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iIncompressible flow o e .
P Discretize the model with a finite volume scheme on a staggered grid:
The Euler equations can be written in conservative form: oressure
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Central interpolation on a staggered grid leads to an energy-conserving Energy conservation for the semi-discrete TFM
discretization which prevents (nonlinear) numerical instability [1]. | | | o |
The energy (5), defined on the velocity grid, requires interpolation:
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Can be derived by considering integral mass and momentum balances for
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Taking the limit s — 0 yields a system of PDEs describing mass and o | . _ v
and substituting a discrete version of (4), yields

momentum conservation in terms of cross-sectionally averaged quantities:
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- - 7 - - - - Therefore, this spatial discretization is energy-conserving.
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geometric terms related to the duct shape and the interface height: precision while kinetic and potential energy are exchanged:
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Assumptions made:
» average of a product =~ product of averages
» long-wavelength assumption: L > H

Relative energy [J]
o
Energy error [-]
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» hydrostatic balance: vertical velocities negligible 00057 o
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: E =6.8x10°J
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Since (3) includes gravitational terms, the local mechanical energy includes
Kinetic and potential energy:
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| N N » Quantities that are conserved implicitly by the continuous model can be
with  Hp = / hda, Hy = / h da, conserved in the discrete setting using a carefully chosen discretization.
e " : ) 2 v » The discretization is chosen such that the continuous derivation of the
and v’ = aq| = { %gjé | gn‘jﬁ[g, %g‘é | gnj%, 2, %} . conservation equation can be replicated in the discrete setting.
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