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Ionization & scattering problems

Information about microscopic systems comes from ex-
periments where electrons scatter from an object.

Molecular movie

Electrons are emitted along angles that can be mea-
sured. This results in a probability distribution, called
the far field map. This corresponds the the amplitude
of the wave in the emitting direction.
In new experiments, based on a far field map, the
original state of molecules will be reconstructed.

Wave function

• 2D Helmholtz equation with
(x, y) ∈ (0, 10)2 and extended with ECS,

E = 4,

ω2(x, y) = exp
(
−|(x− y)4|

)
− E,

f (x, y) = exp
(
−x2 − y2

)
.

• Discretization: FD grid of 200 grid points and
ECS layer with 67 points rotated over π/6.

Differential cross section
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Observation (2D)

To get a good appriximation for the SDCS a low rank approxi-
mation to the Helmholtz equation is sufficient.
Discretization of Helmholtz equation on a 2D cartesian grid with
nx × ny unknowns leads to the following matrix equation:

DxxA +ADT
yy −W ◦A = F (1)

where A,F and W are nx × ny matrices that describe the un-
known solution usc(x, y), f and ω2 on the discretized mesh.

Assuming that A has low rank this matrix can be written as
A = UV H with U ∈ Cnx×r and V ∈ Cny×r both with orthogo-
nal columns and r ≪ min(nx, ny) is the rank of matrix A:

DxxUV H +UV HDT
yy − ω2UV H = F (2)

Derive equations to solve for the factors U and V :

DxxU +UV HDT
yyV − ω2U = FV

UHDxxUV H + V HDT
yy − ω2V H = UHF

(3)

The algorithm (2D)

We have update equations for U and V :[(
I ⊗ (Dxx − ω2I)

)
+
(
V TDyyV ⊗ I

)]
vec [U ] = vec [FV ] .[(

I ⊗UHDxxU
)
+
(
(Dyy − ω2I)⊗ I

)]
vec

[
V H

]
= vec

[
UHF

]
.

Given: initial guess V0 ∈ Cny×r;
[V ,R] = qr [V0];
while not converged do

Solve for U ;
[U , R̃] = qr [U ];
Solve for V H;
[V ,R] = qr [V ];

end
A = URHV H;

• Solving for U ,V can be interpreted as a projection operator applied on residual.

• The successive application of these projection operators doesn’t result in a new pro-
jection operator. But it can be seen as a perturbation of a projection operator.

• This perturbation is typical small and bounded , which leads to convergence.

Errors per iteration
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Tucker tensor decomposition

A matrix SVD is generalized by a Tucker tensor decompo-
sition which represents an d-th order tensor X ∈ RI1×I2×...×Id

as a multilinear transformation of a dense core tensor G ∈
RR1×R2×···×Rd by orthonormal matrices Un = U (n) ∈ RIn×Rn:

X = G ×1 U
(1) ×2 U

(2) . . .×d U
(d)

=

R1∑
r1=1

R2∑
r2=1

· · ·
Rd∑
rd=1

gr1r2···rd

(
u(1)
r1

◦ u(2)
r2

◦ · · · ◦ u(d)
rd

) (4)

Helmholz on tensors

Application of Helmholz opr. L on M:
LM = F = G ×1 DxxU1 ×2 U2 ×3 U3

+ G ×1 U1 ×2 DyyU2 ×3 U3

+ G ×1 U1 ×2 U2 ×3 DzzU3

−W ◦ (G ×1 U1 ×2 U2 ×3 U3) .

where UH
i Ui = I, for i = 1, 2, 3.

The algorithm (3D)

To derive an update equation for U1 multiply with U2 and U3

in the second and third dimension, respectively:

LM×2 U
H
2 ×3 U

H
3 = F ×2 U

H
2 ×3 U

H
3 .

Unfolding in first mode leads to a matrix equation for U1G(1).

Conclusions

• In certain cases the solution to Helmholtz can be described by a limited num-
ber of singular values. Low rank approximations are sufficient and reduce
computational cost to construct a far field map.

• The presented algorithm has good contracticity properties. In practice only
a small number of iterations are needed (also for low rank space dependent
wave numbers).

• Using Tucker decompositions the presented algorithm can be extended to nD.
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Ω = [−10, 10]2, (M = 1000, ext. with ECS).
ω = 2.

f(x, y) = −e−x2−y2 .


