interacting solitons in 1D

Details: [H. and Wärnegård. Math Comp (early view), 2021]
Multisoliton with energy perturbation (discretization error)

$$
E(u)=-48+\epsilon_{h} .
$$

We obtain two separate solitons

$$
\begin{array}{ll}
u_{1}(x, t)=2 e^{i\left(\frac{1}{2} c_{1} x-\left(\frac{1}{4} c_{1}^{2}-4\right) t\right)} \operatorname{sech}\left(2\left(x-c_{1} t\right)\right), & \text { where } c_{1}=-\sqrt{\frac{2}{3} \epsilon_{h}} ; \\
u_{2}(x, t)=4 e^{i\left(\frac{1}{2} c_{2} x-\left(\frac{1}{4} c_{2}^{2}-16\right) t\right)} \operatorname{sech}\left(4\left(x-c_{2} t\right)\right), & \text { where } c_{2}=\sqrt{\frac{1}{6} \epsilon_{h}} .
\end{array}
$$



## Example: two interacting solitons in 1D

Details: [H. and Wärnegård. Math Comp (early view), 2021]
Problem: split of the multisoliton due to discrete energy errors:

$$
E(u)=-48+\epsilon_{h} .
$$

- Velocity of the drift/separation $\propto \sqrt{\epsilon_{h}}$.
- If $T \gtrsim \epsilon_{h}^{-1 / 2}$ then the error will be of order $\mathcal{O}(1)$.
- Solution: high-order space discretizations/spectral methods? Issue: blow up of Sobolev-norms

$$
\left\|\partial_{t}^{m-k} \partial_{x}^{k} u\right\|_{L^{\infty}\left(L^{2}\right)} \simeq p^{m} \quad \text { for any } m \in \mathbb{N}
$$

for some $p>1$. For example:

$$
\left\|\partial_{t}^{(6)} u\right\|_{L^{\infty}\left(L^{2}\right)} \approx \mathcal{O}\left(10^{11}\right) \quad \text { and } \quad\left\|\partial_{x}^{(9)} u(0)\right\|_{L^{2}(\mathcal{D})}=\mathcal{O}\left(10^{11}\right) .
$$

■ Experiments in [H. and Wärnegård., Kinet. Relat. Models, 2019]: problem hardly solvable (i.e. can take years) with traditional approaches on long time scales.

## Experiment: Comparison Crank-Nicolson

CPU times (in s) per time step ( 5 iterations), $\operatorname{dim} V_{H}^{m s}=1024$

|  | CN-FEM FPI $h=40 / 2^{18}$ | CN-FEM LOD $H=40 / 2^{10}, \ell=10$ |
| :---: | :---: | :---: |
| CPU [s] | 2 | 0.014 |
| $E-E_{h}$ | $3.33 \mathrm{e}-5$ | $7.7 \mathrm{e}-5$ |

$T=200 ; N=2^{23}$ time steps: $\approx 192$ days with CN-FEM FPI and total time $\approx 29$ hours with CN-FEM LOD.


Figure: $u_{H}^{\text {ms }}$ with the above configuration at $T=200$.

## Experiments: Comparison

CPU times (in s) per time step (5 iterations), $\operatorname{dim} V_{H}^{m s}=2048$

|  | CN-FEM FPI $h=40 / 2^{21}$ | CN-FEM LOD $H=40 / 2^{11}, \ell=12$ |
| :---: | :---: | :---: |
| CPU $[\mathrm{s}]$ | 15.9 | 0.032 |
| $E-E_{h}$ | $5.2 \mathrm{e}-7$ | $9.7 \mathrm{e}-7$ |

$T=200 ; N=2^{23}$ time steps: $\approx 4.5$ years with CN-FEM FPI and total time $\approx 100$ hours with CN-FEM LOD.


Figure: $u_{H}^{\mathrm{ms}}$ with the above configuration at $T=200$.

## Thank you for your attention!


[^0]:    P. Henning and J. Wärnegård. Superconvergence of time invariants for the Gross-Pitaevskii equation. Math Comp (early view), 2021.

