
One can sample from the posterior
by creating a Markov chain
with the posterior as the
equilibrium distribution. New
samples are obtained by
computing new states of the chain.

While MCMC methods are 
efficient, it is often necesarry to
compute 50,000+ samples before the
chain has converged! 

Approximates high-dimensional distribution by a low-
dimensional latent distribution and a push forward 
map. The training is a “game“ between a generator 
and a discriminator.

Generator. Approximates the real distribution by 
pushing forward a latent space distribution. Trained 
using:

Discriminator. Discriminates between real and 
generated samples by assigning a real value to each 
sample. Trained using:

State and Parameter Estimation with Uncertainty Quantification 
Using GANs and Markov Chain Monte Carlo Methods

Let                       be the state and model parameters. 
Then for given observations,

The state is obtained by solving a PDE for a given set of  parameters. 

Bayesian Inverse Problems

Compute high-fidelity training data with 
PDE scheme

Train Wasserstein GAN to approximate 
prior

O
ffline Stage

Compute MAP estimate using GAN

Use MCMC to sample from latent space 
posterior

Generate state and parameters from 
posterior latent space samples 

O
nline Stage

Compute relevant statistics from 
posterior samples
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The equations describing pipe flow are a set of PDEs, consisting of a mass conservation equation:

and momentum conservation equation:

Goal: estimate the leakage location and discharge coefficient from noisy measurements. 

 Test Case: Leakage Detection in Pipe Flow

MCMC construcsg a Markov chain with the posterior 
as the equilibrium distribution. States from the chain 
then corresponds to samples from the posterior 
distribution. 

While efficient, one often  still needs 50,000 or more 
samples in order for Markov chain to converge! 

Markov Chain Monte Carlo 

Using the generator, one can sample the latent space 
instead of sample the high-fidelity space:

Advantages
•	 The latent space is of much lower dimension
•	 The generator replaces the forward problem
•	 No need to choose an appropriate prior
•	 ... large posterior sampling speed-ups!

Latent Space Sampling

⇢u(u|y) =
⇢⌘(y� h(u))⇢u(u)R
⇢y(y|u)⇢u(u) du
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Wasserstein GANs
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⇢z(z|y) =
⇢⌘(y� h(G(z)))⇢z(z)R
RNz

⇢y(y|z)⇢z(z) dz
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Train the GAN to generate states and parameters.
New states and parameters are then sampled from the 
latent space distribution by evaluating the generator:

u = G(z), z ⇠ µz

Latent Space Posterior

y = h(q) + ⌘, ⌘ ⇠ µ⌘(⌘),

u = (q,m)

Observations

Observation operator
Noise

Latent Space Distribution

A digital twin is a computational model that is continuously 
updated in order to represent a physical asset. It consists 
of a mix of computational models derived from domain 
knowledge and data-driven models trained on observation

The usages of a digital twin ranges from forecasting and 
control, to monitoring and fault detection.

In order for a digital twin to mirror the physical asset at 
all times, real-time calibration against sensor data is 
undeniably indispensable.

Enabling Digital Twins with Real-Time Calibration

Discharge coefficient Leakage location

Posterior

Challenges

•	 The posterior is intractable to compute

•	 The likelihood requires a forward solve of the 
(PDE) model

•	 The evidence is a high-dimensional integral

•	 Choosing a suitable prior is not easy

•	 ... estimating the posterior is expensive!

Generator

GAN Architecture
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True State State Estimation

Constant inflow Constant out pressure
Diameter: 0.508m

Pipe length: 2000m
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For more information, contact: nikolaj.mucke@cwi.nl

Physical Asset
Actuators Sensors

Specifications Maintenance

 Control  D
at

a

Model Knowledge

Offline Online
Equations Geometry

Digital Twin

Parameters

Simulation Machine learningParameters

VisualizationDiscretizations Code

Optimization

Calibration

QoI

Uncertainty Quantification State Estimation


