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of reduced models in parallel-in-time PDE simulation

In a Nutshell

Motivation Parallel-in-time (PinT) methods have the
potential to speed up PDE simulations on massively
parallel computers. We analyse convergence of mM-
parareal as a candidate for multiscale PinT simulation

Goal Exploratory (numerical) analysis of the effect of
reduced models in parallel-in-time PDE simulation

Model 1D /2D slow-fast Ornstein-Uhlenbeck process

Method Numerical experiments: Julia implementation

mM-parareal method

» lterative method to accelerate timestepping simulation
= Classical parareal [LMTO01]
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where n is timestep index, £ is iteration index, Ca; is a

coarse (cheap) propagator, Fa; is a fine propagator

= micro-Macro parareal [LLS13]
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- p, macroscopic state, A" microscopic state

- R(X): restriction operator transfers the micro state
X to the macro level

- M(X, p): matching operator modifies micro state X
in order to be compatible with a given macro state p

- J(p1, X, p2): iteration operator defines updating for-
mula. In classical parareal: J(p1, X, p2) = p1+X — po

Slow-fast Systems

m Slow-fast SDEs (time scale separation parameter ¢)

m Corresponding slow-fast PDE (Fokker-Planck equa-
tion): u(z,y) is the joint probability density
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Reduced models: averaging

m Assumption: the fast dynamics y possess an invariant
distribution p>°(y; x)

= Reduced SDE [PS08]

dx = F(z)dt + \/2D(z)dW

m PDE equivalent
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Ornstein-Uhlenbeck (OU) process

» Definition of n-dimensional OU process
dX = —A\Xdt + odW

where A\, € R™"*™ and X,dW € R"

= Analytical solution: 0D moment models

* Gaussian distributions remain Gaussian
— simple evolution law for mean and (co)variance
¥ Mean: u(t) = e X,

* (Co)variance:
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micro-Macro parareal: example

Model parameters

=00 o= e

* Model error (mean/covariance of the 2D model vs.
mean/variance of 1D reduced model) behaves as

O(e) as e — 0
* Chosen time scale separation parameter ¢ = 0.1
mM-parareal parameters

* Fine propagator Fa;: 0D moment model
for mean 1 and covariance X of the full 2D model

Coarse propagator Ca;: 0D moment model
for mean ftmacro and variance Xmacro Of the reduced

1D model

R: restriction operator selects marginal mean
lmacro = (/1] and marginal variance X nacro = 2|1, 1]

M matching operator leaves the fast mean/variance

untouched, while replacing u|l] < ftmacro and
2[17 1] A Zmacro

J: classical parareal iteration operator, applied to
Hmacro and Xmacro

Number of coarse timesteps N = 10

mMacro error

mMacro error on mean
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micro error
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Effect of time scale separation

Experiment parameters: N = 30, other parameters
identical to example

mMacro error on mean
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e Models with large time scale separation converge
faster

e The convergence above is a best scenario indication
for convergence of mM-parareal on the OU process

Conclusions

Summary * mM-parareal convergence depends on the
scale-separation parameter ¢

* mM-parareal might be effective in the parallel-in-time
simulation of multiscale PDEs, especially for models
with big time-scale separation

Future work * Numerical experiments with non-
Gaussian initial condition and other (more general)
driving processes (the 0D moment models are only
exact with Gaussian initial condition)

Study effect of using more informative reduced mod-
els (e.g. modeling the full probability density) on
convergence of mM-parareal

Apply Monte Carlo simulation for the fine model
— study additional effect of stochastic error on mM-
parareal convergence

Thank you for taking a look at this poster!
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