

Multilevel Markov Chain Monte Carlo for full-field data assimilation

P. Vanmechelen¹, G. Lombaert² and G. Samaey¹

¹KU Leuven, Department of Computer Science ²KU Leuven, Department of Civil Engineering pieter.vanmechelen@kuleuven.be

In a Nutshell

Goal Achieve a computational speed-up for the prohibitively expensive assimilation of full-field data in a high resolution setting.

Model Beam model in structural mechanics, slightly adapted from [1].

Method Multilevel Markov Chain Monte Carlo method as proposed by [2].

Result The method is significantly cheaper than single-level approaches. Scaling data between levels is work in progress.

Beam model

In the structural mechanics beam model, θ is a **full-field parameter** representing spatial variation of the material stiffness. Observations are displacements u along the beam edge, related to θ by solving the following PDE on a **finite element mesh**:

 $\nabla \cdot (\theta \nabla \boldsymbol{u}) = F_{\mathsf{body}}.$

In the test case we start from known values of θ and perturb the resulting displacements with Gaussian noise to use as synthetic data.

Context

New observation techniques in structural mechanics allow for the acquisition of high resolution full-field data. Such data can be immensely useful in e.g. structural damage assessment, where it enables the construction of full-field maps of the variation in material stiffness. However, there is a lack of efficient models to deal with the computationally expensive case of full-field data.

Markov Chain Monte Carlo

• We want to infer information on a parameter θ based on noisy observations of some forward operator on θ

 $y_n = \mathcal{F}(\theta) + \varepsilon_n.$

In the Bayesian approach we construct a **posterior distribution** on θ conditional on prior and likelihood information given the data

 $p(\theta) \sim \mathcal{L}(\boldsymbol{y}|\theta) \pi(\theta).$

MCMC methods allow us to construct a chain that samples from the posterior by proposing moves $\theta' \sim q(\cdot | \theta^n)$

 \bullet is modelled as a normal field $K(\boldsymbol{x},\omega)$ which is subsequently transformed to have normalised values in [0,1]. $K(\boldsymbol{x},\omega)$ is approximated by means of a Karhunen-Loève expansion

$$K(\boldsymbol{x},\omega) = E[K(\boldsymbol{x},\cdot)] + \sum_{k=1}^{\infty} \sqrt{\lambda_k} \xi_k(\omega) b_k(\boldsymbol{x})$$

where ξ_k are independent standard normal variables.

Finer levels are constructed by simultaneously increasing the truncation number in the KL expansion and refining the FE mesh.

Posterior mean on different levels

and accepting or rejecting them based on some acceptance criterion

 $\theta^{n+1} = \begin{cases} \theta' & \text{with probability } \alpha \\ \theta^n & \text{with probability } 1 - \alpha. \end{cases}$

• Once sufficiently burnt in, we can then use this chain to obtain MC estimators for the moments of the posterior distribution of θ

$$\widehat{Q}^{MC}(\theta) = \frac{1}{N} \sum_{j=n_0+1}^{N+n_0} Q(\theta^j).$$

The multilevel approach consists of computing MC estimators on a hierarchy of discretisation levels, using correlated samples between levels. The estimators for the expensive finer levels are then used as corrections on the initial estimator for the coarsest level

$$\widehat{Q}^{ML}(\theta) = \widehat{Q}_0^{MC}(\theta) + \sum_{\ell=1}^L \left(\widehat{Q}_\ell^{MC}(\theta) - \widehat{Q}_{\ell-1}^{MC}(\theta) \right).$$

Because the correction terms are decreasing, fewer samples are needed on each finer, more expensive level, leading to a **significant computational speed-up**.

Schematic representation

Conclusions

- With observations growing in resolution, there is a **need for efficient algorithms** to deal with the high dimension, high resolution limit.
- By using different discretisation levels, **fewer calculations** need to be done on higher resolutions.
- In cases where the coarser levels yield exceptionally large discretisation errors, an adap-

tive error model should be used to ensure proper convergence.

Multilevel methods achieve significant speed-up compared to classical approaches.

References

- [1] P. Reumers, C. Van Hoorickx, M. Schevenels and G. Lombaert. Density filtering regularization of finite element model updating problems. Mechanical Systems and Signal Processing, 128:282-294, 2019.
- [2] T. J. Dodwell, C. Ketelsen, R. Scheichl and A. L. Teckentrup. Multilevel Markov Chain Monte Carlo. SIAM Journal for Uncertainty Quantification, 3:1075-1108, 2015.

