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Energy conservation for multidimensional
incompressible flow

The Euler equations can be written in conservative form:
∂q

∂t
+ ∇ · f(q) = 0, (1)

q =

[
q1

q2

]
, q1 = ρ, q2 = ρu, f(q) =

[
q2

1
q1
q2 ⊗ q2 + pI

]
,

with the constraint ∇ · (q2/q1) = 0. (2)
The local kinetic energy is defined by
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1
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q2 · q2

q1
, with v :=

[
∂e
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]T
=

[
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2
q2·q2

q21
q2

q1

]
.

We can prove it is conserved by taking the dot product of (1) with v,
manipulating derivatives, and substituting (2) to get:
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q2
1
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)
+ ∇ ·

(
q2

q1
p

)
= 0,

which can be integrated to show that the global energy E is conserved:
dE

dt
= 0, with E =

∫
Ω

e dΩ.

Central interpolation on a staggered grid leads to an energy-conserving
discretization which prevents (nonlinear) numerical instability [1].

One-dimensional incompressible two-fluid
model (1D TFM)

Can be derived by considering integral mass and momentum balances for
control volumes ΩU and ΩL for two stratified fluids in a duct separately:
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Taking the limit δs→ 0 yields a system of PDEs describing mass and
momentum conservation in terms of cross-sectionally averaged quantities:

∂q

∂t
+
∂f(q)

∂s
+ d(q)

∂p

∂s
= 0, (3)
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 , f(q) =
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q4
q23
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0

0
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 ,
geometric terms related to the duct shape and the interface height:

ĤL =

∫
aL

(h−HL) da, ĤU =

∫
aU

(h−HL) da,

and the constraint
∂Q

∂s
= 0, with Q =

q3

ρU
+
q4

ρL
. (4)

Assumptions made:
I average of a product ≈ product of averages
I long-wavelength assumption: L� H

I hydrostatic balance: vertical velocities negligible

Energy conservation for the 1D TFM

Since (3) includes gravitational terms, the local mechanical energy includes
kinetic and potential energy:
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q2
+ ρUgnH̃U(AU) + ρLgnH̃L(AL), (5)

with H̃L =

∫
aL

h da, H̃U =

∫
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h da,

and vT =
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]
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.

Taking the dot product of v with (3) and substituting (4) yields
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∂

∂s
(h + j) = 0,
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+
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+ gnq3 (H −HU) + gnq4HL, j = Qp.

Semi-discrete 1D TFM
Discretize the model with a finite volume scheme on a staggered grid:
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dqi
dt

+
(
fi+1/2 − fi−1/2

)
+ di (pi − pi−1) = 0 (6)
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Energy conservation for the semi-discrete TFM

The energy (5), defined on the velocity grid, requires interpolation:
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with xi−1/2 =
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2
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,
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]T
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.

If the discretization is chosen as
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 ,
then taking vi−1/2,i−1 · (6)i−1 + vi−1/2,i · (6)i,

and substituting a discrete version of (4), yields
dei−1/2

dt
+ (hi − hi−1) + (ji − ji−1) = 0.

Therefore, this spatial discretization is energy-conserving.

Simulation results
If the time step is small, the total energy is conserved up to machine
precision while kinetic and potential energy are exchanged:
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Conclusions
I Quantities that are conserved implicitly by the continuous model can be

conserved in the discrete setting using a carefully chosen discretization.
I The discretization is chosen such that the continuous derivation of the

conservation equation can be replicated in the discrete setting.
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