Matrix-free parallel solution methods for Helmholtz equations

Jinqiang Chen[@]* Vandana Dwarka^{*}, Kees Vuik^{*}

[@]j.chen-11@tudelft.nl, *Delft Institute of Applied Mathematics, TU Delft

INTRODUCTION

MATHEMATICAL MODEL

The **Helmholtz equation** applied in many scientific fields

 Both negative and positive eigenvalues ⇒ limits Krylov based solvers

The Helmholtz equation reads $-\Delta u - k^2 u = q$, on Ω

- The discrete linear system is
- Fast near-origin moving eigenvalues ⇒ slows convergence
 - **CSLP** (Complex Shifted Laplace Preconditioner)
 - Problem remains as wavenumber increases
- Large wavenumber & $3D \Rightarrow$ huge linear systems

Scalable parallel solution method \Rightarrow solve **larger** problem, solve **faster**

 $A_h u_h = g_h$

(1)

 $\left[2\right]$

The so-called 2D closed-off problem is given by $g(x,y) = (5\pi^2 - k^2) \sin(\pi x) \sin(2\pi y), \ \Omega = [0,1]$ $u=0, \text{ on } \partial\Omega$

$$u = \sin\left(\pi x\right) \sin\left(2\pi y\right). \tag{3}$$

NUMERICAL METHOD

- Krylov subspace method GMRES for complex system
 - Iterations stop criterion: $res < 10^{-6}$
- Preconditioning Multigrid based CSLP
 - CSLP: $M_h = -\Delta_h (\beta_1 \mathbf{i}\beta_2) k^2 I_h$ *Here $\beta_1 = 1$, $\beta_2 = 0.5$.
 - PARALLEL IMPLEMENTATION
- Partitioning & MPI topology:

- Solve My = x by multigrid method: $y \approx M^{-1}x$
 - $-\omega$ -Jacobi Smoothers
 - Full weighting Restriction
 - Bilinear Prolongation
 - Coarse grid iteration: GMRES, $res < 10^{-8}$

RESULTS

• Comparison of parallel and serial computing results. k = 1,

• Matrix-free matrix vector multiplications:

grid size 129×129 , "np" denotes the number of processors, "Error" are absulote errors compared to the exact solution.

	np	Full GMRES		CSLP(two-cycle) CSLP(V-cycle)			
		iter	Error	iter	Error	iter	Error
	1×1	281	2.669E-04	6	1.739E-04	7	1.744E-04
	2×2	281	2.669E-04	6	1.739E-04	7	1.744E-04
	3×3	281	2.669E-04	6	1.739E-04	7	1.744E-04

• Parallel efficiency: Here kh = 0.25, V-cycle CSLP

- Matrix-free preconditioner & coarse grid operator: -**Rediscretized** similarly to A_h
- Dot product:
 - $-sum(u(i,j)*v(i,j)) + MPI_Allreduce$

- Flexible partitioning
- Equivalent to the serial
- Less memory required
- Good performance trend

Iterative methods for the Helmholtz equation

Delft Institute of Applied Mathematics