# State and Parameter Estimation with Uncertainty Quantification Using GANs and Markov Chain Monte Carlo Methods

Nikolaj T. Mücke, Benjamin Sanderse, Sander Bohté, Cornelis Oosterlee

#### Enabling Digital Twins with Real-Time Calibration

A digital twin is a computational model that is continuously updated in order to represent a physical asset. It consists of a mix of computational models derived from domain knowledge and data-driven models trained on observation

The usages of a digital twin ranges from *forecasting* and control, to monitoring and fault detection.

In order for a digital twin to mirror the physical asset at all times, *real-time calibration* against sensor data is undeniably indispensable.

#### Bayesian Inverse Problems

Let  $\mathbf{u} = (\mathbf{q}, \mathbf{m})$  be the state and model parameters.

Then for given observations, Observation operator Noise

Observations 
$$\rightarrow$$
  $\mathbf{y} = h(\mathbf{q}) + \eta, \quad \eta \sim \mu_{\eta}(\eta),$ 

The state is obtained by solving a PDE for a given set of parameters.



## Markov Chain Monte Carlo

One can sample from the posterior by creating a Markov chain with the posterior as the - Accept equilibrium distribution. New samples are obtained by z, - Reject computing new states of the chain. While MCMC methods are Reject efficient, it is often necesarry to compute 50,000+ samples before the chain has converged! z - Accept

### Wasserstein GANs

Approximates high-dimensional distribution by a lowdimensional latent distribution and a push forward map. The training is a "game" between a generator and a discriminator.

#### Challenges

- The posterior is intractable to compute
- The likelihood requires a forward solve of the (PDE) model

• The evidence is a high-dimensional integral

Choosing a suitable prior is not easy

• ... estimating the posterior is expensive!





Latent Space Posterior

Using the generator, one can sample the latent space instead of sample the high-fidelity space:

 $\rho_z(\mathbf{z}|\mathbf{y}) = \frac{\rho_\eta(\mathbf{y} - h(G(\mathbf{z})))\rho_z(\mathbf{z})}{\int_{\mathbb{R}^{N_z}} \rho_y(\mathbf{y}|\mathbf{z})\rho_z(\mathbf{z}) \,\mathrm{d}\mathbf{z}}$ 

#### Advantages

- The latent space is of much lower dimension
- The generator replaces the forward problem
- No need to choose an appropriate prior
- ... large posterior sampling speed-ups!

### Latent Space Sampling

Train the GAN to generate states and parameters. New states and parameters are then sampled from the latent space distribution by evaluating the generator:



Generator. Approximates the real distribution by pushing forward a latent space distribution. Trained using:

$$L_G = -E_{\mathbf{z} \sim \mu_z} \left[ D_\omega(G_\theta(\mathbf{z})) \right]$$

Discriminator. Discriminates between real and generated samples by assigning a real value to each sample. Trained using:

 $L_D = -E_{\boldsymbol{x} \sim \mu_r} \left[ D_{\omega}(\boldsymbol{x}) \right] + E_{\boldsymbol{z} \sim \mu_z} \left[ D_{\omega}(G_{\theta}(\boldsymbol{z})) \right]$ 



**Compute MAP estimate using GAN** 

**Use MCMC to sample from latent space** posterior

Online

Stage

Generate state and parameters from posterior latent space samples

**Compute relevant statistics from** posterior samples

### Test Case: Leakage Detection in Pipe Flow

The equations describing pipe flow are a set of PDEs, consisting of a mass conservation equation:

$$\partial_t q_1 + \partial_x(q_2) = C_d \sqrt{\rho(p(\rho) - p_{amb})} \delta(x - x_l) H(t - t_l)$$

and **momentum conservation** equation: Discharge coefficient

Leakage location

$$\partial_t q_2 + \partial_x \left(\frac{q_2^2}{q_1} + p(\rho)A\right) = -\frac{D\pi}{2} f_f(q)\rho u^2$$

**Goal:** estimate the *leakage location* and *discharge coefficient* from noisy measurements.





Leakage Location Discharge Coeffcient True location -- MCGAN mean locatio -- MAP location MAP discharge 0.08 0.06 0.02 0.0005 0.0006 0.0007 0.0008 0.000 250 500 750 1000 1250 1500 1750 200 Lekage location [m]



For more information, contact: nikolaj.mucke@cwi.nl