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• Modeling the physics of seismic wave propagation including source

mechanism is computationally expensive and challenging.

• Model Order Reduction (MOR) can speed up the calculations, but standard

MOR methods experience bad convergence rates and instabilities for wave-

type problems.

• In the following, we present a symplectic-MOR strategy to construct stable

reduced models (with optimal error decay) for the forward problem.

Let Ω ⊂ ℝ! be a bounded domain representing isotopic, homogeneous

medium with Lipschitz boundary Γ = 𝜕Ω , such that (Γ = (Γ" ∪ (Γ#, Γ" ∩ Γ# = Φ,

Γ# > 0. We are interested in approximating 𝒖 = 𝑢$, 𝑢! % that solves

𝜌 �̈� − ∇ ⋅ 𝝈 𝒖 = 𝒇

𝝈 𝒖 . 𝐧 = 0

in Ω × 0, 𝑇 ,

𝒖 = 0

on Γ! × 0, 𝑇 ,

on Γ" × 0, 𝑇 ,

in Ω,𝒖 𝑥, 0 = 0 and �̇� 𝑥, 0 = 0

where 𝜌 denotes the density, 𝒇 the source (spatial Gaussian point source and

temporal sinc signal), 𝐧 the outer normal of Ω, and �̇� = 𝜕𝑢/𝜕t.

For a linear elastic material with plane strain conditions, we have

• Cauchy stress tensor: 𝝈 𝒖 = 𝐂 ∶ 𝜺 𝒖 = ∑#,%& 𝐂'(#% 𝜺#%,

• infinitesimal strain tensor: 𝜺 𝒖 = 0.5 ∇𝒖 + ∇𝒖 ) ,

• fourth-order stiffness tensor: 𝐂'(#% = 𝜆𝛿'(𝛿#% + 𝜇 𝛿'#𝛿(% + 𝛿'%𝛿(# , where

• 𝜆 and 𝜇 are the Lame parameters, and 𝛿'( is the Kronecker delta.

Laplace transformation: 

ℒ 𝒖 𝑥, 𝑡 = ?𝒖 𝑥, 𝑠 = ∫𝟎
+𝒖 𝑥, 𝑡 exp −𝑠𝑡 𝑑𝑡, where, 𝑠 = 𝑠, + 𝑖𝑠- ∈ ℂ, and 𝑠, , 𝑠- ∈ ℝ.

Discretized problem using FEM: 

𝑠&𝐌 ?𝐮 + 𝐊?𝐮 = M𝐅,  where  𝐌 ∈ ℝ.×. , 𝑲 ∈ ℝ.×. , M𝐅 ∈ ℂ. , and ?𝐮 ∈ ℂ..

Weak formulation using finite element method (FEM):

Given a frequency 𝑠 ∈ ℂ, find '𝒖 ∈ 𝑉 = '𝒗 ∈ 𝐻! Ω; ℂ" ": '𝒗 #! = 0} where, 

𝑠"𝜌2
$
'𝒖 ⋅ 6𝒗& 𝑑𝑥 +2

$
𝜀 '𝒖 ∶ 𝜀 '𝒗𝒄 𝑑𝑥 = 2

$
8𝒇 𝑠 ⋅ 6𝒗&𝑑𝑥 , ∀ '𝒗 ∈ 𝑉.

Weeks method

Algorithm 1: Symplectic–Greedy: Laplace Domain

Result: B2r: Symplectic (reduced basis)
Input: Full-order model (FOM), Training set (s 2 ⌅ns), Tolerance (�), rmax

1 B2r = [ ], r = 1, �r = � + 1
2 Starting point: sr = ⌅ns(1)
3 while �r > � & r < rmax do
4 û(sr) Solve the FOM for sr

5 [⇣r,JT
2n⇣

r] Symplectic orthonormalization of û(sr)
6 B2r  Symplectic extension [B2r] [ [⇣r,JT

2n⇣
r]

7 ROM  Symplectic projections using B2r

8 for s 2 ⌅ns do
9 ûred(s) Solve the ROM for s

10 �r(s) Error measure
11 end
12 [�r+1, sr+1] max �r(s)
13 r  r + 1
14 end
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Figure: Error decay illustrating reduction 
from n=40000 to r=90 (Laplace domain). 
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• We seek a low-dimensional subspace 𝐵 ⊂ 𝑉, such that

𝑟 = dim(𝐵) ≪ dim(𝑉) = 𝑛, and 𝑠 ↦ A𝒖(𝑥, 𝑠)

• Estimation of the symplectic basis matrix (B!') is performed using Algorithm 

1, such that, A𝐮 𝑠 ≈ B!'A𝐮'() 𝑠

Figure: Comparison of S-MOR with the FOM approximations at the peak of sinc signal, i.e., 𝑡! = 2 sec
(a) S-MOR (b) Relative error FOM vs S-MOR.
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Figure: Time domain sinc signal with 
a width of 8.5. 
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Numerical Laplace inversion performed using Weeks method:

𝒖 𝑥, 𝑡 = 𝑒 (4!54")7 T
#89

!#5: 𝑠-
𝑁;

T
(85!#

!#5: 𝑒5'#<$%&/(

1 − 𝑒'<$%&/(
?𝒖 𝑥, 𝑠( , 𝐿# 2𝑠-𝑡 ,

where, 𝑠( = 𝑠, + 𝑖𝑠- cot(
<$%&/(
&

), 𝜃( =
(=
!#
, 𝐿#(⋅) are the Laguerre polynomials of 

degree 𝑘,  and 𝑁; the number of frequencies points.


