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In a Nutshell Beam model

Goal Achieve a computational speed-up for the prohibitively expensive assimilation of m In the structural mechanics beam model, 0 is a full-field parameter representing spatial
full-field data in a high resolution setting. variation of the material stiffness. Observations are displacements u along the beam

. dge, related to 0 by solving the following PDE finite el t h:
Model Beam model in structural mechanics, slightly adapted from [1]. cdge, related 1o & Dy sOlving the Tollowing on a finite element mes

Method Multilevel Markov Chain Monte Carlo method as proposed by [2]. V- (0Vu) = Fpody-

Result The method is significantly cheaper than single-level approaches. Scaling data m In the test case we start from known values of 6 and perturb the resulting displacements
between levels is work in progress. with Gaussian noise to use as synthetic data.

m 0 is modelled as a normal field K(x,w) which is subsequently transformed to have
normalised values in [0,1]. K(x,w) is approximated by means of a Karhunen-Loéve

Context expansion -
K(z,w) = E[K(x, )] + Y _ Veb(w)bi ()
k=1

New observation techniques in structural mechanics allow for the acquisition of high
resolution full-field data. Such data can be immensely useful in e.g. structural dam-

age assessment, where it enables the construction of full-field maps of the variation | _ _ , : :
T materialRstifnece Howerermiherenistallackiatieflicientimodelsttondcalbuithnthe m Finer levels are constructed by simultaneously increasing the truncation number in

computationally expensive case of full-field data. the KL expansion and refining the FE mesh.

where &, are independent standard normal variables.

Markov Chain Monte Carlo Posterior mean on different levels

m We want to infer information on a parameter 6 based on noisy observations of some
forward operator on 6

Yn = F(0) + €,.

m In the Bayesian approach we construct a posterior distribution on 6 conditional on
prior and likelihood information given the data

p(0) ~ L(y|0)m ().

m MCMC methods allow us to construct a chain that samples from the posterior by
proposing moves

0" ~ q(-[0")
and accepting or rejecting them based on some acceptance criterion

6" with probability o
n+1 T
= { 0" with probability 1 — a. Efficiency

—
-
T

m Once sufficiently burnt in, we can then use this chain to obtain MC estimators for the

: . : -@- Metropolis-Hastings
moments of the posterior distribution of 6

== Multilevel MCMC
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m The multilevel approach consists of computing MC estimators on a hierarchy of dis-
cretisation levels, using correlated samples between levels. The estimators for the
expensive finer levels are then used as corrections on the initial estimator for the coars-
est level
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QME0) = QY (0) + > (Q1C(0) - QS (0)).
/=1

m Because the correction terms are decreasing, fewer samples are needed on each finer, Conclusions
more expensive level, leading to a significant computational speed-up.
= With observations growing in resolution, there is a need for efficient algorithms to
deal with the high dimension, high resolution limit.

Schematic representation m By using different discretisation levels, fewer calculations need to be done on higher

resolutions.

m In cases where the coarser levels yield exceptionally large discretisation errors, an adap-
tive error model should be used to ensure proper convergence.

= Multilevel methods achieve significant speed-up compared to classical approaches.
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