

⁰m.a.schalkers@tudelft.nl, *Delft Institute of Applied Mathematics, TU Delft

Problem and motivation

Noisy Intermediate Scale Quantum (NISQ) computers have properties that strongly influence their performance:

- Limited amount of qubits (~ 50)

Connectivity and native gate set

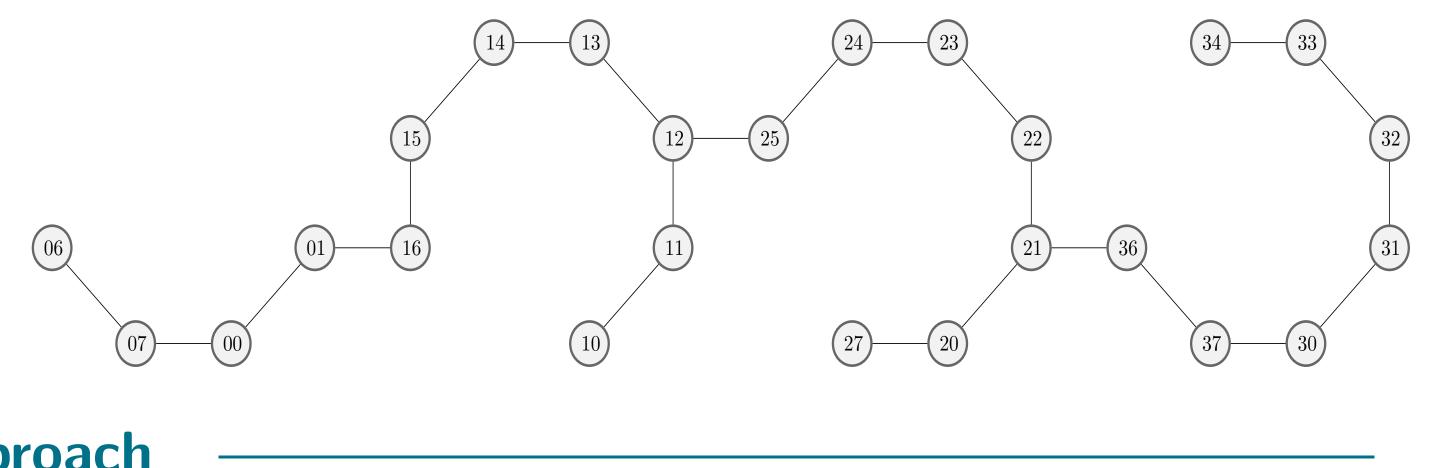
Only gates in the native gate set can be directly applied to the qubits. Furthermore we can only apply two-qubit gates between qubits that are connected on the hardware. Most QPUs have sparse connectivity, like the Rigetti Aspen 7 portrayed below.

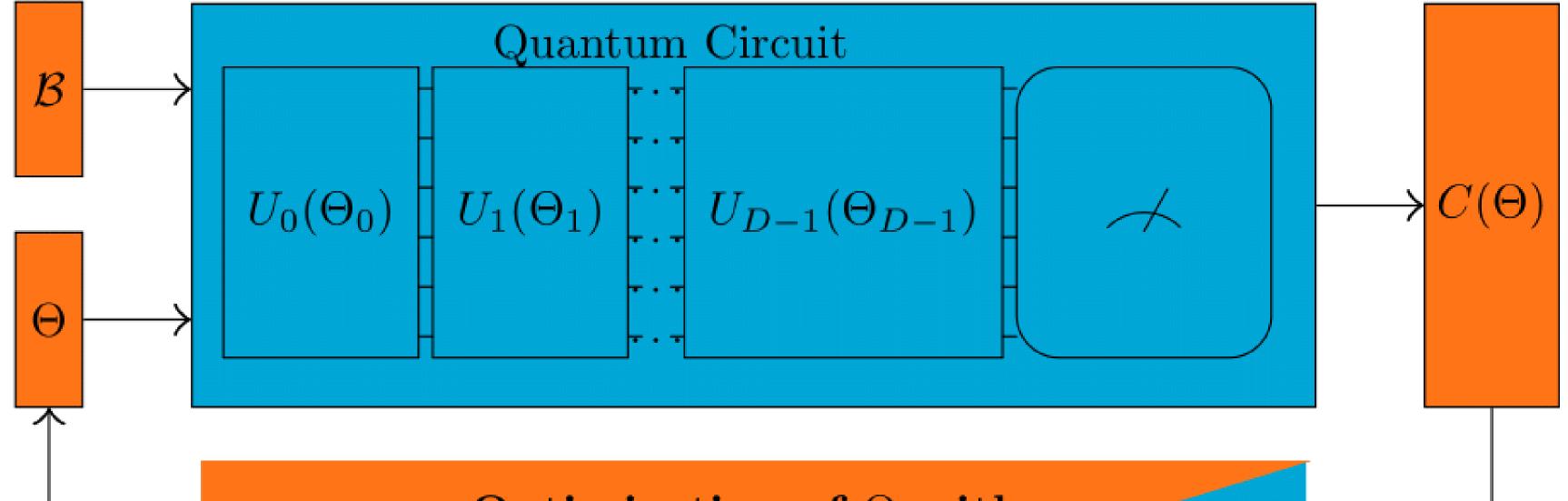
- Short decoherence time
- Limited native gates
- Sparse connectivity

 \Rightarrow **Consequence**: Quantum algorithms of practical interest cannot be run on NISQ devices due to resource limitations. \Rightarrow dea: Generate circuits which mimick a desired operation while respecting the limitations of NISQ devices.

Approach: Given a set \mathcal{B} of quantum states $|\phi\rangle$ and associated probability output vectors p, find a quantum circuit $V(\Theta)$ that creates a similar probability output vector for every input state.

- Input: $\mathcal{B} = \{(|\phi\rangle, \mathbf{p})\}$
- **Output:** $V(\Theta)$
- Goal: $(|\langle i | V(\Theta) | \phi \rangle|^2) \approx p_i$





Goal and approach

Use the following **cost function** to optimize the continuous parameter Θ :

- $C(\Theta) = \frac{1}{|\mathcal{B}|} \sum_{(|\phi\rangle, \mathbf{p}) \in \mathcal{B}} \|\mathbf{p} \mathbf{f}(|\phi\rangle)\|_2$
- Where: $f(|\phi\rangle)_i = (|\langle i | V(\Theta) | \phi \rangle|^2)$
 - **Optimization techniques:**

We use the following methods to optimize Θ :

- **Gradient descent**: We can calculate the gradients of each quantum gate with respect to its input parameter θ_i directly on the quantum computer. Subsequently we use backpropagation to calculate the gradients of the cost function with respect to the θ_i on a classical computer.
- Particle swarm optimization: We use Particle Swarm Optimization to find a minimal point Θ , in the $|\Theta|$ dimensional space, representing the input parameter of the gates in the quantum circuit.

Optimization of
$$\Theta$$
 with:
PSO: $\Theta = \Theta + v$,
where $v = \omega v + c_1 (p_j - \Theta) + c_2 (\Theta_{opt} - \Theta)$
or
gradient: $\Theta = \Theta - l \nabla c (\Theta)$

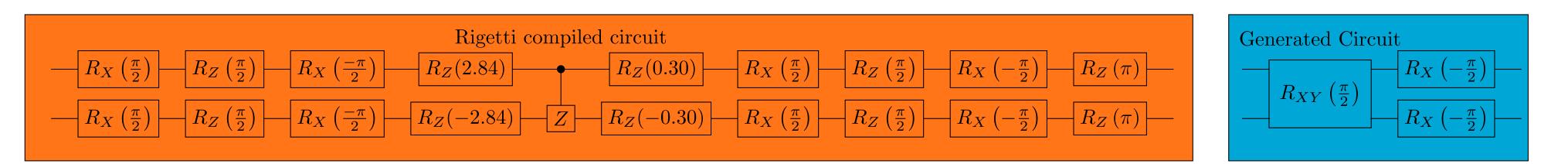
Use cases and example:

We can use our method to find quantum circuits which create a desired probability to measure each possible basis state. As such our method can be used for the following problem types:

- Mimicking quantum circuits: Our method can be used to mimick known quantum operations by finding a quantum circuit which creates, for all possible input states, the same probability of measuring each basis state.
- Probabilistic operations: Our method can be used for problems where, given an input state, we wish to return one of the indices with a desired property and/or probability.

Grover's Search for 2 qubits on Rigetti Aspen

 \Rightarrow **Example**: Our method can be used to mimick the amplitude amplification step of Grover's search. Compare the depth of our circuit with the classically compiled one.



Delft Institute of Applied Mathematics