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Introduction

The radiative transfer equation
(RTE) describes transport, absorp-
tion, and scattering of energy
through a medium, and has impor-
tant applications in several fields,
from medical imaging [1| and tu-
mour treatment, to climate sciences
2|, astrophysics, geosciences, and ef-
ficient generation of white light.

Challenge and proposal

Goal: break the curse of dimen-
stonality, i.e. the fact that the com-
putational complexity scales expo-
nentially with the dimension.
Proposal: application of low-rank
structures to the RTE hyperbolic
problem through a special varia-
tional formulation, introducing also
preconditioning techniques.

The Greenhouse effect

5  Some of the infrared radiation is
absorted and re-emidthed by the
gresnhouse gas moleculas. The

direc! effect is the warming ol the
carth's surface and the troposphere.

Flgu re. Sources: Okanagan university college in Canada, Department of geography. University of Oxford, school of
geography. United States Environmental Protection Agency (EPA), Washington; Climate change 1995. The science
climate change, contribution of working group 1 to the second assessment report of the intergovernmental panel on
climate change, UNEP and WMO, Cambridge university press, 1996.

Problem statement

Strong even-parity formulation of radiative transfer [3]:
2 1 / / .
0. [(,u /Jt)azu] + o = O'S/O w(z, 1) du +q in D
u+ (p/op)Oyu =g on 0D_

where D = (0, 7) x (0,1) and 9D_ := 0 x (0,1) U Z x (0,1). The variational
formulation reads [3]: find u € V := H'(0, Z) @y L*(0,1) such that

a(u,v) = flv) YveV

The bilinear and linear forms are defined as

1
a(u,v) = | —ud,u, no,v + (o, v) r2p) — (0P, v) 2ip) + (w,v) 12
7t LA(D)

f(v) =(q,v)12p) + (9,0)12

where, L* := L*(0D_ x (0,1)), P is the scattering operator and the energy norm
| - || is the one associated with the variational formulation, i.e. ||v||* = a(v,v).
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Approach

e Discretization: Standard FEM in space and Legendre polynomials in angle
allow to recast the variational formulation as a linear system Au = f, where A
is symmetric positive definite and can be represented by a short sum of
Kronecker products of matrices.

e Application of system matrix: the Kronecker products are never assembled
thanks to the identity

(B ® C)vee(X) = vec(CXB'), CeR™", XecR", BecR"

e Solution of the linear syvstem: two issues are addressed in the solution of the
system with iterative solvers:

o Rank orowth: Let Uy = mat(u;) = UXV? be the SVD of the matricization of the iterate wy,
with U, V having r columns. Then rank(u;) = rank(Uy) = r. Application of the Kronecker
identity leads to rank increase at every iteration.

e 'reconditioning: computational complexity is further reduced constructing a proper
preconditioner through change of basis.

Iterative methods with Preconditioning

recompression

Construction of the preconditioner:

Richardson method to solve the linear o [race lemma [5]: the differential

system: operator associated with a is
u = uf — B( Au’ — f)=F (u’f) spectrally equivalent to
for k& > 0. B=1"®00.+IQT

e After discretization, the
cicendecomposition of the operators

1?=VDV?! and 0.0. = WFW!
e Rank truncation is modelled by a yields the factorization
non-expansive thresholding operator B = (VoW)DF+I) ' (Vaw)!

Sa 4], based on the SVD of the e [xponential sums to approximate
iterates. The full iteration then reads

at = S (F(uh) k>0

e Storage of the solution is reduced
from O(h™2) to O(h™ %) for

these operations.

e Contraction J, with suitable choice
of the preconditioner, like B = Zw,
w >> 1, provides error reduction.

the entries of the diagonal matrix
G =(D®F +1I)"!, which is not in
Kronecker form:

Gii = dz_l N d._l é\]: W e&n(dfi_l_l_fj)
t] dz_l 4 f ) — n

Conclusions and developments

Kronecker product structure from the even-parity formulation is amenable to
low-rank approximations.

e Error reduction and rank control are ensured by the combination of a
contractive iterative mapping F with a non-expansive mapping S,,, which
performs complexity reduction.
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