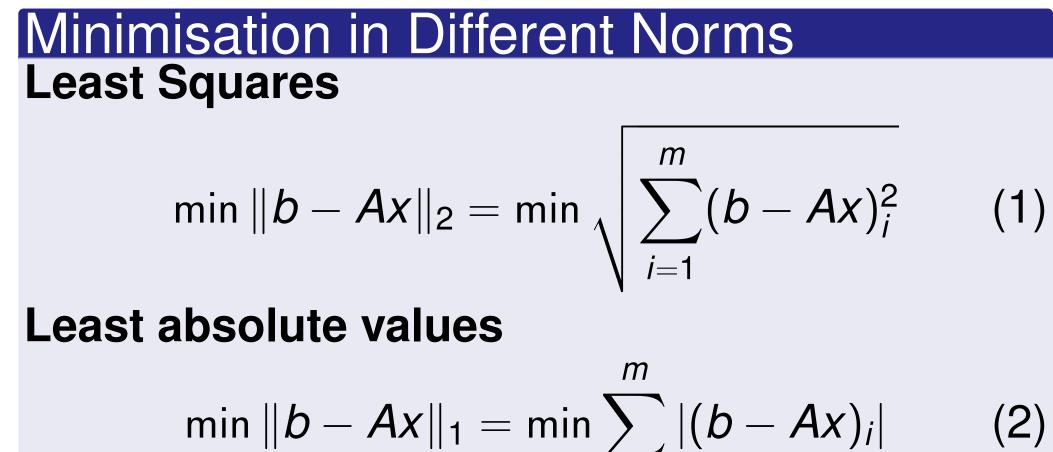
Universiteit Antwerpen **Krylov-Simplex method for inverse** problems



Jeffrey Cornelis Wim Vanroose Dept of Mathematics, Universiteit Antwerpen, Belgium



Definition (Basic set)

(3)

and

(1) A basic set $\mathcal{B}_{k} = \mathcal{B}_{k,<} \cup \mathcal{B}_{k,>}$ for \mathcal{K}_{k} and $\gamma_{k} > 0$ is a subset of k + 1 indices from $\{1, \ldots, m\}$ such that $(\mathbf{r}_0 - \mathbf{A}\mathbf{V}_k\mathbf{y}_k)_i = -\gamma_k \quad \forall i \in \mathcal{B}_{k,<},$ (2) and

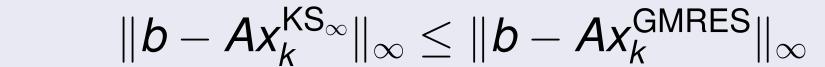
Rank-1 updates in Simplex

When the basic set is updated we have the following update for

 $B_k := \left((\pm 1)|_{\mathcal{B}_k} AV_k|_{\mathcal{B}_k} \right) + e_j \left[\left((\pm 1)_r (AV_k)_r \right) - \left((\pm 1)_q (27) \right) \right]$ (27)

where *j* is the position of *q* in the set \mathcal{B}_i . This can be implemented with QRupdate.

(15) Convergence properties Since



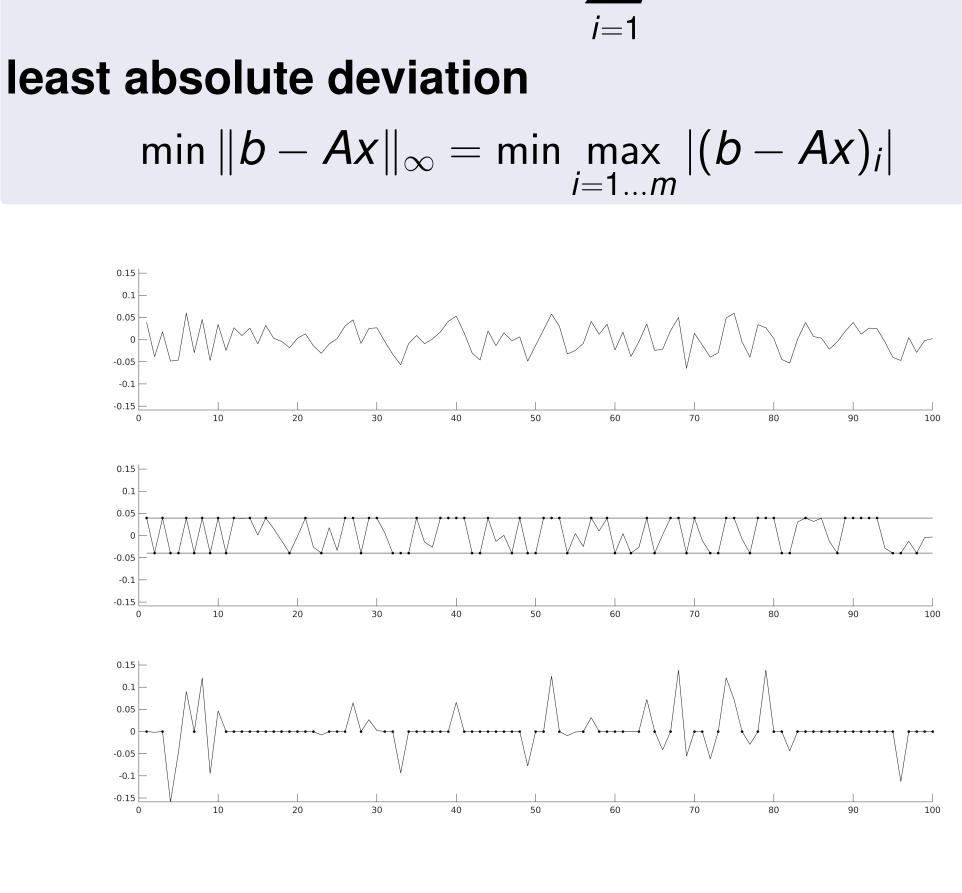


Figure: We compare the residuals after optimization of x in the $\|\cdot\|_2$, $\|\cdot\|_1$ and $\|\cdot\|_\infty$

Krylov subspace Methods

We start with an initial guess x_0 and calculate the initial residual $r = b - Ax_0$. A Krylov subspace is

(16) $(\mathbf{r}_0 - \mathbf{A}\mathbf{V}_k\mathbf{y}_k)_i = \gamma_k \quad \forall i \in \mathcal{B}_{k,>}.$ and for all $i \in \mathcal{N}_k := \{1, \ldots, m\} \setminus \mathcal{B}_k$ holds that (17) $|(\mathbf{r}_0 - \mathbf{A}\mathbf{V}_k \mathbf{y}_k)_i| \leq \gamma_k \quad \forall i \in \mathcal{N}_k$

$$B_k := egin{pmatrix} -\mathbbm{1}_{\mathcal{B}_{k,<}} & AV_k|_{\mathcal{B}_{k,<}} \ \mathbbm{1}_{\mathcal{B}_{k,<}} & AV_k|_{\mathcal{B}_{k,>}} \end{pmatrix}$$

with $B_k \in \mathbb{R}^{k+1 \times k+1}$ non-singular.

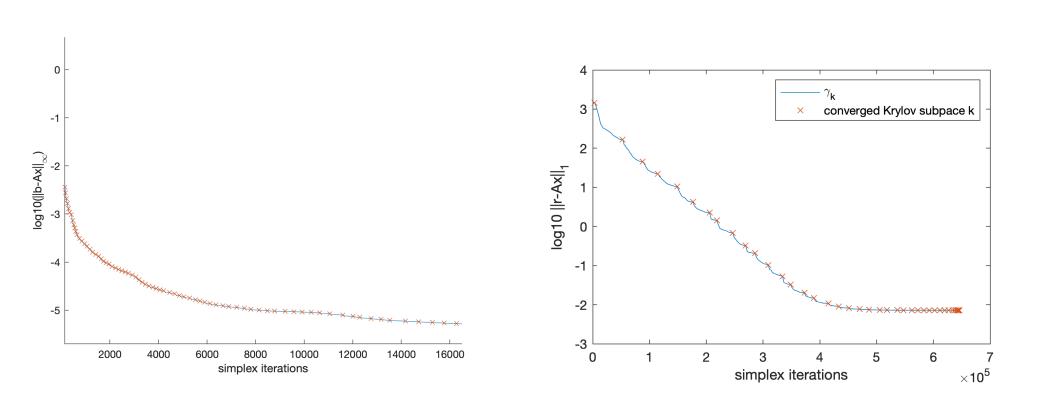


Figure: Left: The $||b - Ax||_{\infty}$ as a function of the simplex iterations. Each cross indicates an optimal point within the Krylov subspace. Right: the $||b - Ax||_1$ as a function of the simplex iterations.

(28) $\leq \|b - Ax_k^{\mathsf{GMRES}}\|_2 \leq \|b - Ax_k^{\mathsf{KS}_{\infty}}\|_2$ We conclude that

$$\|b - Ax_k^{\mathsf{KS}_{\infty}}\|_{\infty} \le \|b - Ax_k^{\mathsf{GMRES}}\|_2$$
 (29)

So a good preconditioner for GMRES is also a good preconditioner for Krylov-Simplex. (18)

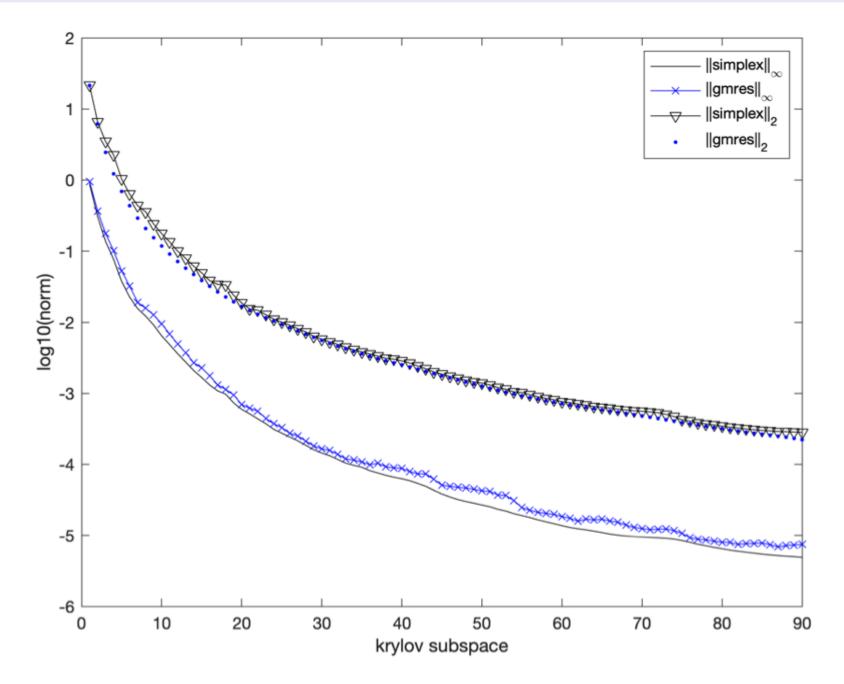


Figure: Comparison of the convergence of Krylov-Simplex versus GMRES over the same Krylov subspace.

Conclusions and future steps

then

$$\mathcal{K}_k(A, r_0) = \operatorname{span}\{r_0, Ar_0, A^2r_0, \dots, A^{k-1}r_0\}, \quad (4)$$

conjugate Gradients

 $\min_{x \in x_0 + \mathcal{K}_k(A, r_0)} \|x - x^*\|_A \quad \to \quad T_{kk} y_k = \|r_0\|e_1 \quad (5)$ where $x = x_0 + V_k y_k$ with V_k a basis for the Krylov

subspace

Generalized Minimal Residual (GMRES)

 $\min_{x \in x_0 + \mathcal{K}_k(A, r_0)} \| b - Ax \|_2 \quad \to \quad \min \| \| r \|_2 e_1 - H_{k+1,k} y_k \|$

Krylov-Simplex for ℓ_{∞}

Definition (max-norm Krylov)

Let $A \in \mathbb{R}^{m \times n}$ a matrix and $b \in \mathbb{R}^m$ a right hand side. The iterates of the ℓ_{∞} -norm Krylov-Simplex are given by

$$x_k := \operatorname{argmin}_{x \in x_0 + \mathcal{K}_k} \|r_k\|_{\infty}.$$

This corresponds to the optimization problem

 $\min \gamma_k$

s.t. $-\gamma_k \mathbb{1}_m \leq r_0 - AV_k y_k \leq \gamma_k \mathbb{1}_m$,

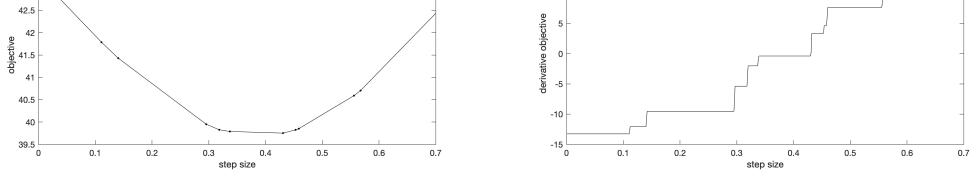


Figure: We show, left, an objective involving an ℓ_1 -norm along a search direction *p* for various step sizes *s*. We have a piecewise linear function with breakpoints. The slope changes occur when one particular component of the vector in the ℓ_1 -norm switches sign, as the step size changes. The derivative, right, is a piecewise constant function.

Krylov-Simplex for ℓ_1

KKT conditions

(7)

(8)

(6)Definition (ℓ_1 -norm Krylov)

Let $A \in \mathbb{R}^{m \times n}$ a matrix and $b \in \mathbb{R}^m$ a right hand side. The iterates of the ℓ_1 -norm Krylov-Simplex are given by

$$x_k := \operatorname{argmin}_{x \in x_0 + \mathcal{K}_k} \|r_k\|_1.$$

This corresponds to the optimization problem $min \langle T \rangle$

$$\min \mathbb{I}_{m} \gamma_{k},$$

s.t $-\gamma_{k} \leq r_{0} - AV_{k}y_{k} \leq \gamma_{k}.$

- Algorithm can be written with only rank-one updates.
- Expensive since the solutions are constructed each iteration.

Future:

(19)

(20)

- Comparision with column generation.
- Long-step Simplex with bound flipping.
- **Extension** $\ell_p \ell_q$ inverse problems

References

Vanroose, Wim, and Jeffrey Cornelis. "Krylov-Simplex method that minimizes the residual in ℓ_1 -norm or ℓ_{∞} -norm." arXiv preprint arXiv:2101.11416 (2021).

Algorithm 3.1 Krylov-Simplex for $\min_{x \in x_0 + \mathcal{K}_k} \ b - Ax\ _{\infty}$
1: $r_0 = b - Ax_0$
2: $\gamma_0, i = \max_i (r_0)_i $
3: $\mathcal{B}_0 = \{i\}$, index where the max is reached.
4: $V_1 = [r_0 / \ r_0\]$
5: for $k = 1, \ldots$, maxit do
6: Calculate $AV_k = [AV_{k-1}Av_k]$ and store and update $V_{k+1} = [V_k, v_{k+1}]$.
7: if $k = 1$ then
8: $B_1 = (\pm 1),$
9: $[Q,R] = \operatorname{qr}(B_1).$
10: end if
11 Solve $D d = A u = U $ using O and D

The KKT conditions

 $\mathbb{1}_m'(\lambda + \mu) = \mathbf{1},$ (9) (10) $V_k^T A^T (\lambda - \mu) = \mathbf{0},$ (11) $-\gamma_k \mathbb{1}_m \leq r_0 - AV_k \gamma_k \leq \gamma_k \mathbb{1}_m$ $\lambda > \mathbf{0}, \quad \mu \ge \mathbf{0},$ (12) $\lambda_i(r_0 - AV_ky + \gamma_k \mathbb{1}_m)_i = 0$, $\forall i \in \{1..m\}$ (13) The first two equations, (21) and (22), are the dual $\mu_i(\gamma_k \mathbb{1}_m - (r_0 - AV_k y))_i = 0, \quad \forall i \in \{1..m\}.$ (14) equations. The third is the primal equation. The The first two equations, (9) and (10) are the dual equations, the third equation is the primal equation and the last two, (13) and (14), are the complementarity conditions that couple all equations together.

(21) $\lambda + \mu = \mathbf{1},$ $V_k^T A^T (\lambda - \mu) = 0,$ (22)(23) $-\gamma_k \leq (r_0 - AV_k y_k) \leq \gamma_k,$ (24) $\mu \geq \mathbf{0}, \quad \lambda \;\; \geq \;\; \mathbf{0},$ $\lambda_i((r_0 - AV_k y_k) + \gamma_k)_i = 0, \quad \forall i \in \{1...m\}$ (25) $\mu_{i}(\gamma_{k} - (r_{0} - AV_{k}y_{k}))_{i} = 0, \quad \forall i \in \{1...m\}(26)$ last two, (25) and (26), are the complementarity conditions. Note the similarity with the KKT conditions (9)-(14).

Solve $B_k d = -Av_{k+1}|_{\mathcal{B}_k}$ using Q and R. Set d := [d(2:end)/d1; 1/d(1)]Set $y_k = [y_k; 0]$ $r_k, \Delta \gamma, y_k, r = \text{StepSizeKrylovExpansion}$ (). $\mathcal{B}_k = \mathcal{B}_{k-1} \cup \{r\},\$ while $l = 1, \ldots,$ maxsimplexiters do if l = 1 then Update the Q and R using (3.45). else Update the Q and R using (3.44). end if Solve $B_k^T \begin{pmatrix} \lambda_{\mathcal{B}_<} \\ -\mu_{\mathcal{B}_>} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ using Q and R. 22: if $\lambda \geq 0$ and $\mu \geq 0$ then 23:Break; Solution Found. 24:25:else $q = \min(\lambda_i, \mu_i)$ leaving index, 26: $\mathcal{B}_k = \mathcal{B}_k \setminus \{q\},\$ 27:Solve $B_k d = e_q$ using Q and R, 28:Set d := d(2 : end), Set $d_1 = d(1)$, 29: $r_k, \Delta \gamma, y_k, r = \text{StepSizeSimplex ()},$ 30: $\mathcal{B}_k = \mathcal{B}_l \cup \{r\}.$ 31:end if 32end while $x_k = x_0 + V_k y_k.$ $||r_k||_{\infty} = \gamma_k.$ 36: **end for**