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Introduction

The radiative transfer equation
(RTE) describes transport, absorp-
tion, and scattering of energy
through a medium, and has impor-
tant applications in several fields,
from medical imaging [1] and tu-
mour treatment, to climate sciences
[2], astrophysics, geosciences, and ef-
ficient generation of white light.

Challenge and proposal

Goal: break the curse of dimen-
sionality, i.e. the fact that the com-
putational complexity scales expo-
nentially with the dimension.
Proposal: application of low-rank
structures to the RTE hyperbolic
problem through a special varia-
tional formulation, introducing also
preconditioning techniques.

Figure: Sources: Okanagan university college in Canada, Department of geography. University of Oxford, school of
geography. United States Environmental Protection Agency (EPA), Washington; Climate change 1995. The science
climate change, contribution of working group 1 to the second assessment report of the intergovernmental panel on
climate change, UNEP and WMO, Cambridge university press, 1996.

Problem statement

Strong even-parity formulation of radiative transfer [3]:

∂z

[
(µ2/σt)∂zu

]
+ σtu = σs

∫ 1

0
u(z, µ′) dµ′ + q in D

u + (µ/σt)∂nu = g on ∂D−

where D := (0, Z) × (0, 1) and ∂D− := 0 × (0, 1) ∪ Z × (0, 1). The variational
formulation reads [3]: find u ∈ V := H1(0, Z)⊗‖·‖ L2(0, 1) such that

a(u, v) = f (v) ∀v ∈ V

The bilinear and linear forms are defined as

a(u, v) =
 1
σt
µ∂zu, µ∂zv


L2(D)

+ (σtu, v)L2(D) − (σsPu, v)L2(D) + (u, v)L2
−

f (v) = (q, v)L2(D) + (g, v)L2
−

where, L2
− := L2(∂D−× (0, 1)), P is the scattering operator and the energy norm

‖ · ‖ is the one associated with the variational formulation, i.e. ‖v‖2 = a(v, v).
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Approach

•Discretization: Standard FEM in space and Legendre polynomials in angle
allow to recast the variational formulation as a linear system Au = f , where A
is symmetric positive definite and can be represented by a short sum of
Kronecker products of matrices.
•Application of system matrix: the Kronecker products are never assembled
thanks to the identity

(B⊗C)vec(X) = vec(CXBT ), C ∈ Rm×n, X ∈ Rn×p, B ∈ Rq×p

•Solution of the linear system: two issues are addressed in the solution of the
system with iterative solvers:
•Rank growth: Let Uk = mat(uk) = UΣVT be the SVD of the matricization of the iterate uk,
with U, V having r columns. Then rank(uk) = rank(Uk) = r. Application of the Kronecker
identity leads to rank increase at every iteration.
•Preconditioning: computational complexity is further reduced constructing a proper
preconditioner through change of basis.

Iterative methods with
recompression

Richardson method to solve the linear
system:

uk+1 = uk − B(Auk − f) = F(uk)
for k ≥ 0.
•Contraction F , with suitable choice
of the preconditioner, like B = Iω,
ω >> 1, provides error reduction.
•Rank truncation is modelled by a
non-expansive thresholding operator
Sα [4], based on the SVD of the
iterates. The full iteration then reads

uk+1 = Sα(F(uk)) k ≥ 0
•Storage of the solution is reduced
from O(h−2d+1) to O(h−dk) for
these operations.

Preconditioning

Construction of the preconditioner:
•Trace lemma [5]: the differential
operator associated with a is
spectrally equivalent to

B = µ2 ⊗ ∂′z∂z + I ⊗ I
•After discretization, the
eigendecomposition of the operators
µ2 = VDVT and ∂′z∂z = WFWT

yields the factorization
B = (V⊗W)(D⊗F+I)−1(V⊗W)T

•Exponential sums to approximate
the entries of the diagonal matrix
G = (D⊗ F + I)−1, which is not in
Kronecker form:

gij = d−1
i

d−1
i + f

≈ d−1
i

N∑
n=1

ωne
αn(d−1

i +fj)

Conclusions and developments

•Kronecker product structure from the even-parity formulation is amenable to
low-rank approximations.
•Error reduction and rank control are ensured by the combination of a
contractive iterative mapping F with a non-expansive mapping Sα, which
performs complexity reduction.
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