

Energy-conserving formulation of the two-fluid model for incompressible two-phase flow in channels and pipes Jurriaan Buist, Benjamin Sanderse, Svetlana Dubinkina, Ruud Henkes, Kees Oosterlee

Energy conservation for multidimensional incompressible flow

The Euler equations can be written in conservative form:

$$\frac{\partial \mathbf{q}}{\partial t} + \boldsymbol{\nabla} \cdot \mathbf{f}(\mathbf{q}) = \mathbf{0}, \qquad (1)$$

$$\mathbf{q} = \begin{bmatrix} q_1 \\ \mathbf{q}_2 \end{bmatrix}, \quad q_1 = \rho, \quad \mathbf{q}_2 = \rho \mathbf{u}, \quad \mathbf{f}(\mathbf{q}) = \begin{bmatrix} \mathbf{q}_2 \\ \frac{1}{q_1} \mathbf{q}_2 \otimes \mathbf{q}_2 + p \mathbf{I} \end{bmatrix}, \qquad (1)$$
with the constraint $\boldsymbol{\nabla} \cdot (\mathbf{q}_2/q_1) = 0.$

The local kinetic energy is defined by

$$e = \frac{1}{2} \frac{\mathbf{q}_2 \cdot \mathbf{q}_2}{q_1}, \quad \text{with} \quad \mathbf{v} \coloneqq \begin{bmatrix} \frac{\partial e}{\partial \mathbf{q}} \end{bmatrix}^T = \begin{bmatrix} -\frac{1}{2} \frac{\mathbf{q}_2 \cdot \mathbf{q}_2}{q_1^2} \\ \frac{\mathbf{q}_2}{\mathbf{q}_1} \end{bmatrix}.$$

We can prove it is conserved by taking the dot product of (1) with v, manipulating derivatives, and substituting (2) to get:

Semi-discrete 1D TFM

Discretize the model with a finite volume scheme on a staggered grid:

$$\frac{\partial e}{\partial t} + \boldsymbol{\nabla} \cdot \left(\frac{1}{2} \frac{\mathbf{q}_2 \cdot \mathbf{q}_2}{q_1^2} \mathbf{q}_2 \right) + \boldsymbol{\nabla} \cdot \left(\frac{\mathbf{q}_2}{q_1} p \right) = 0,$$

which can be integrated to show that the global energy E is conserved:

$$\frac{\mathrm{d}E}{\mathrm{d}t} = 0, \quad \text{with} \quad E = \int_{\Omega} e \,\mathrm{d}\Omega.$$

Central interpolation on a staggered grid leads to an energy-conserving discretization which prevents (nonlinear) numerical instability [1].

One-dimensional incompressible two-fluid model (1D TFM)

Can be derived by considering integral mass and momentum balances for control volumes Ω_U and Ω_L for two stratified fluids in a duct separately:

Energy conservation for the semi-discrete TFM

The energy (5), defined on the velocity grid, requires interpolation: $e_{i-1/2} = \frac{1}{2} \frac{q_{3,i-1/2}^2}{\overline{q}_{1,i-1/2}} + \frac{1}{2} \frac{q_{4,i-1/2}^2}{\overline{q}_{2,i-1/2}} + \rho_U g_n \overline{H}_{U,i-1/2} \Delta s + \rho_L g_n \overline{H}_{L,i-1/2} \Delta s,$ with $\overline{x}_{i-1/2} = \frac{1}{2} (x_{i-1} + x_i), \quad \overline{x}_i = \frac{1}{2} (x_{i-1/2} + x_{i+1/2}),$ and $\mathbf{v}_{i-1/2,i-1} = \left[\frac{\partial e_{i-1/2}}{\partial \mathbf{q}_{i-1}}\right]^T, \quad \mathbf{v}_{i-1/2,i} = \left[\frac{\partial e_{i-1/2}}{\partial \mathbf{q}_i}\right]^T.$

If the discretization is chosen as

Taking the limit $\delta s \rightarrow 0$ yields a system of PDEs describing mass and momentum conservation in terms of cross-sectionally averaged quantities:

$$\frac{\partial \mathbf{q}}{\partial t} + \frac{\partial \mathbf{f}(\mathbf{q})}{\partial s} + \mathbf{d}(\mathbf{q})\frac{\partial p}{\partial s} = \mathbf{0}, \qquad (3)$$

$$\mathbf{q} = \begin{bmatrix} q_1 \\ q_2 \\ q_3 \\ q_4 \end{bmatrix} = \begin{bmatrix} \rho_U A_U \\ \rho_L A_L \\ \rho_U u_U A_U \\ \rho_L u_L A_L \end{bmatrix}, \quad \mathbf{f}(\mathbf{q}) = \begin{bmatrix} q_3 \\ q_4 \\ \frac{q_3}{q_1} - \rho_U g_n \widehat{H}_U(A_U) \\ \frac{q_4}{q_2} - \rho_L g_n \widehat{H}_L(A_L) \end{bmatrix}, \quad \mathbf{d}(\mathbf{q}) = \begin{bmatrix} 0 \\ 0 \\ \frac{q_1}{\rho_U} \\ \frac{q_2}{\rho_L} \\ \frac{q_2}{\rho_L} \end{bmatrix},$$

geometric terms related to the duct shape and the interface height:

$$\widehat{H}_{L} = \int_{a_{L}} (h - H_{L}) \, \mathrm{d}a, \qquad \widehat{H}_{U} = \int_{a_{U}} (h - H_{L}) \, \mathrm{d}a,$$

and the constraint $\frac{\partial Q}{\partial s} = 0$, with $Q = \frac{q_{3}}{\rho_{U}} + \frac{q_{4}}{\rho_{L}}.$ (4)

Assumptions made:

- \blacktriangleright average of a product \approx product of averages
- ► long-wavelength assumption: $L \gg H$
- hydrostatic balance: vertical velocities negligible

Energy conservation for the 1D TFM

Since (3) includes gravitational terms, the local mechanical energy includes kinetic and potential energy:

then taking $\mathbf{v}_{i-1/2,i-1} \cdot (\mathbf{6})_{i-1} + \mathbf{v}_{i-1/2,i} \cdot (\mathbf{6})_i$, and substituting a discrete version of (4), yields

 $\frac{\mathrm{d}e_{i-1/2}}{\mathrm{d}t} + (h_i - h_{i-1}) + (j_i - j_{i-1}) = 0.$

Therefore, this spatial discretization is energy-conserving.

Simulation results

If the time step is small, the total energy is conserved up to machine precision while kinetic and potential energy are exchanged:

$$e = \frac{1q_3^2}{2q_1} + \frac{1q_4^2}{2q_2} + \rho_U g_n \tilde{H}_U(A_U) + \rho_L g_n \tilde{H}_L(A_L),$$
with $\tilde{H}_L = \int_{a_L} h \, \mathrm{d}a, \qquad \tilde{H}_U = \int_{a_U} h \, \mathrm{d}a,$
and $\mathbf{v}^T = \left[\frac{\partial e}{\partial \mathbf{q}}\right] = \left[-\frac{1q_3^2}{2q_1^2} + g_n \frac{\mathrm{d}\tilde{H}_U}{\mathrm{d}A_U}, -\frac{1q_4^2}{2q_2^2} + g_n \frac{\mathrm{d}\tilde{H}_L}{\mathrm{d}A_L}, \frac{q_3}{q_1}, \frac{q_4}{q_2}\right].$
Taking the dot product of \mathbf{v} with (3) and substituting (4) yields
 $\partial e = \partial$ (1)

$$\begin{aligned} & \frac{\partial e}{\partial t} + \frac{\partial}{\partial s} \left(h + j \right) = 0, \\ \text{with} \quad h = \frac{1}{2} \frac{q_3^3}{q_1^2} + \frac{1}{2} \frac{q_4^3}{q_2^2} + g_n q_3 \left(H - H_U \right) + g_n q_4 H_L, \quad j = Qp. \end{aligned}$$

Conclusions

(5)

- Quantities that are conserved *implicitly* by the continuous model can be conserved in the discrete setting using a carefully chosen discretization.
- The discretization is chosen such that the continuous derivation of the conservation equation can be replicated in the discrete setting.
- [1] F. H. Harlow and J. E. Welch. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. *The Physics of Fluids*, 8:2182–2189, 1965.
- [2] J. F. H. Buist, B. Sanderse, S. Dubinkina, R. A. W. M. Henkes, and C. W. Oosterlee. Energy-conserving formulation of the two-fluid model for incompressible two-phase flow in channels and pipes. 2021. URL: http://arxiv.org/abs/2104.07728.

