
Ø Standard methods are not accurate enough: the minimization of an energy depending
on the displacement variable leads to locking for nearly incompressible materials

Ø Usual remedies cannot lead to guaranteed accuracy: usually involves stabilization 
parameter that needs to be tuned and obstructs robust, guaranteed error estimates

Ø Current stress-based approach is robust and guaranteed but too costly
o main challenge: the symmetric gradient is difficult to impose at the discrete 

level. 
o The conforming discretization of those stresses (Arnold-Winther approach)  

sophisticated and increasing computational cost enormously.
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State of the ArtThe eigenvalues

Ø determines how a 
physical object 
behaves under 
external influence.

Ø depend on the 
structure and 
material of the 
object.

ü given a tolerance, the true error is less and greater than the tolerance
ü no dependence on model parameter in the error bounds.
ü moderate computational cost, discretisation elements present in commercial software. 
ü constants in error bounds only depend on local quantities allowing for adaptive strategies.

Mathematical Framework

Stress-based approaches seek for a stress-tensor 𝝈 , displacements
𝒖 and an eigenvalue ω ∈ ℝ satisfying a generalized eigenvalue
problem of the form

𝐴 𝝈, 𝒖 = 𝜔𝑀 𝝈, 𝒖

involving linear operators A and M defined on some vector space V.
The analysis of such an eigenvalue problem is closely
related to the corresponding source problem, a
boundary value problem

𝐴 𝝈, 𝒖 = 𝒇 .  Scientific Challenge

the solution operator T is
defined such that T(f) 
is the solution (𝝈,𝐮) 
of (BVP) with right-hand side f.

Three major challenges occurs:
Ø Lack of compactness:

Stress-based methods lead to high accuracy of the stress 𝝈, 
• allows for the momentum conservation div 𝝈
• T cannot be compact.
Remedy: restrict solution operator to a part of the solution excluding 𝝈. 

Ø Lack of conformity: due to the weakly imposed symmetry condition. 
• Remedy: treat the saddle-point formulation as a non-conforming method.
• Use Least-Squares and dPG methods to estimate the non-conforming part.

Ø Lack of accuracy:
• Finite element spaces have to obey the compatibility condition
• The trial space for the displacements does not usually lead to sufficient accuracy. 

Remedy: recent supercloseness results
F. Bertrand, H. Schneider, Least-Squares Methods for Linear Elasticity: Refined Error Estimates, 14th WCCM-ECCOMAS Congress 2020
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