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Enabling Digital Twins with Real-Time Calibration Markov Chain Monte Carlo

Adigital twin is a computational model thatis continuously [ offl ) 4 . ™ One can sample from the posterior
: : : n nlin : :
updated in order to represent a physical asset. It consists 'ne ine by creating a Markov chain _ .
of a mix of computational models derived from domain S Geometny Ataters ensors with the posterior as the % 'A\C:ept
knowledge and data-driven models trained on observation Model Knowledge I P:1y sical Asset equilibrium distribution. New /\/\
Parameters ol Specifications Maintenance .
2 ’ samples are obtained by G Reject
The usages of a digital twin ranges from forecasting and computing new states of the chain.
control, to monitoring and fault detection. :
g and f While MCMC methods are z, - Reject
. : : : o o efficient, it is often necesarry to e .
In order for a digital twin to mirror the physical asset at Rl Code Calibration Visualization ombute 50,000+ | by foreth .
: : i : : : o . : _— compute 50, samples before the
all times, real-time calibration against sensor data is Uncertainty Quantification  Digital Twin  State Estimation P | P M
: S Parameters Optimization Simulation ~ Machine learning chain has Converged' . @
undeniably indispensable. \_ P o Y, 7 - Accept
Bayesian Inverse Problems Wasserstein GANSs
Let u = (q, m) be the state and model parameters. Challenges Approximates high-dimensional distribution by a low-
Then for given observatlons:/ Obsenvation operator « The posterior is intractable to compute dlmens;]onal .la’.cent. distribution band a push forward
“— . : map. The training is a “game” between a generator
Obsenvations —s v = h(q) + 1, 1~ ly(n), o The likelihood requires a forward solve of the dp discrimi tg & &
and a discriminator.
(PDE) model
The state is obtained by solving a PDE for a given set of parameters. . . . : : - SRR
. The evidence is a high-dimensional integral Generator. Approximates the real distribution by
Likelihood __ oy — h(w))pu(u) «— Prior . Choosing a suitable prior is not easy pushing forward a latent space distribution. Trained
_ Pn u L L : sing:
pululy) = [ py(ylu)pu(u) du e ... estimating the posterior is expensive! UsIng
Posterior — Evidence LG — _EZNuz [DW(GQ (Z))]

Discriminator. Discriminates between real and
generated samples by assigning a real value to each

GAN Architecture sample. Trained using:
Lp = —Egmp, [Do(®)| + Eznp. [Du(Go(2))]

Prior Distribution Real Data

- P

Latent Distribution

e o o _>
c o \ R Compute high-fidelity training data with 2
2}
PDE scheme g
40
; Genortor —  Lsparameters T Train Wasserstein GAN to approximate @
enerator Discriminator Q)
prior Q@
40
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Using the generator, one can sample the latent space Train the GAN to generate states and parameters. Compute MAP estimate using GAN
instead of sample the high-fidelity space: New states and parameters are then sampled from the

latent space distribution by evaluating the generator:
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Advantages
The latent space is of much lower dimension
The generator replaces the forward problem
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Test Case: Leakage Detection in Pipe Flow

The equations describing pipe flow are a set of PDEs, consisting of a mass conservation equation:
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and momentum conservation equation: Discharge coefficient Leakage location
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Goal: estimate the leakage location and discharge coefficient from noisy measurements.

Leakage Location Discharge Coeffcient
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Pipe length: 2000m

For more information, contact: nikolaj.mucke@cwi.nl




