Multilevel Markov Chain Monte Carlo for full-field data assimilation

P. Vanmechelen ${ }^{1}$, G. Lombaert ${ }^{2}$ and G. Samaey ${ }^{1}$
${ }^{1} \mathrm{KU}$ Leuven, Department of Computer Science ${ }^{2} \mathrm{KU}$ Leuven, Department of Civil Engineering ■ pieter.vanmechelen@kuleuven.be

In a Nutshell

Goal Achieve a computational speed-up for the prohibitively expensive assimilation of full-field data in a high resolution setting.
Model Beam model in structural mechanics, slightly adapted from [1]
Method Multilevel Markov Chain Monte Carlo method as proposed by [2]
Result The method is significantly cheaper than single-level approaches. Scaling data between levels is work in progress.

Context

New observation techniques in structural mechanics allow for the acquisition of high resolution full-field data. Such data can be immensely useful in e.g. structural damage assessment, where it enables the construction of full-field maps of the variation in material stiffness. However, there is a lack of efficient models to deal with the computationally expensive case of full-field data.

Markov Chain Monte Carlo

- We want to infer information on a parameter θ based on noisy observations of some forward operator on θ

$$
y_{n}=\mathcal{F}(\theta)+\varepsilon_{n} .
$$

- In the Bayesian approach we construct a posterior distribution on θ conditional on prior and likelihood information given the data

$$
p(\theta) \sim \mathcal{L}(\boldsymbol{y} \mid \theta) \pi(\theta) .
$$

- MCMC methods allow us to construct a chain that samples from the posterior by proposing moves

$$
\theta^{\prime} \sim q\left(\cdot \mid \theta^{n}\right)
$$

and accepting or rejecting them based on some acceptance criterion

$$
\theta^{n+1}= \begin{cases}\theta^{\prime} & \text { with probability } \alpha \\ \theta^{n} & \text { with probability } 1-\alpha\end{cases}
$$

- Once sufficiently burnt in, we can then use this chain to obtain MC estimators for the moments of the posterior distribution of θ

$$
\widehat{Q}^{M C}(\theta)=\frac{1}{N} \sum_{j=n_{0}+1}^{N+n_{0}} Q\left(\theta^{j}\right) .
$$

- The multilevel approach consists of computing MC estimators on a hierarchy of discretisation levels, using correlated samples between levels. The estimators for the expensive finer levels are then used as corrections on the initial estimator for the coarsest level

$$
\widehat{Q}^{M L}(\theta)=\widehat{Q}_{0}^{M C}(\theta)+\sum_{\ell=1}^{L}\left(\widehat{Q}_{\ell}^{M C}(\theta)-\widehat{Q}_{\ell-1}^{M C}(\theta)\right) .
$$

- Because the correction terms are decreasing, fewer samples are needed on each finer, more expensive level, leading to a significant computational speed-up

Beam model

- In the structural mechanics beam model, θ is a full-field parameter representing spatial variation of the material stiffness. Observations are displacements \boldsymbol{u} along the beam edge, related to θ by solving the following PDE on a finite element mesh:

$$
\nabla \cdot(\theta \nabla \boldsymbol{u})=F_{\mathrm{body}} .
$$

- In the test case we start from known values of θ and perturb the resulting displacements with Gaussian noise to use as synthetic data.
- θ is modelled as a normal field $K(x, \omega)$ which is subsequently transformed to have normalised values in $[0,1] . K(x, \omega)$ is approximated by means of a Karhunen-Loève expansion

$$
K(\boldsymbol{x}, \omega)=E[K(\boldsymbol{x}, \cdot)]+\sum_{k=1}^{\infty} \sqrt{\lambda_{k}} \xi_{k}(\omega) b_{k}(\boldsymbol{x})
$$

where ξ_{k} are independent standard normal variables

- Finer levels are constructed by simultaneously increasing the truncation number in the KL expansion and refining the FE mesh.

Posterior mean on different levels

Efficiency

Conclusions

- With observations growing in resolution, there is a need for efficient algorithms to deal with the high dimension, high resolution limit.
- By using different discretisation levels, fewer calculations need to be done on higher resolutions.
- In cases where the coarser levels yield exceptionally large discretisation errors, an adaptive error model should be used to ensure proper convergence.
- Multilevel methods achieve significant speed-up compared to classical approaches.

References

[1] P. Reumers, C. Van Hoorickx, M. Schevenels and G. Lombaert. Density filtering regularization of finite element model updating problems. Mechanical Systems and Signal Processing, 128:282-294, 2019.
[2] T. J. Dodwell, C. Ketelsen, R. Scheichl and A. L. Teckentrup. Multilevel Markov Chain Monte Carlo. SIAM Journal for Uncertainty Quantification, 3:1075-1108, 2015.

