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|dealized numerical homogenization and localization.

(approaching the state of the art)

Survey and more advanced applications.
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1. Galerkin approximations and
multiscale problems

An introduction to the topic
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What are multiscale problems?

Motivation
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Multiscale problems

(Macroscale)

(Microscale)

m Hydrological simulations (groundwater).

m Two-phase flow in porous media.

m Wave propagation in heterogeneous materials.

m Anderson localization of superfluids in disorder potentials.
...

Characteristic features on multiple non-separable scales
= standard numerical methods fail in under-resolved regimes.

| Numerical homogenization | 6-8 October 5



RUHR-UNIVERSITAT BOCHUM

Motivation: simple numerical example M

Find: v with u(0) = u(1) =0 and

—(AG) d'(x)" =1 in (0,1),
where A(x) = 2 +sin(27x/¢e) with ¢ =279,
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Motivation: simple numerical example

Find: v with u(0) = u(1) =0 and

—(AX) /' (x)) =1 in (0,1),
where A(x) = 2 +sin(27x/¢e) with ¢ =279,
Standard P1-FEM estimate: |[v — usl[p2(01) S HllullH2(0,1)
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Motivation: simple numerical example

Find: v with u(0) = u(1) =0 and

—(AX) /' (x)) =1 in (0,1),
where A(x) = 2 +sin(27x/¢e) with ¢ =279,

Standard P1-FEM estimate: |[v — usl[p2(01) S HllullH2(0,1)
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Motivation: simple numerical example

Find: v with u(0) = u(1) =0 and
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Motivation: simple numerical example

Find: v with u(0) = u(1) =0 and

—(AX) /' (x)) =1 in (0,1),
where A(x) = 2 +sin(27x/¢e) with ¢ =279,

Standard P1-FEM estimate: |[v — usl[p2(01) S HllullH2(0,1)
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Motivation: simple numerical example

Find: v with u(0) = u(1) =0 and

—(AX) /' (x)) =1 in (0,1),
where A(x) = 2 +sin(27x/¢e) with ¢ =279,

Standard P1-FEM estimate: |[v — usl[p2(01) S HllullH2(0,1)
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Motivation: simple numerical example

Find: v with u(0) = u(1) =0 and

—(AX) /' (x)) =1 in (0,1),
where A(x) = 2 +sin(27x/¢e) with ¢ =279,
Standard P1-FEM estimate: |[v — usl[p2(01) S HllullH2(0,1)
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Motivation: simple numerical example
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—(AX) /' (x)) =1 in (0,1),
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Motivation: simple numerical example

Find: v with u(0) = u(1) =0 and

—(AX) /' (x)) =1 in (0,1),
where A(x) = 2 +sin(27x/¢e) with ¢ =279,
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Motivation: simple numerical example

Find: v with u(0) = u(1) =0 and

—(AX) /' (x)) =1 in (0,1),
where A(x) = 2 +sin(27x/¢e) with ¢ =279,
Standard P1-FEM estimate: |[v — usl[p2(01) S HllullH2(0,1)
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Problem setting and notation
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Notation - Let M

m D C RY bounded Lipschitz-domain (d € {1,2,3}),

m A c [°(D,R¥9) multiscale coefficient

m matrix-valued;
possibly non-symmetric;

and elliptic, i.e. there is & > 0 so that for a.e. x € D
AP < Ax)E-€ forall € € RY.

highly oscillatory and not smooth;
possibly heterogenous (no scale separation);
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Elliptic model problem M

Find v : D — R with v =0 on 9D such that
-V - (AVu)=F

for some F € H™}(D).

Differential operator expressed as coercive and bounded bilinear
form on H3 (D)

a( ,v)—/DAV -Vv.

Problem in variational form:
Find v € H}(D) such that
a(u,v) = (F,v) forall v € Hy(D).

| Numerical homogenization | 6-8 October 20



Galerkin method M
Find v € H}(D) such that
a(u,v) = (F,v) forall v e Hj(D).

Numerical approximation?

|dea of Galerkin methods: Replace infinite dim space
H: (D) by finite dim subspace V;; C H(D).

Find uy € Vi such that

a(uH, VH) = <F, VH> for all vy € V4.

| Numerical homogenization | 6-8 October 21
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Galerkin method

Find v € H}(D) such that
a(u,v) = (F,v) forall v e H}(D).
Find uy € V4 such that
a(up,vy) = (F,vy) forall vy e V.
How big is the error ey = u — uy? Galerkin orthogonality
a(u— uy,vy) =0 forall vy € Vy,

implies (Céa's lemma):

p
” — UHHHl < = |nf H — VHHHl(D))
Q. vHE V)

i.e. uy is always the H'-quasi best approximation of v in V.

| Numerical homogenization | 6-8 October
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[%-error estimates

Theorem (Aubin-Nitsche lemma)

In our setting we have

igf |27 — HHl(D)

- 2(py < Bllu— 1 sup
iz | e @) rel2(D)\{0} 7l 2(p)

)

where ~'"' € H}(D) is the solution to the dual problem
a(v,z\") = (v, r)2(p) for all v € Hy(D).

For F € L?(D) and P1-FEM, the theorem says roughly
[ —

|2(py = [Ju — Hﬁrl(p)-
Message:

If is a poor H'-approximation, then it is also a poor L?-approximation.
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Finite element approximations

Quantified error estimates

| Numerical homogenization | 6-8 October
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Galerkin method (summary) M

Find v € H}(D) such that
a(u,v) = (F,v) forall v € Hy(D).

Galerkin approximation in Vy C H3(D):
Find uy € V4 such that

a(uy, vy) = (F,vy) forall vy € V.

Abstract error estimate:

B .
_ <2 inf (Ju— _ 7.
|t — upl||prpy < o VJQVHHU Vi || (D)

(H'-quasi-best approximation)
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P1-FEM - A typical choice for v

Let 7}, be a regular quasi-uniform triangulation of D.
On the mesh 7;; we define the P1 finite element space as

V= {v € C°(D) n H3(D)|
VK € T4t vk is polynomial of degree 1}.

v

1
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The [*-projection M

We consider the L?-projection

Py : H3 (D) —
It yields the L2-best approximation and is defined by
(Pu(v), vi)iz(py = (v, vir)i2(py ~ forall vy €
On quasi-uniform meshes it fulfils the estimates for all v € H}(D)
IPH(v) = vz < CH|v[[m and  [[PH(v) = vl < Cllv][p
and for all v € H}(D) N H?(D):

1PH(v) = viiiz < CH?vlz and  [[Pu(v) = vl < CHI|v]|y.
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Quantified error estimates - H*(D) case M

Conclusion:

Let be the P1-FEM space, then we have the error estimate

B .
_ < 2 inf flu— < Z—p .
| |y < ., in | = vullppy < aH ()| Hr (D)

If ve Hy(D)N H?(D) we have ||t — Py( )HHI('D) < CH)| HHz(D)
and hence

v = villmpy < CH|ullHeDy).
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Quantified error estimates - H'(D) case

Conclusion:
Let be the P1-FEM space, then we have the error estimate
s B

— < — inf — v < =
o= unllenpy < 5 inf flu—vallinry < 5

[l = Pr(u)l[ (D)

If only v € H}(D) we have by density
i = sy 2 2 i i = vl = @
H=0 T H=0vue

But with || — Py(u)||ppy < C ||uf|prpy and Aubin-Nitsche

lv = unll < Cllull and fju = upllz < Cllufjp-
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Quantified error estimates - H'(D) case

Observation:

If u € H}(D) we have

IA

lo = walle < Cllufip

but
v — Pr(u)llz < CHIul|p.

Contradiction?

IA

| Numerical homogenization | 6-8 October
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Quantified error estimates - H'(D) case M

Summary:

If only 1 € Hi(D) we have
lu = unllm < Cllullm
and if u € H3}(D) N H*(D)
lu = unlle < CH|lullpe.

Question:
When do we have u € H*(D) and how big is ||t 127

| Numerical homogenization | 6-8 October
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Regularity estimates (without proof) M

Let F € H (D), then

| FllH-1(p)

< C
Jullny < Co

mLet F € L*(D);
m D be convex
mAc WI’OO(D,RdXd);
then we have 1 € H?(D) and it holds the estimate

[l 2y <CD_HAHW1°O )| Fll 2y
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Effective error estimates

From

[ < CHlulpe,
we conclude
Ju = vnllr < Cmin{ H[[Allwre, 1} [|Fl]2.
If A is multiscale and rapidly oscillating on a scale ¢, then
JAllwaoe = A e = =2,
Hence
o= unlle S Cmin{2, 1),

Consequently, we have only linear convergence of H < «.

| Numerical homogenization | 6-8 October
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Effective error estimates - Conclusion M

If Ais a (realistic) multiscale coefficient, then either
¢ H*(D)  (if A'is discontinuous)
or
. H
luv— vyl S len{g,l}.
Hence

Galerkin approximations u, are not reliable for coarse mesh sizes H.

“Paradox”: even in worst case scenarios we always have:

igf v = vulliz < CH||Flly-1(p)-
VH
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Effective error estimates - Conclusion

If Ais a (realistic) multiscale coefficient, then either

¢ H?(D) (if A is discontinuous)
or

o= vglln S Cming 2,1},
We need at least

H < e,
hence, the space needs to have a dimension of at least
dim Vy;, = O(H™9) > O(c™9).

Can exceed computation powers of available computers!

| Numerical homogenization | 6-8 October
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Finite elements and multiscale problems

Another numerical experiment

| Numerical homogenization | 6-8 October
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Model problem in 1d

Consider D = (0,1)

and

F=1

and the multiscale coefficient for very small 0 < ¢ < 1:

=1

A%(x) = (2 + cos(27r)€—<)) .
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Model problem in 1d

Exact solution (multiscale structure):
& 2 =
X) = G + &7 ux(—
() )+ (%)
Macroscopic behavior - coarsest level:

m can be well-approximated in coarse

inf ||ug — vz < CH? and inf |[ug — vyl < CH.
VHE VHE

Microscopic behavior - hierarchical fine levels:

2

= 2,5 =5 (1- ol
5 B, . and ¢ uz(g) =13 (1 cos(27r€))
m hardly visible L?(D); important contribution in H(D);

m rapidly oscillating (period ¢); cannot be captured in coarse V;
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Model problem in 1d - P1-FEM M

We solve the problem with P1-FEM in and for e = 277 = 0.0078125.

m Note: when assembling the integrals in the system matrix, we use a
quadrature rule of order 18 (to capture the oscillations).

H-error estimates: Since

Y (x) = 27 X)) sin(2n ™
(A%)'(x) = - (2+cos(27r€)) S|n(27r8),
we have

1A%l wree = [[(A% [l = O(e7).
The previously derived H!-estimate becomes in this case
|05 = upllp < C min{ H[[A%[[wree, 1} |||l 12
H
~ Cmin{—,1}.
€
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Model problem - [%- and H'-error estimates

H'-error estimate:

H
I =l < C 12 it H<e¢
1 ifH>e.
[%-error estimate:
H 2 .
H e HL2 < C (;) I](H<5
- 1 if H> e.

Asymptotic vs. pre-asymptotic regimel!

| Numerical homogenization | 6-8 October
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Model problem in 1d

0 : ; : : : y
. =T
_""" 4’,’
- -
= .
3 .
s
| e
vy e = ”“E _“h”rflz(m
§ -15 ”, - O(h2)
& e,
9 A2
-
20 ," — HuE . uhHrel
T HY(Q)
— hle=05 = O(h)
T i & B = = = = o

loga(h)

Relative L%~ and H'-errors for the model problem solved with Galerkin
P1-FEM and for various mesh sizes H = h.
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Model problem in 1d - comparison plots v, vs u°

ﬁ
AN

/7~ \
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Model problem in 1d - Conclusions M

m There is a clearly visible pre-asymptotic regime (for H > ¢).

m In the asymptotic regime (for H < ¢) all errors show the
expected convergence rates.

m In the pre-asymptotic regime, we observe (visually) a false
convergence, i.e. it looks as if the numerical solutions
approach a converged state. !l

m This “false state” is the solution obtained by replacing A by its
arithmetic average.

m Note: the correct coarse part 1 is obtained by replacing A® by
the harmonic average.
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Disclaimer

There is a vast literature on different approaches for tackling
multiscale problems.

A (biased) list of important examples contains

Approximate Component Mode Synthesis,
Hetmaniuk, Lehoucq, Klawonn, Rheinbach ...

Classical Multiscale Finite Element Method (MsFEM),
Efendiev, Hou, Le Bris, Legoll, Wu ...

Generalized MsFEM (GMsFEM), Chung, Efendiev, Hou, ...

Heterogenous Multiscale Method (HMM), Abdulle, E, Engquist, Ohlberger, ...
Localized Orthogonal Decomposition (LOD), Henning, Malqvist, Peterseim, ...

Operator-adapted wavelets (gamblets), Owhadi, Scovel, ...
Optimal local subspaces, Babuska, Lipton, Patera, Scheichl, Smetana, ...

Rough polyharmonic splines, Owhadi, Zhang, ...

In the following we only follow one of the paths.

| Numerical homogenization | 6-8 October
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2. ldealized numerical homogenization
of ellliptic multiscale problems

Back to the general problem

We follow a special case of the general framework described in:

L R. Altmann, P. Henning and D. Peterseim.
Numerical homogenization beyond scale separation.
Acta Numerica, 30:1-86, 2021.
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Reminder

For realistic multiscale coefficients A, we typically have
¢ H?(D) and

H 6
lu—unlliz £ € min{ <€>,1} | Fll2(py for some 0 < ¢ < 2.

m ‘Paradox”: even in worst case scenarios we always have:
inf [|u = vull2 < CH||IF||g-1(p).
VHE
m But: Galerkin methods in fail to find these approximations,
because they aim for H'-quasi best approximations.

m Since the variations of 1 are invisible (unresolved) in V/;;, a H'-quasi
best approximation is a meaningless function.

m Question: Is it possible to formulate a variational method that yields
the L2-best approximation?
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Corrector Green's Operators

An equation for the L?-projection

| Numerical homogenization | 6-8 October
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Analytical setting

Recall the setting:
m D C RY bounded Lipschitz domain;
m Fe HYD);

m differential operator

a( 7v):/DAV Vv,

is a coercive and bounded on H} (D)
m Find v € H}(D) with a(u, v) = (F,v) for all v € H}(D).

m A is multiscale and admits no regularity.

| Numerical homogenization | 6-8 October
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Discrete setting M

Recall the setting:
[ is a regular and quasi-uniform triangulation of D;
n C H3 (D) is corresponding P1-FEM space on 7;

m H is the mesh size

m [*-projection P}, : H}(D) — e
( (U)./ VH)Lz(D) = (LI, VH)LZ(D) for all vy €
m Note: the L2-projection on is H'-stable

| PVl Hr ) < Clv||H1(p) for all v € H(D).

| Numerical homogenization | 6-8 October
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Goal

The space defines of our problem.

The best-coarse scale approximation to the exact
solution v is Py(u) €

Goal: Construct a homogenized differential operator ay(-,-), so that
the unique solution € with

(ursy ve) = (Fo, Vi) for all vy €
just gives the L2-best coarse scale approximation, i.e.
= Py(u).
Recall: ||Py(u) — ullizpy < CH||F||u-1(py).
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Corrector Green’s Operator Theory
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Corrector Green’'s Operator Theory M

Consider the (exact) fine-scale problem:

a(u,v) = (F,v) for all v € Hy (D).

Goal: express 1 explicitly in terms of its coarse part
() and the data A and F.

Tool: Corrector Green's Operators.
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Definition: Corrector Green's Operator

We define the kernel of the L2-projection by
W = {w € Hy(D)| Pu(w) = 0}.

With this, the Corrector Green's Operator
G:HY(D)—> W
with G(F) € W for F € H (D) is given by
a(G(F),w) = (F,w) for all w € W.

The image of dual operator (" is given by

a(w,G"(F)) = (F,w) for all w € W.

| Numerical homogenization | 6-8 October
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Corrector Green’s Operator M

Note:
= {w € Hy(D)| Pr(w) =0}

is a closed subspace, because it is the kernel of a linear,
H*-continuous operator.

Hence, the Corrector Green's Operator G : H71(D) — W with
(F)e W: a(G(F),w) = (F,w) for all w €

is well-defined by the Lax-Milgram theorem.

| Numerical homogenization | 6-8 October
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Corrector Green’s Operator Theory M

With W := {w € H}(D)| Py(w) = 0}, G(F) € W solves

a(g(F),w) = (F,w) for all w €

The following representation of 1 € H}(D) holds true.

Lemma (Representation of exact solution)

With A:= -V - (AV ") it holds
= un = (G o A)un + G(F),
where € is the L2-projection of 1/ in the coarse space, i.e.
= Pu(u).
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Proof of Representation of fine-scale solution M

Since 7}, : H}(D) — V,, is a projection, we can write
EHY(D)=Vn @
uniquely as
= uy + ug, where vy := Py(u) and v := v — Py(u) €

By definition we have
a(uy + v, w) = (F,w) for all w €
Together with the definition of we have
a(us, w) = (F = A(un), w) = a(G(F) — (G o A)(ur), w).
Since u; € W and G(F) — (G o A)(uy) € W, we conclude
= G(F) = (9 o A)(un),

which finishes the proof. [
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Representation: v = vy — (G o A)uy + G(F)

We define the corrector operator C : V;; — W as
C:=—(GoA).
Let v, € V). Observe that C(vy) € W solves
a(C(vy),w) = —a((G o A)vy, w) = —(Avy, w)
= —a(v, w)
for all w € W. Hence, C(vy) € W solves
a(vy +C(vy),w) =0 forallwe W.

Note similarity to homogenization theory!
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Corrector Green’s Operator Theory M

Plug representation v = (I + C)uy + G(F) into problem formulation and
test only with coarse functions vy €

Lemma

The (coarse) L?-projection 1y = 7;(u) € V4 can be characterized as
the solution to the coarse scale problem

a((I+ CQ)up,vy) = (F,vy) — a(G(F), vy) for all vy €
As a matter of fact:
v = unllizepy = v = Pr(u)ll2(p)

< CH|[Vullizpy < CHa Y| Fllg-1(p).-
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Corrector Green’'s Operator Theory M

We have
a((I+ C)um, vi) = (F, vy — a(G(F), vi) for all vy €

Next step: reformulate coarse-scale equation in more convenient way.

1. Observe that for any vy € we have
a(9(F), ) = —a(G(F),C"(vu)) = =(F,C(ww)), (%)
with C*(vy) € W given by
vi) = —a(w, vi) for all w €
2. It obviously holds
a((T+ C)un, vin) = a(um, (T4 C7)vw), ()

From () and (**) we have

a(up, (T+C)vy) = (F, (14 C")vn) for all vy €
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Corrector Green’'s Operator Theory M

We have seen vy = P(u) € Vyy solves

a((T+ C)uy,vy) = (F,vy) — a(G(F), vy) for all vy €

but also
a(uy, T+ CYvy) = (F,(I+C")vy) for all vy €
We define
Vi = {4+ C)val v € Vi)
and obtain
a(up, vii®) = (F, viy®) for all vij® € V™.
Hence:
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Petrov-Galerkin characterisation of the [2-projection M

Theorem (Multiscale Finite Element Method 1)

Let € denote the coarse interpolation of // into \/,,, then it
is a solution to the Petrov-Galerkin problem

a(up, viy') = (F,viy)  forall i € V™7,

where
Vi = {(I+ C*)vul v € Via}.

By the properties of it holds

| = vnllizpy < CHa Y| F | -1(p)-
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Corrector Green’'s Operator Theory

What if we want more,

i.e. a H'-approximation?

| Numerical homogenization | 6-8 October
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Corrector Green’'s Operator Theory

It holds for all w &

a(w,C*vy) = —a(w, vy).
Hence, with w = we have

a( ,VH + C*vy) = 0.
We conclude that € is also solution to

a((L+ C)um, (T+ C*)vm) = a(um, (T+ C*)vn).

Recalling that v = vy + + G(F), we summarize the results in the

following corollary.
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Corollary (Multiscale Finite Element Method 2)

Let
Visi={vu +C vy| vy € Viu} and
\/Il_ill"”Z: {VH + *VH‘ VH € }

Then there exists v} € V)" with
a(uy, vir') = (F, viy®) viis e V.
Furthermore, it holds
Uiy = uy + and — ufy = G(F),

where 1y € is given by vy = Pr(uv).
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Corrector error estimate

Solving for uy; € V) with
a(ugy, viy) =(F,viy)  vipe V)"

we obtain a coarse scale solution plus a fine scale corrector

Cuy, i.e.
ug =uy+C and — uj; = G(F).

Improved estimates?
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Corrector error estimate - F € H (D) M

We saw the error is precisely given by

—u® = G(F).
Since G(F) € W (i.e. 71(G(F)) = 0) we have the L2-error estimate

v = vy lezpy = 1G(F)l )
= [|G(F) — Pu(G(F)l2(p)
< CH||G(F) )
< CHI|F||#-1(p)-

This is the best we can expect for F € H (D).
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Corrector error estimate - F € [?(D) or moreM

error= u — uy’ = G(F).

Let F=f¢cl*D)(s=0)or
F =f € H}(D) N H*(D) (for s € {1,2})
we have (by definition of §):

|| VG(F)lli2py < alG(F), G(F)) = (£, G(F))i2(p)
= (£, 9(f) = Pr(9(F)))2(m)
= (f = Pu(f), G(f) = Pu(G(F)))2(p)
< CH ||l sy I VG| 2y
Dividing by [[VG(f)|[12(p) yields
IVG(F)ll2(py < CH  a ™|l sy
and again with 7;(G(f)) =0
1G(A)ll 20y < CHIVG(F)l2py < CHT 27| s )
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Corrector error estimate

Summary for multiscale approx.
up = upy +
If
mF e HD) fors e {—1,0,1,2} and
m F e H)D)ifse{1,2},
we have

lu = ullizy + Hllu = uiillmp) < CH|F]

and

HS

| — upllzpy < CH||F|H-1(p)
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From Petrov-Galerkin to Galerkin

Petrov-Galerkin form: find u}® € V}}* with

a(ui, viy') = (Fvi)izpy  forall viy € V™,
If a(-,-) is symmetric, then V;3* = V/;"" and we have a Galerkin method.
If a(-,-) is not symmetric, we can still solve for i € V;}* with

a(iyy, viy?) = (F,vi)izpy  forall vi® € Vi,

Since Galerkin methods are H'-quasi optimal, we still have the optimal
convergence order (for s € {0,1,2}) as

ms

lu— @7 |y < Cllu — vl lmpy < CH  a ™| || s (o)

This is computationally favorable, since only V}}* is computed!
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Basis functions

We have

0,025 08 075 .

02 11

b, (I +C)b,

| Numerical homogenization | 6-8 October 70



RUHR-UNIVERSITAT BOCHUM

Summary: Equivalent problem formulationsM

Find € with
a(uy, viy®) = (F, vi®) for all vj° € V™"

Find uy € Vi with
a(upy, (I +C%)vy) = (F, (I +C")vy) for all vy €

N

::aozr,vH)
Find uy; € V7 with
a(uiy, vir®) = (F, vi®) for all vii* € V7™
Recall vy = Py(uiy).

Remark: It can be proved that the problems are inf-sup stable
(well-posedness).

| Numerical homogenization | 6-8 October
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Localized Orthogonal Decomposition

Question: Can we compute the corrector C through local
problems?

= P. Henning and D. Peterseim.
Oversampling for the Multiscale Finite Element Method.
SIAM Multiscale Model. Simul., 11(4):1149-1175, 2013.

= P. Henning and A. Malqvist.
Localized orthogonal decomposition techniques for boundary value problems.
SIAM Journal of Scientific Computing, 36(4):A1609-A1634, 2014.

| Numerical homogenization | 6-8 October
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Localization of

Decoupling idea:
For each triangle 7 € 7y, solve for CX(vy) € W(Uk(T)) with

a(C¥(vi), w) = —ar(vi,w)  Yw € W(Ui(T)).

local source term!

and set =7

Advantage: solution (' (v;/) decays (exponentially) outside of 7 to zero!

Replace D by Uy(T), a k-layer environment of
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Approximation with exponential convergence

Theorem
Let k € Nso, and CX(vy) € " solve (in parallel)
a(C¥(vh), w) = ar(vi, w) Yw € W(Ug
and set
“(vu) =Y C¥(w)
then
et = c*wn)| . p, &IV VA2,

L?-projection nicht bendtigt for Berechnung; kern(/|v,) dquivalent ausdriickbar durch
Quasi-Interpolationsoperator vom Clément-Typ (cf. Carstensen, Verforth, sSiNUM Vol. 36, '99).
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Approximation with exponential convergence M

Theorem
Let k € Nso, and CX(vy) € k solve (in parallel)

a(C¥(vk), w) = ar(vi, w) Yw € W(Ug
and set

“(v) = ) Ch(vn)
then
_ rk < a—Ck
et = c*n)| ., £ IV VL2,

The choice k ~ s|In(H)| preserves convergence rate H".
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Approximation with exponential convergence M

Theorem
Let k € Nsg, and C5(vy) € K solve (in parallel)
a( k( )7 ):2 ( ) ) Vw € k
and set
“(vm) = Y Co(vn)
then
__pk < o—Ck )
et = c*n)| ., £ €IVl

Instead of Vj3*:=(1 + C)V}; use Vi5:=(I + CK)
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A priori error estimates for symmetric a(-,-)

Theorem
Let Vi5:=(I +C*)V} and k . Find v, < Vi, with

a(uy, v) = (F,v) for all v e V5.

Then it holds (generically) for F € Hi(D) N H*(D) where s € {1,2}:

H ms

= uillzoy + Hllu = vl oy S | F :

Hs(D)

for F € [2(D):

v — uirllezpy + Hllu — upill iy S I Fllezp)

and for F € HY(D):

H ms

— Uy

v = vl 2oy + ) S 1FllA-

Remark: the H'-estimates remain valid if a(-,-) is non-symmetric. For optimal order
L2-convergence, the test function space /', must be replaced by a dual version Vi p
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Localized Orthogonal Decomposition

Numerical experiment

| Numerical homogenization | 6-8 October
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Numerical experiment - Model Problem

Let D := [0,1]2. Find v € H}(D) with
-V .- (AVu)=F

u=xy

A given by

and for ¢ := (3, 3) and r := 0.05

| Numerical homogenization | 6-8 October
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Numerical experiment - Model Problem M

Let D := [0,1]2. Find v € H}(D) with

-V .- (AVu)=F in D,

u=x3 on 0D.

A given by ’ to,a
po— 06

04
02
[ 3

001

Green/yellow region: A(x) = 1—10(2 + cos(2m>2)) for e = 0.05.

Isolator (blue region) A(x) = 0.01.
Circular layers in the middle: A =1 (red region) and A = 0.1 (cyan region).
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Numerical experiment - Reference solution

| Numerical homogenization | 6-8 October
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Results

’ H

|

3
3
5

2"
2”
2~
2”
2"
2"
2~

J>J>-J>-J>

B W N =W N~ X

Table: Reference computations for h = 278 k denotes the number of Coarse
Element Layers to create the localization patch.
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Results

| A K] |
27311 0.01708 0.12064
27312 0.00655 0.07400
2313 0.00557 0.06996
2% |1
27412
27413
274 | 4

Table: Reference computations for h = 278 k denotes the number of Coarse
Element Layers to create the localization patch.
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Results

0.5

[0.25

Figure: Fine grid with h =278, LOD approximation for H =22 and k = 1.
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Results

0.5

0.25

Figure: Fine grid with h =278, LOD approximation for H = 22 and k = 2.
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Results

Figure: Fine grid with h =278, LOD approximation for H = 2% and k = 1.

| Numerical homogenization | 6-8 October

83



RUHR-UNIVERSITAT BOCHUM

Results

L4

Figure: Fine grid with h =278, LOD approximation for H = 2~% and k = 2.
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3. Some further multiscale problems

Survey and more advanced applications

| Numerical homogenization | 6-8 October
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Localized Orthogonal Decomposition (LOD)
- general references

The approach was originally proposed in

A. Mélqvist and D. Peterseim.
Localization of elliptic multiscale problems.
Math. Comp., 83:2583-2603, 2014.

and further developed (especially with regard to localization) in

P. Henning and D. Peterseim.
Oversampling for the Multiscale Finite Element Method.
SIAM Multiscale Model. Simul., 11(4):1149-1175, 2013.

P. Henning and A. Maélqvist.
Localized orthogonal decomposition techniques for boundary value problems.
SIAM Journal of Scientific Computing, 36(4):A1609-A1634, 2014.

A survey on the methodology is given in:

R. Altmann, P. Henning and D. Peterseim.
Numerical homogenization beyond scale separation.
Acta Numerica, 30:1-86, 2021.

A. Malqvist and D. Peterseim.
Numerical homogenization by localized orthogonal decomposition.
SIAM Spotlights, 5:xii+108 2021.
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Some applications -
Wave phenomena in multiscale media

> Acoustic wave propagation in heterogenous media.

A. Abdulle and P. Henning. Localized orthogonal decomposition method for the wave
equation with a continuum of scales. Math. Comp., 86(304):549-587, 2017.

> Electromagnetic waves (Maxwell's equations, Nédélec FEM)

SIAM J. Numer. Anal., 56(3):1570-1596, 2018.

P. Henning and A. Persson. Computational homogenization of time-harmonic Maxwell's
equations. SIAM J. Sci. Comput., 42(3):B581-B607, 2020.

| Numerical homogenization | 6-8 October

= D. Gallistl, P. Henning and B. Verfiirth. Numerical homogenization of H(curl)-problems.
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Some applications -
Hydrological simulations

> Darcy flow (problems in mixed formulation, H(div)-conforming
Raviart-Thomas FEM). Local mass conservation.

Discrete
Contin. Dyn. Syst. Ser. S, 9(5):1269-1298, 2016.

> Two-phase flow (Buckley-Leverett equation, DG-FEM)

Numer. Math.,131(4):643-682, 2015.
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Some applications - Superfluids in complex potentials

Find quantum state of condensate
u:Dx|[0,T] = C

where u(-,0) = v with [, [v[?> =1 and eigenvalue p € R solves

—Av+Wv+iQ (x x VIv+ (v v=pv.

and (-, t) (for t > 0) solves the nonlinear Schrédinger equation

10;u = —Au+ Vu+~(|u?) u.

m V and W are multiscale trapping potentials.

Super-convergence in LOD spaces (P1-FEM based) for nonlinear eigenvalue
problem: 3rd order in H'-norm and 4th order in L2-norm.

= P. Henning, A. M3lqvist, and D. Peterseim. Two-Level discretization techniques for ground state
computations of Bose-Einstein condensates. SIAM J. Numer. Anal.,52(4):1525-1550, 2014.

| Numerical homogenization | 6-8 October 89



RUHR-UNIVERSITAT BOCHUM

Some applications - Superfluids in complex potentials

Find quantum state of condensate
u:Dx|[0,T] = C

where u(-,0) = v with [, [v[?> =1 and eigenvalue p € R solves

—Av+Wv+iQ (x x VIv+ (v v=pv.

and (-, t) (for t > 0) solves the nonlinear Schrédinger equation

10;u = —Au+ Vu+~(|u?) u.

m V and W are multiscale trapping potentials.

Super-convergence in LOD spaces (P1-FEM based) for time-dependent
NLS: 6rd order convergence for energy and mass.

= P. Henning and J. Wa&rnegadrd. Superconvergence of time invariants for the Gross-Pitaevskii equation. Math

Comp (early view), 2021.

| Numerical homogenization | 6-8 October 90



RUHR-UNIVERSITAT BOCHUM

Motivating example: a multisoliton

Soliton:
m wave (packet) that does not change its shape over time and which
propagates with constant velocity;

m can interact with other solitons, and emerge from the collision
unchanged

m Nonlinear Schrédinger equations model wave propagation in
nonlinear media and have solitons as solutions.
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Example: two interacting solitons in 1D

[Aktosun et al. Exact solutions to the nonlinear Schrédinger equation. Birkhauser Verlag, 2010.]

We consider the model equation
10;u = =0 — 2ul’u  inRx (0, T].
Single soliton solutions to the equation are of the form
u(x, t) = v/a e GE=) sech(\/a(x — ct)),
where, sech is the hyperbolic secant and

m «a: shape parameter of the soliton (also determines amplitude /a);
m c: the velocity with which the soliton moves.

However, we consider the problem with a multisoliton solution, that
consists of two stationary interacting solitons:
(x. 1) 8eHt(9e™* 4 16e**) — 3210t (472X 4 9e2X)
u\x = 5
’ —128 cos(12t) + 4e=6% 4 16€5* + 8le—2% + 64e2~
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Example: two interacting solitons in 1D

[Aktosun et al. Exact solutions to the nonlinear Schrédinger equation. Birkhauser Verlag, 2010.]

Model equation
10;u = —Octt — 2|ul?u in R x (0, T].
Multisoliton solution consistingg of two stationary interacting solitons:

8eit(9e= 4 16e™) — 3210t (4e72% 4 9e2¥)
—128cos(12t) + 4e=6% + 16€5% + 8le—2% + 64e2*

u(x,t) =
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Example: two interacting solitons in 1D M

10;u = =0t — 2uPu in R x (0, T].
Multisoliton solution consisting of two stationary interacting solitons:
8eHt(9e™* 4 16e**) — 3210t (472X 4 9e2X)
u(x,t) = .
—128 cos(12t) + 4e=0% + 16€5% + 8le=2x 4 64e>>

We can compute the energy and the mass with

E(u)=—-48  and M(u) = 12.

Recall: interacting solitons emerge unchanged from collisions.

From the values of the energy and the formula for single soliton solutions,
we find that v is the interaction of the two individual solitons

u1(x, t) = 2e% sech(2x) and up(x, t) = 4e® sech(4x).

Details: [H. and Warnegérd. Math Comp (early view), 2021]
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Example: two interacting solitons in 1D
Details: [H. and Warnegard. Math Comp (early view), 2021]

10;u = =t — 2|ulu in R x (0, T].

Consider again the multisoliton consisting of two stationary interacting
solitons and assume that we repeat the same calculations with an energy
perturbation of order €, (discretization error), i.e.

E(u) = —48 + ¢p.
In this case we obtain the following two individual solitons:
u(x,t) =2 elGex—(3f—4)1) sech(2(x — c1t)), where ¢ = —\/%jh
and
u(x,t) =4 ei(zeax—(3-16)t) sech(4(x — cot)), where ¢ = %Gh

Hence, both solitons drift apart with a speed proportional to the square
root of the energy error.
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Example: two interacting solitons in 1D

Details: [H. and Wiarnegérd. Math Comp (early view), 2021]

Multisoliton with energy perturbation (discretization error)
E(u) = —48 + ¢p.

We obtain two separate solitons

ur(x,t) =2 elGax—(G -0 sech(2(x — c1t)), where ¢; = —\/2ep;

i(L (1.2
o(x, t) = 4 ez (22 —10)8) sech(4(x — cpt)), where ¢ = len.

30+ | —— UCN-FEM
I )
(
I

20+

10r

0 |-

4 2
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Example: two interacting solitons in 1D
Details: [H. and Warnegard. Math Comp (early view), 2021]

Problem: split of the multisoliton due to discrete energy errors:

E(u) = —48 + €h.

Velocity of the drift/separation o< /.

mIf 72> 6;1/2 then the error will be of order O(1).

m Solution: high-order space discretizations/spectral methods?
Issue: blow up of Sobolev-norms

107 0% ull oo (12) ~ P for any m € N,
for some p > 1. For example:

10 ull o2y = O101)  and (|80 u(0)[|2(py = O(10M).

Experiments in [H. and Warnegérd., Kinet. Relat. Models, 2019]: problem hardly
solvable (i.e. can take years) with traditional approaches on long time
scales.
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Experiment: Comparison Crank—Nicolson M

CPU times (in s) per time step (5 iterations), dimV/}}* = 1024

CN-FEM FPI h = 40/2!8 | CN-FEM LOD H = 40/2%°, ¢ =10
CPU [5] 2 0.014
E—E, 3.33e5 775

T =200; N = 223 time steps: ~ 192 days with CN-FEM FPI and total time
~ 29 hours with CN-FEM LOD.

075" { won A | wop
i . Ih "
0.50+ il 0 Il
0.25¢ I e Il
0,00 | 2 ‘\‘
.00 ———_ I\ - - I
o« |
025 \ [\ 3 i
0.50 \ / -4 “‘\ I
075+ \Y; 5 AJ
4 2 o0 2 4 4 T 2 0 2 4
2 z
§R 2
(a) Ru (c) [ul

ms

Figure: u};® with the above configuration at T = 200.
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Experiments: Comparison

CPU times (in s) per time step (5 iterations), dimV/}}* = 2048

CN-FEM FPI h = 40/22' | CN-FEM LOD H = 40/2', ¢ =12
CPU [s] 15.9 0.032
E—E, 5.2e-7 9.7e-7

T = 200; N = 223 time steps: ~ 4.5 years with CN-FEM FPI and total time
~ 100 hours with CN-FEM LOD.

i 1 /\ |
0.6 | —uop \ 30 [ uLon
‘\\ u 0 - \ [— I u
03 [l 4l || Il
il | 20 ‘\
0.0 — I 2 || [
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| || —u |
06 / 5 |l I\
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z S S
2
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Figure: u};® with the above configuration at T = 200.
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Thank you for your attention!
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