

Asymptotic-preserving multilevel Monte Carlo for neutral particle simulation in fusion reactors

Emil Løvbak, Stefan Vandewalle and Giovanni Samaey KU Leuven, Department of Computer Science, NUMA Section in emil.loevbak@kuleuven.be

Tokamak Fusion Reactors

Asymptotic-preserving Scheme [1]

Solution: An asymptotic-preserving scheme replaces collisions with diffusion

$$\left(\frac{v\varepsilon}{\varepsilon^2 + \Delta t} \frac{\partial}{\partial x} + \frac{\Delta t}{\varepsilon^2 + \Delta t} \frac{\partial^2}{\partial x^2} + R_a \right) f(x, v)$$

= $S(x, v) + \frac{R_c}{\varepsilon^2 + R_c \Delta t} (\mathcal{M}(v)\rho(x) - f(x, v))$

Correlating AP simulations [3,4]

Goal: Couple two discrete paths

$$\begin{cases} \Delta X_{\Delta t_{\ell-1}}^n = \tilde{v}_{\Delta t_{\ell-1}} V_{\Delta t_{\ell-1}}^n \Delta t_{\ell-1} + \sqrt{2\Delta t_{\ell-1}} \sqrt{D_{\Delta t_{\ell-1}}} \xi_{\Delta t_{\ell-1}}^n \\ \Delta X_{\Delta t_{\ell}}^n = \sum_{m=0}^{M-1} \left(\tilde{v}_{\Delta t_{\ell}} V_{\Delta t_{\ell}}^{n,m} \Delta t_{\ell} + \sqrt{2\Delta t_{\ell}} \sqrt{D_{\Delta t_{\ell}}} \xi_{\Delta t_{\ell}}^{n,m} \right) \\ \text{with } \tilde{v}_{\Delta t} = \frac{\varepsilon}{\varepsilon^2 + \Delta t} \text{ and } D_{\Delta t} = \frac{\Delta t}{\varepsilon^2 + \Delta t} \\ \text{Influsive increments: weighted and rescaled sum} \\ \xi_{l-1}^n = \sqrt{\theta_{\ell}} \frac{\sum_{m=1}^M \xi_{l}^{n,m}}{\sqrt{M}} + \sqrt{1 - \theta_{\ell}} \frac{\sum_{m=0}^{M-1} V_{\Delta t_{\ell-1}}^{n,m}}{\sqrt{\mathbb{V}\left[\sum_{m=0}^{M-1} V_{\Delta t_{\ell-1}}^{n,m}\right]} \\ \text{Original is a followed in the rescaled is the set of the left.} \end{cases}$$

Reaction takes place in a **plasma**:

- Charged particles
- $\blacksquare Dense \Rightarrow fluid \Rightarrow finite volume code$
- Collisions between plasma and **neutral particles**:
- Low density \Rightarrow kinetic equation \Rightarrow high dimensional
- $\blacksquare \text{ High collision rate} \Rightarrow \text{small time steps}$
- Goal: Divertor design constrained by coupled plasma and neutral models

Collision step
No collision:
$$\exp\left(-\frac{R_c\Delta t}{\varepsilon^2 + R_c\Delta t}\right) \Rightarrow \frac{\varepsilon^2}{\varepsilon^2 + R_c\Delta t}$$

Collision: $\left(1 - \exp\left(-\frac{R_c\Delta t}{\varepsilon^2 + R_c\Delta t}\right)\right) \Rightarrow \frac{R_c\Delta t}{\varepsilon^2 + R_c\Delta t}$

Absorption step

No absorption: $\exp(-R_a\Delta t)$ Absorption: $(1 - \exp(-R_a\Delta t))$

$$\Rightarrow \quad \frac{1 - R_a \Delta t}{R_a \Delta t}$$

Multilevel Monte Carlo [2]

A Monte Carlo estimator for a Quantity of Interest $Y(x) = \mathbb{E}[f(X, V)]$ has the form

• Collision/absorption: event with probability p_e occurs in step n, m if $1 - p_{e,\Delta t_\ell} < u_{e,\Delta t_\ell}^{n,m} \sim \mathcal{U}([0,1])$ $u_{e,\Delta t_{\ell-1}}^n = \left(\max_m u_{e,\Delta t_\ell}^{n,m}\right)^M \sim \mathcal{U}([0,1])$

Velocity $V_{\Delta t_{\ell-1}}^n$ taken from last fine simulation collision

Results

Particle displacement after 0.5 s, $\mathcal{M}(v) = \mathcal{N}(v; 0, 1)$				
ℓ	Δt_ℓ	$\mathbb{E}[\hat{F}_{\ell} - \hat{F}_{\ell-1}]$	$\mathbb{V}[\hat{F}_{\ell} - \hat{F}_{\ell-1}]$	$P_\ell C_\ell$
0	5.0×10^{-1}	9.9×10^{-1}	2.0×10^{0}	1.0×10^{7}
1	1.0×10^{-2}	-1.2×10^{-1}	1.7×10^{-1}	2.1×10^7
2	5.0×10^{-3}	1.0×10^{-2}	4.7×10^{-1}	6.1×10^7
3	2.5×10^{-3}	2.8×10^{-2}	4.4×10^{-1}	$8.3 imes 10^7$
11	9.8×10^{-6}	4.1×10^{-4}	4.7×10^{-3}	1.3×10^8
12	4.9×10^{-6}	3.3×10^{-4}	2.2×10^{-3}	1.5×10^8
13	2.4×10^{-6}	3.9×10^{-4}	1.8×10^{-4}	6.1×10^6
\sum		9.81×10^{-1}		1.5×10^{9}
Single level cost $pprox 2.1 imes 10^{12}$, P_0 paths with Δt_{13}				

Challenge: Expensive neutral particles simulation

Diffusive Kinetic Equations

- We simulate the paths of individual particles in a position-velocity phase space
- $\left(\frac{v}{\varepsilon}\frac{\partial}{\partial x} + R_a\right)f(x,v) = S(x,v) + \frac{R_c}{\varepsilon^2}(\mathcal{M}(v)\rho(x) f(x,v))$

Particle trajectories follow a velocity jump process

- $\hat{Y}(x) = \frac{1}{P} \sum_{p=1}^{P} \sum_{n=0}^{N} f(X_{\Delta t,p}^{n}, V_{\Delta t,p}^{n})$
- Error = Bias + Variance $\mathbb{E}[|\hat{Y}(x) - Y(x)|] \sim \Delta t, \quad \mathbb{V}[\hat{Y}(x)] = \frac{1}{P} \mathbb{V}[f(X_{\Delta t}^{n}, V_{\Delta t}^{n})]$
- Trade-off: If computational cost is fixed, do we take many samples or expensive samples?
- Multilevel Monte Carlo many cheap samples and a sequence of increasingly expensive corrections

$$\hat{Y}_{0}(t^{*}) = \frac{1}{P_{0}} \sum_{p=1}^{P_{0}} f(X_{\Delta t_{0},p}^{n})$$
$$\hat{Y}_{l}(t^{*}) = \frac{1}{P_{l}} \sum_{p=1}^{P_{l}} \left(f(X_{\Delta t_{l},p}^{Mn}) - f(X_{\Delta t_{l-1},p}^{n}) \right), \ l \ge 1$$

Levels are combined with a telescopic sum

$$\hat{Y}(t^*) = \sum_{l=0}^{L} \hat{Y}_l(t^*)$$

References

 G. Dimarco, L. Pareschi, G. Samaey, Asymptotic-Preserving Monte Carlo methods for transport equations in the diffusive limit, SISC, 40:A504–A528, 2018.
 M.B. Giles Multilevel Monte Carlo Path Simulation, Operations Research, 56(3):607–617, 2008.
 E. Løvbak, B. Mortier, G. Samaey, S. Vandewalle, Multilevel Monte Carlo with Improved Correlation for Kinetic Equations in the Diffusive Scaling, ICCS 2020, 374–388, 2020.
 E. Løvbak, G. Samaey, S. Vandewalle, A multilevel Monte Carlo method for asymptotic-preserving particle schemes in the diffusive limit, Numer. Math., 148:141–186, 2021.

Optimal level strategy

 $dX_t = \frac{V_t}{\varsigma} dt, \quad V_t = \mathcal{V}^n, \quad t \in [t^n, t^{n+1}),$ $\mathcal{V}^n \sim \mathcal{M}(v), \quad t^{n+1} - t^n \sim \mathcal{E}\left(\frac{R_c}{\varepsilon^2}\right),$

- where particles follow a straight trajectory between collisions and sample post-collisional velocities from $\mathcal{M}(v)$
- When $\varepsilon \to 0$, the time between collisions $t^{n+1} t^n \to 0$ and this converges to **diffusion**

 $X^{n+1} = X^n + \sqrt{2\Delta t} \,\xi^n, \quad \xi^n \sim \mathcal{N}\left(\mu_{\mathcal{M}}, \sigma_{\mathcal{M}}^2\right)$

Problem: Need small time steps to resolve collisions

Conclusions

Asymptotic-preserving multilevel Monte Carlo produces multiple orders of magnitude speed-up on toy problems

Ongoing verification work in fusion test-case

Future work:

- Boundaries
- Non-homogenous plasma parameters

