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Context
In sub-Saharan Africa, over 100.000 infants develop hy-
drocephalus each year. This is a debilitating disease that, if
untreated, leads to severe brain damage and ultimately death.
An MRI scan is the diagnostic tool of choice. However, due to
the cost and infrastructure demands of conventional MRI scan-
ners, developing countries have very limited access to
this technology. We are part of an interdisciplinary team that
is developing a low-cost MRI scanner that can be used to
diagnose infants with hydrocephalus.

Figure 1: Low-field MRI scanner designed by Tom O’Reilly (LUMC) [1]

Super-resolution
MRI scans are long: they usually take dozens of minutes.
Considering that this scanner is meant for infants, decreasing
the scan time is important. However, generally speaking, a
shorter scan will result in an image of a lower resolution. We
use a neural network of the SRDenseNet architecture [2] to in-
crease the resolution of low-resolution (LR) images. The
relationship between a high-resolution (HR) image xHR and its
corresponding LR image xLR is

xLR = F−1
LRDFHRxHR + n, (1)

where F and F−1 denote the Fourier Transform and its inverse,
D is an operator that selects the low-frequency components and
n is a noise vector. We obtain the HR images from the fastMRI
dataset [3, 4] and use Eq. (1) to acquire their LR counterparts.
We train the network on these image pairs.

Results
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Figure 2: On the left, we have the original HR brain image which was acquired
using the low-field MRI scanner in Figure 1. It was artificially down-sampled
to an LR image (middle), which was then used as input for the network. The
resulting super-resolution (SR) image is shown on the right.

Conclusion
We used a neural network to increase the resolution of LR im-
ages acquired using a low-field MRI scanner. The SR image very
much resembles the HR image, but it is less noisy. By using the
network as a post-processing step, scan times can be decreased
while image quality is conserved.
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