Low-Rank Tensor-Product Approximations

for the Radiative Transfer Equation in Plane-Parallel Geometry

R. Bardin¹, M. Schlottbom¹ and M. Bachmayr²

¹University of Twente, ² Johannes Gutenberg-Universität Mainz

Introduction

The radiative transfer equation (RTE) describes transport, absorption, and scattering of energy through a medium, and has important applications in several fields, from medical imaging [1] and tumour treatment, to climate sciences [2], astrophysics, geosciences, and efficient generation of white light.

Challenge and proposal

Goal: break the curse of dimensionality, i.e. the fact that the computational complexity scales exponentially with the dimension.

Proposal: application of low-rank structures to the RTE hyperbolic problem through a special variational formulation, introducing also preconditioning techniques.

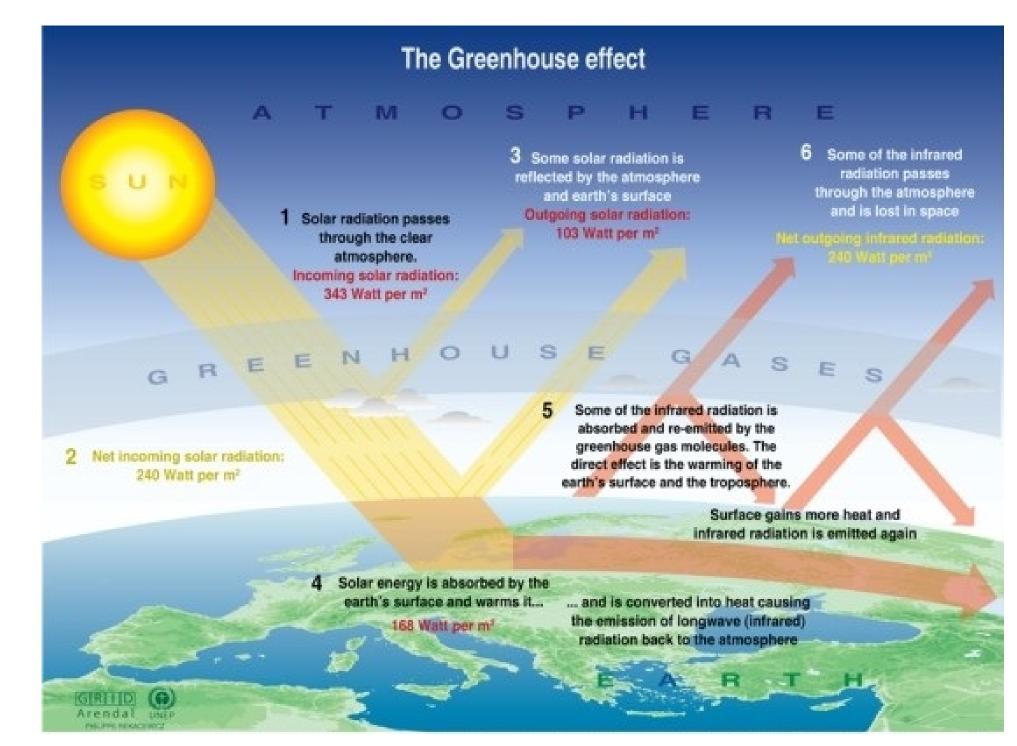


Figure: Sources: Okanagan university college in Canada, Department of geography. University of Oxford, school of geography. United States Environmental Protection Agency (EPA), Washington; Climate change 1995. The science climate change, contribution of working group 1 to the second assessment report of the intergovernmental panel on climate change, UNEP and WMO, Cambridge university press, 1996.

Problem statement

Strong even-parity formulation of radiative transfer [3]:

$$\begin{cases} \partial_z \left[(\mu^2 / \sigma_t) \partial_z u \right] + \sigma_t u = \sigma_s \int_0^1 u(z, \mu') d\mu' + q & \text{in } \mathcal{D} \\ u + (\mu / \sigma_t) \partial_n u = g & \text{on } \partial \mathcal{D}_- \end{cases}$$

where $\mathcal{D} := (0, Z) \times (0, 1)$ and $\partial \mathcal{D}_{-} := 0 \times (0, 1) \cup Z \times (0, 1)$. The variational formulation reads [3]: find $u \in V := H^1(0, \mathbb{Z}) \otimes_{\|\cdot\|} L^2(0, 1)$ such that

$$a(u, v) = f(v) \quad \forall v \in V$$

The bilinear and linear forms are defined as

$$a(u,v) = \left(\frac{1}{\sigma_t}\mu\partial_z u, \mu\partial_z v\right)_{L^2(\mathcal{D})} + (\sigma_t u, v)_{L^2(\mathcal{D})} - (\sigma_s \mathcal{P}u, v)_{L^2(\mathcal{D})} + (u, v)_{L^2}$$
 $f(v) = (q, v)_{L^2(\mathcal{D})} + (g, v)_{L^2}$

where, $L_{-}^{2} := L^{2}(\partial \mathcal{D}_{-} \times (0,1))$, \mathcal{P} is the scattering operator and the energy norm $\|\cdot\|$ is the one associated with the variational formulation, i.e. $\|v\|^2 = a(v,v)$.

Acknowledgements

This project was supported by NWO via Grant OCENW.KLEIN.183.

Contact Information

• Web: https://people.utwente.nl/r.bardin

• Email: r.bardin@utwente.nl

• Phone: +31534893630

Approach

- Discretization: Standard FEM in space and Legendre polynomials in angle allow to recast the variational formulation as a linear system $\mathbf{A}\mathbf{u} = \mathbf{f}$, where \mathbf{A} is symmetric positive definite and can be represented by a short sum of Kronecker products of matrices.
- Application of system matrix: the Kronecker products are never assembled thanks to the identity

$$(\mathbf{B} \otimes \mathbf{C}) \operatorname{vec}(\mathbf{X}) = \operatorname{vec}(\mathbf{C} \mathbf{X} \mathbf{B}^T), \qquad \mathbf{C} \in \mathbf{R}^{m \times n}, \ \mathbf{X} \in \mathbf{R}^{n \times p}, \ \mathbf{B} \in \mathbf{R}^{q \times p}$$

- Solution of the linear system: two issues are addressed in the solution of the system with iterative solvers:
- Rank growth: Let $\mathbf{U}_k = \max(u_k) = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$ be the SVD of the matricization of the iterate u_k , with \mathbf{U} , \mathbf{V} having r columns. Then $\operatorname{rank}(u_k) = \operatorname{rank}(\mathbf{U}_k) = r$. Application of the Kronecker identity leads to rank increase at every iteration.
- Preconditioning: computational complexity is further reduced constructing a proper preconditioner through change of basis.

Iterative methods with recompression

Richardson method to solve the linear system:

$$\mathbf{u}^{k+1} = \mathbf{u}^k - \mathcal{B}(\mathbf{A}\mathbf{u}^k - \mathbf{f}) = \mathcal{F}(\mathbf{u}^k)$$
for $k \ge 0$.

- \bullet Contraction \mathcal{F} , with suitable choice of the preconditioner, like $\mathcal{B} = \mathcal{I}\omega$, $\omega >> 1$, provides error reduction.
- Rank truncation is modelled by a non-expansive thresholding operator \mathcal{S}_{α} [4], based on the SVD of the iterates. The full iteration then reads $\mathbf{u}^{k+1} = \mathcal{S}_{\alpha}(\mathcal{F}(\mathbf{u}^k)) \qquad k \ge 0$

• Storage of the solution is reduced from $\mathcal{O}(h^{-2d+1})$ to $\mathcal{O}(h^{-d}k)$ for these operations.

Preconditioning

Construction of the preconditioner:

• Trace lemma [5]: the differential operator associated with a is spectrally equivalent to

$$\mathcal{B} = \mu^2 \otimes \partial_z' \partial_z + \mathcal{I} \otimes \mathcal{I}$$

• After discretization, the eigendecomposition of the operators $\mu^2 = \mathbf{V}\mathbf{D}\mathbf{V}^T$ and $\partial_z'\partial_z = \mathbf{W}\mathbf{F}\mathbf{W}^T$ yields the factorization

$$\mathbf{B} = (\mathbf{V} \otimes \mathbf{W})(\mathbf{D} \otimes \mathbf{F} + \mathbf{I})^{-1} (\mathbf{V} \otimes \mathbf{W})^T$$

 Exponential sums to approximate the entries of the diagonal matrix $\mathbf{G} = (\mathbf{D} \otimes \mathbf{F} + \mathbf{I})^{-1}$, which is not in Kronecker form:

$$g_{ij} = \frac{d_i^{-1}}{d_i^{-1} + f} \approx d_i^{-1} \sum_{n=1}^{N} \omega_n e^{\alpha_n (d_i^{-1} + f_j)}$$

Conclusions and developments

- Kronecker product structure from the even-parity formulation is amenable to low-rank approximations.
- Error reduction and rank control are ensured by the combination of a contractive iterative mapping \mathcal{F} with a non-expansive mapping \mathcal{S}_{α} , which performs complexity reduction.

References

- [1] S. R. Arridge and J. C. Schotland. Optical tomography: forward and inverse problems. *Inverse Problems*, 25(12):59, 2009. Id/No 123010.
- [2] K. F. Evans. The spherical harmonics discrete ordinate method for three-dimensional atmospheric radiative transfer. Journal of the Atmospheric Sciences, 55(3):429–446, 1998.
- [3] H. Egger and M. Schlottbom. A mixed variational framework for the radiative transfer equation. *Mathematical* Models and Methods in Applied Sciences, 22(3), 2012.
- [4] M. Bachmayr and R. Schneider. Iterative methos based on soft thresholding of hierarchical tensors. *Foundations* of Computational Mathematics, 17(4):1037–1083, 2017.
- [5] V. Agoshkov. Boundary Value Problems for Transport Equations. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser00, 1998.

