Solving Inverse Problems without using Forward Operators

Part II: Minimization Based Formulations

Barbara Kaltenbacher

Alpen-Adria-Universität Klagenfurt

joint work with

Kha Van Huynh, Philipp Hungerländer, and Franz Rendl, AAU Stefan Gombots and Manfred Kaltenbacher, TU Vienna/Graz

Woudschoten Conference, October 7, 2021

Outline

- minimization based formulation and regularization of inverse problems
- examples
- numerical results

Der Wissenschaftsfonds. FWF project P30054

Solving Inverse Problems without Forward Operators

examples

2

Parameter Identification in Differential Equations: Some Examples

 Identify spatially varying coefficients/source a, b, c in linear elliptic boundary value problem on Ω ⊆ ℝ^d, d ∈ {1,2,3}

$$-\nabla(a\nabla u) + cu = b \text{ in } \Omega, \qquad \frac{\partial u}{\partial n} = g \text{ on } \partial\Omega,$$

from boundary or (restricted) interior observations of u. • e.g. EIT: identify conductivity σ in

$$-\nabla(\sigma\nabla\phi_i)=0$$
 in Ω

from boundary observations

current $j_i = -\sigma \frac{\partial \phi_i}{\partial n}$ and voltage $\upsilon = \phi_i$ on $\partial \Omega$ $i \in \{1, \dots, I\}$

• Identify parameter ϑ in initial value problem for ODE / PDE

$$\dot{u}(t) = f(t, u(t), \vartheta) \ t \in (0, T), \quad u(0) = u_0$$

from discrete of continuous observations of u. $y_i = g_i(u(t_i)), i \in \{1, ..., m\}$ or $y(t) = g(t, y(t)), t \in (0, T)$

Parameter Identification in Differential Equations: Some Examples

 Identify spatially varying coefficients/source a, b, c in linear elliptic boundary value problem on Ω ⊆ ℝ^d, d ∈ {1,2,3}

$$-\nabla(a\nabla u) + cu = b \text{ in } \Omega, \qquad \frac{\partial u}{\partial n} = g \text{ on } \partial\Omega,$$

from boundary or (restricted) interior observations of u. • e.g. EIT: identify conductivity σ in

$$-
abla(\sigma
abla\phi_i)=0$$
 in Ω

from boundary observations

current $j_i = -\sigma \frac{\partial \phi_i}{\partial n}$ and voltage $v = \phi_i$ on $\partial \Omega$ $i \in \{1, \dots, I\}$

• Identify parameter artheta in initial value problem for ODE / PDE

$$\dot{u}(t) = f(t, u(t), \vartheta) \ t \in (0, T), \quad u(0) = u_0$$

from discrete of continuous observations of u. $y_i = g_i(u(t_i)), i \in \{1, ..., m\}$ or $y(t) = g(t, y(t)), t \in (0, T)$

$$A(q, u) = 0$$

from observations of the state u

$$C(u)=y\,,$$

where $q \in X$, $u \in V$, $y \in Y$, $X, V, Y \dots$ Hilbert (Banach) spaces $A: X \times V \rightarrow W^* \dots$ differential operator $C: V \rightarrow Y \dots$ observation operator

$$A(q, u) = 0$$

from observations of the state *u*

$$C(u)=y\,,$$

where $q \in X$, $u \in V$, $y \in Y$, $X, V, Y \dots$ Hilbert (Banach) spaces $A: X \times V \rightarrow W^* \dots$ differential operator $C: V \rightarrow Y \dots$ observation operator

• reduced approach: operator equation for q

$$F(q) = y,$$

 $F = C \circ S$ with S: X
ightarrow V, $q \mapsto u$ parameter-to-state map

4 🗆 k 4 🗐 k 4 🖻 k 4 🖻 k

$$A(q, u) = 0$$

from observations of the state u

$$C(u) = y$$
,

where $q \in X$, $u \in V$, $y \in Y$, $X, V, Y \dots$ Hilbert (Banach) spaces $A: X \times V \rightarrow W^* \dots$ differential operator $C: V \rightarrow Y \dots$ observation operator

• reduced approach: operator equation for q

$$F(q) = y,$$

 $F = C \circ S$ with $S : X \to V$, $q \mapsto u$ parameter-to-state map

• all-at once approach: observations - model system for (q, u)

$$egin{array}{rcl} \mathcal{A}(q,u) &=& 0 ext{ in } W^* \ \mathcal{C}(u) &=& y ext{ in } Y \end{array} \ \Leftrightarrow \ \mathbf{F}(q,u) = \mathbf{y} \end{array}$$

$$A(q, u) = 0$$

from observations of the state *u*

$$C(u)=y\,,$$

where $q \in X$, $u \in V$, $y \in Y$, $X, V, Y \dots$ Hilbert (Banach) spaces $A: X \times V \rightarrow W^* \dots$ differential operator $C: V \rightarrow Y \dots$ observation operator

• reduced approach: operator equation for q

$$F(q) = y,$$

 $F = C \circ S$ with $S : X \to V$, $q \mapsto u$ parameter-to-state map

• all-at once approach: observations - model system for (q, u)

$$egin{array}{rcl} {\cal A}(q,u)&=&0 \mbox{ in }W^*\ {\cal C}(u)&=&y \mbox{ in }Y \end{array} \Leftrightarrow {f F}(q,u)={f y}$$

minimization based approach

minimization based formulation of inverse problems

イロト イボト イヨト イヨト

$$A(q,u)=0$$

from observations of the state u

$$C(u)=y\,,$$

where $q \in X$, $u \in V$, $y \in Y$, $X, V, Y \dots$ Hilbert (Banach) spaces $A: X \times V \rightarrow W^* \dots$ differential operator $C: V \rightarrow Y \dots$ observation operator

• reduced approach: operator equation for q

$$F(q) = y,$$

 $F = C \circ S$ with S: X
ightarrow V, $q \mapsto u$ parameter-to-state map

• all-at once approach: observations-model system for (q, u)

$$egin{array}{rcl} \mathcal{A}(q,u) &=& 0 ext{ in } W^* \ \mathcal{C}(u) &=& y ext{ in } Y \end{array} \ \Leftrightarrow \ \mathbf{F}(q,u) = \mathbf{y} \end{array}$$

minimization based approach

$$F(q) = y$$
 i.e., $\begin{cases} A(q, u) = 0 \\ C(u) = y \end{cases}$

$$F(q) = y$$
 i.e., $\begin{cases} A(q, u) = 0 \\ C(u) = y \end{cases}$

is equivalent to

 $\min_{q} \|F(q) - y\|^2$

э

イロト イヨト イヨト ・

$$F(q) = y$$
 i.e., $\begin{cases} A(q, u) = 0 \\ C(u) = y \end{cases}$

is equivalent to

$$\min_{q} \|F(q) - y\|^2$$

or equivalent to

$$\min_{q,u} \|C(u) - y\|^2 + \|A(q, u)\|^2$$

э

$$F(q) = y$$
 i.e., $\begin{cases} A(q, u) = 0 \\ C(u) = y \end{cases}$

is equivalent to

$$\min_{q} \|F(q) - y\|^2$$

or equivalent to

$$\min_{q,u} \|C(u) - y\|^2 + \|A(q, u)\|^2$$

or equivalent to

$$\min_{q,u} \|C(u) - y\|^2 \text{ s.t. } A(q, u) = 0$$

(1) < (2) < (2) </p>

4 D b

$$F(q) = y$$
 i.e., $\begin{cases} A(q, u) = 0 \\ C(u) = y \end{cases}$

is equivalent to

$$\min_{q} \|F(q) - y\|^2$$

or equivalent to

$$\min_{q,u} \|C(u) - y\|^2 + \|A(q, u)\|^2$$

or equivalent to

$$\min_{q,u} \|C(u) - y\|^2 \text{ s.t. } A(q, u) = 0$$

or equivalent to

$$\min_{q,u} \|A(q,u)\|^2 \text{ s.t. } C(u) = y$$

$$F(q) = y$$
 i.e., $\begin{cases} A(q, u) = 0 \\ C(u) = y \end{cases}$

is equivalent to

$$\min_{q} \|F(q) - y\|^2$$

or equivalent to

$$\min_{q,u} \|C(u) - y\|^2 + \|A(q, u)\|^2$$

or equivalent to

$$\min_{q,u} \|C(u) - y\|^2 \text{ s.t. } A(q, u) = 0$$

or equivalent to

$$\min_{q,u} \|A(q,u)\|^2 \text{ s.t. } C(u) = y$$

... and beyond, e.g., variational formulation of EIT [Kohn&Vogelius'87]

$$F(q) = y$$
 i.e., $\begin{cases} A(q, u) = 0 \\ C(u) = y \end{cases}$

is equivalent to

$$\min_{q} \|F(q) - y\|^2$$

or equivalent to

$$\min_{q,u} \|C(u) - y\|^2 + \|A(q, u)\|^2$$

or equivalent to

$$\min_{q,u} \|C(u) - y\|^2 \text{ s.t. } A(q, u) = 0$$

or equivalent to

$$\min_{q,u} \|A(q,u)\|^2 \text{ s.t. } C(u) = y$$

... and beyond, e.g., variational formulation of EIT [Kohn&Vogelius'87]

... and several other application examples, see below \blacktriangleright

 $(q, u) \in \operatorname{argmin} \{ \mathcal{J}(q, u; y) : (q, u) \in M_{\mathrm{ad}}(y) \}$

 $(q, u) \in \operatorname{argmin} \{ \mathcal{J}(q, u; y) : (q, u) \in M_{\operatorname{ad}}(y) \}$

 y^{δ} ... perturbed measured data; noise level $S(y, y^{\delta}) \leq \delta$ inverse problem is ill-posed:

minimizer does not depend continuiously on y

▲□▶ ▲ □▶ ▲ □▶

 $(q, u) \in \operatorname{argmin} \{ \mathcal{J}(q, u; y) : (q, u) \in M_{\operatorname{ad}}(y) \}$

 y^{δ} ... perturbed measured data; noise level $S(y, y^{\delta}) \leq \delta$ inverse problem is ill-posed:

minimizer does not depend continuiously on y

 \rightsquigarrow regularized inverse problem:

 $(q_{lpha}^{\delta}, u_{lpha}^{\delta}) \in \operatorname{argmin} \{ \mathcal{J}(q, u; y^{\delta}) + lpha \cdot \mathcal{R}(q, u) \, : \, (q, u) \in M_{\mathrm{ad}}^{\delta}(y^{\delta}) \}$

regularize by

- adding penalties (Tikhonov type) and/or
- imposing constraints (lvanov type)

▲□▶ ▲@▶ ▲ ≧▶ ▲ ≧▶ ... Ξ

 $(q, u) \in \operatorname{argmin} \{ \mathcal{J}(q, u; y) : (q, u) \in M_{\operatorname{ad}}(y) \}$

 y^{δ} ... perturbed measured data; noise level $S(y, y^{\delta}) \leq \delta$ inverse problem is ill-posed:

minimizer does not depend continuiously on y

→ regularized inverse problem:

 $(q_{lpha}^{\delta}, u_{lpha}^{\delta}) \in \operatorname{argmin} \{\mathcal{J}(q, u; y^{\delta}) + lpha \cdot \mathcal{R}(q, u) \, : \, (q, u) \in M_{\mathrm{ad}}^{\delta}(y^{\delta})\}$

regularize by

- \bullet adding penalties (Tikhonov type) and/or
- imposing constraints (Ivanov type)

treat data misfit by

- \bullet penalty term in cost function (Tikhonov type) or
- constraint (Morozov type)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のQ(0)

Regularization with data misfit Penalization inverse problem (IP):

$$\min_{\substack{(q,u)\in X\times V}} S(C(u), y) + Q(A(q, u))$$

s.t. $(q, u) \in M_{\mathrm{ad}}(y) = X \times V$,

regularization (RdmP):

$$\min_{\substack{(q,u)\in X\times V}} \mathcal{S}(\mathcal{C}(u), y^{\delta}) + \mathcal{Q}(\mathcal{A}(q, u)) + \alpha \cdot \mathcal{R}(q, u)$$

s.t. $(q, u) \in M_{\mathrm{ad}}^{\delta}(y^{\delta}) = \{(q, u) \in X \times V : \widetilde{\mathcal{R}}(q, u) \le \rho\}.$

where $\mathcal{S}: Y \times Y \to \overline{\mathbb{R}}, \ \mathcal{Q}: W \to \overline{\mathbb{R}}$ are positive definite functionals

$$\forall y_1, y_2 \in Y : \quad \mathcal{S}(y_1, y_2) \ge 0 \quad \text{ and } \quad \left(y_1 = y_2 \iff \mathcal{S}(y_1, y_2) = 0\right),$$

$$\forall w \in W : \mathcal{Q}(w) \ge 0$$
 and $(w = 0 \Leftrightarrow \mathcal{Q}(w) = 0)$.

e.g., just norms or derived from statistical noise model

Regularization with data misfit Constraint inverse problem (IP):

$$\begin{split} \min_{(q,u)\in X\times V} \mathcal{Q}(\mathcal{A}(q,u))\\ \text{s.t.} \ (q,u)\in M_{\mathrm{ad}}(y)=\{(q,u)\in X\times V \ : \ \mathcal{C}(u)=y\}\,, \end{split}$$

regularization (RdmC):

$$\begin{split} \min_{\substack{(q,u)\in X\times V}} \mathcal{Q}(A(q,u)) + \alpha \cdot \mathcal{R}(q,u) \\ \text{s.t.} \ (q,u) \in M^{\delta}_{\mathrm{ad}}(y^{\delta}) = \{(q,u)\in X\times V \ : \ \mathcal{S}(\mathcal{C}(u),y^{\delta}) \leq \tau \delta \\ \text{ and } \ \widetilde{\mathcal{R}}(q,u) \leq \rho\} \,. \end{split}$$

where $\mathcal{S}: Y \times Y \to \overline{\mathbb{R}}, \ \mathcal{Q}: W \to \overline{\mathbb{R}}$ are positive definite functionals

$$\forall y_1, y_2 \in Y : \quad \mathcal{S}(y_1, y_2) \ge 0 \quad \text{and} \quad \left(y_1 = y_2 \iff \mathcal{S}(y_1, y_2) = 0\right),$$

$$\forall w \in W : \quad \mathcal{Q}(w) \ge 0 \quad \text{and} \quad \left(w = 0 \iff \mathcal{Q}(w) = 0\right).$$

$$\text{, just norms or derived from statistical noise model} \quad \text{.} \quad \text{.}$$

examples

2

see, e.g., [Kohn&Vogelius'87, Kohn&McKenny'90, Knowles'98]

The reduced formulation of EIT

identify conductivity σ in

$$-\nabla(\sigma\nabla\phi_i)=0$$
 in Ω

from boundary observations current $j_i = -\sigma \frac{\partial \phi_i}{\partial n}$ and voltage $v = \phi_i$ on $\partial \Omega$ $i \in \{1, \dots I\}$

The reduced formulation of EIT

identify conductivity σ in

$$-\nabla(\sigma\nabla\phi) = 0 \text{ in } \Omega$$
 (*)

from Neumann-Dirichlet operator

 $\Lambda_{\sigma}: j \mapsto \phi|_{\partial\Omega}$ where ϕ solves (*) with $\sigma \frac{\partial \phi}{\partial n} = j$ on $\partial\Omega$, $\int_{\partial\Omega} \phi \, ds = 0$ (Calderón problem)

see, e.g., [Kohn&Vogelius'87, Kohn&McKenny'90, Knowles'98]

see, e.g., [Kohn&Vogelius'87, Kohn&McKenny'90, Knowles'98] Identify spatially distributed conductivity σ in $\Omega \subseteq \mathbb{R}^2$

 $\nabla \cdot J_i = 0, \quad \nabla^{\perp} \cdot E_i = 0, \quad J_i = \sigma E_i \quad \text{in } \Omega, \quad i = 1, \dots, I,$

(with $\nabla^{\perp}\psi = (-\frac{\partial}{\partial x_2}, \frac{\partial}{\partial x_1})^T$ so that $\nabla^{\perp} \cdot = \text{curl}$) from observations of boundary currents j_i and voltages v_i .

see, e.g., [Kohn&Vogelius'87, Kohn&McKenny'90, Knowles'98] Identify spatially distributed conductivity σ in $\Omega \subseteq \mathbb{R}^2$

 $\nabla \cdot J_i = 0, \quad \nabla^{\perp} \cdot E_i = 0, \quad J_i = \sigma E_i \quad \text{in } \Omega, \quad i = 1, \dots, I,$

(with $\nabla^{\perp}\psi = (-\frac{\partial}{\partial x_2}, \frac{\partial}{\partial x_1})^T$ so that $\nabla^{\perp} \cdot = \text{curl}$) from observations of boundary currents j_i and voltages v_i . Using potentials ϕ_i and ψ_i for current densities J_i and electric fields E_i

$$J_i = -\nabla^{\perp} \psi_i, \quad E_i = -\nabla \phi_i, \quad i = 1, \dots, I,$$

we can rewrite the problem as

$$\sqrt{\sigma}\nabla\phi_i = \frac{1}{\sqrt{\sigma}}\nabla^{\perp}\psi_i$$
 in Ω ; $\psi_i = \gamma_i$, $\phi_i = v_i$ on $\partial\Omega$, $i = 1, \dots, I$,

where $\gamma_i(x(s)) = -\int_0^s j_i(x(r)) dr$ for $\partial \Omega = \{x(s) : s \in (0, \text{length}(\partial \Omega))\}$

$$\sqrt{\sigma} \nabla \phi_i = \frac{1}{\sqrt{\sigma}} \nabla^{\perp} \psi_i \text{ in } \Omega, \quad \psi_i = \gamma_i, \ \phi_i = \upsilon_i \text{ on } \partial \Omega, \quad i = 1, \dots, I,$$

$$\sqrt{\sigma} \nabla \phi_i = \frac{1}{\sqrt{\sigma}} \nabla^{\perp} \psi_i \text{ in } \Omega, \quad \psi_i = \gamma_i, \ \phi_i = v_i \text{ on } \partial \Omega, \quad i = 1, \dots, I,$$

equivalent to

$$\min_{\substack{\sigma, \underline{\phi}, \underline{\psi} \\ i=1}} \sum_{i=1}^{I} \frac{1}{2} \int_{\Omega} |\sqrt{\sigma} \nabla \phi_i - \frac{1}{\sqrt{\sigma}} \nabla^{\perp} \psi_i|^2 dx$$

s.t. $\psi_i = \gamma_i$, $\phi_i = v_i$ on $\partial \Omega$, $i = 1, \dots, I$

イロト イボト イヨト

$$\sqrt{\sigma} \nabla \phi_i = \frac{1}{\sqrt{\sigma}} \nabla^{\perp} \psi_i \text{ in } \Omega, \quad \psi_i = \gamma_i, \ \phi_i = \upsilon_i \text{ on } \partial \Omega, \quad i = 1, \dots, I,$$

equivalent to

$$\begin{split} \min_{\sigma,\underline{\phi},\underline{\psi}} \sum_{i=1}^{I} \frac{1}{2} \int_{\Omega} |\sqrt{\sigma} \nabla \phi_{i} - \frac{1}{\sqrt{\sigma}} \nabla^{\perp} \psi_{i}|^{2} dx \\ \text{s.t. } \psi_{i} &= \gamma_{i} , \ \phi_{i} = \upsilon_{i} \ \text{ on } \partial\Omega , \quad i = 1, \dots, I \\ \text{equivalent to (since } \int_{\Omega} \nabla \phi_{i} \cdot \nabla^{\perp} \psi_{i} dx = \int_{\partial\Omega} \upsilon_{i} j_{i} dx) \\ \min_{\sigma,\underline{\phi},\underline{\psi}} \sum_{i=1}^{I} \frac{1}{2} \int_{\Omega} \left(\sigma |\nabla \phi_{i}|^{2} + \frac{1}{\sigma} |\nabla^{\perp} \psi_{i}|^{2} \right) dx \\ \text{s.t. } \psi_{i} &= \gamma_{i} , \ \phi_{i} = \upsilon_{i} \ \text{ on } \partial\Omega , \quad i = 1, \dots, I \end{split}$$

Regularized variational EIT

inverse problem (EIT):

$$\min_{\sigma,\underline{\phi},\underline{\psi}} \sum_{i=1}^{I} \frac{1}{2} \int_{\Omega} |\sqrt{\sigma} \nabla \phi_i - \frac{1}{\sqrt{\sigma}} \nabla^{\perp} \psi_i|^2 dx$$

s.t. $\psi_i = \gamma_i, \ \phi_i = \upsilon_i \text{ on } \partial\Omega, \quad i = 1, \dots, I$

Regularized variational EIT

inverse problem (EIT):

$$\min_{\sigma,\underline{\phi},\underline{\psi}} \sum_{i=1}^{I} \frac{1}{2} \int_{\Omega} |\sqrt{\sigma} \nabla \phi_i - \frac{1}{\sqrt{\sigma}} \nabla^{\perp} \psi_i|^2 dx$$

s.t. $\psi_i = \gamma_i$, $\phi_i = v_i$ on $\partial \Omega$, $i = 1, \dots, I$

regularization (RegEIT):

$$\min_{\sigma, \Phi, \Psi} \sum_{i=1}^{I} \left\{ \frac{1}{2} \int_{\Omega} |\sqrt{\sigma} \nabla \phi_{i} - \frac{1}{\sqrt{\sigma}} \nabla^{\perp} \psi_{i}|^{2} dx + \frac{\alpha}{2} (\|\phi_{i}\|_{H^{1+\epsilon}(\Omega)}^{2} + \|\psi_{i}\|_{H^{1+\epsilon}(\Omega)}^{2}) \right\}$$

s.t. $\underline{\sigma} \leq \sigma \leq \overline{\sigma} \text{ on } \Omega,$
 $v_{i}^{\delta} - \tau \delta \leq \phi_{i} \leq v_{i}^{\delta} + \tau \delta,$
 $\gamma_{i}^{\delta} - \tau \delta \leq \psi_{i} \leq \gamma_{i}^{\delta} + \tau \delta,$ on $\partial \Omega, \quad i = 1, \dots, I.$

 \rightsquigarrow special case of regularization with constraint on data misfit (RdmC)
Regularized variational EIT: Function space setting

$$q = \sigma, \qquad u = (\phi_1, \dots, \phi_I, \psi_1, \dots, \psi_I), \qquad y = (v_1, \dots, v_I, \gamma_1, \dots, \gamma_I)$$
$$X = L^2(\Omega)$$
$$Y = L^{\infty}(\partial \Omega)^I \times W^{1,1}(\partial \Omega)^I$$
$$V = \{(\phi_1, \dots, \phi_I, \psi_1, \dots, \psi_I) \in H^1(\Omega)^{2I} : \operatorname{tr}_{\partial \Omega}^{2I}(\phi_1, \dots, \phi_I, \psi_1, \dots, \psi_I) \in Y\}$$
$$W = L^2(\Omega)^I$$

$$\begin{aligned} \mathcal{A}(q,u) &= \left(\sqrt{\sigma}\nabla\phi_1 - \frac{1}{\sqrt{\sigma}}\nabla^{\perp}\psi_1, \dots, \sqrt{\sigma}\nabla\phi_I - \frac{1}{\sqrt{\sigma}}\nabla^{\perp}\psi_I\right),\\ \mathcal{C} &= \mathrm{tr}_{\partial\Omega}^{2I} \end{aligned}$$

$$\mathcal{Q}(w) = \frac{1}{2} \|w\|_{L^{2}(\Omega)^{I}}^{2}$$

$$\mathcal{R}(q, u) = \mathcal{R}(u) = \sum_{i=1}^{I} \left(\|\phi_{i}\|_{H^{1+\epsilon}(\Omega)^{2I}}^{2} + \|\psi_{i}\|_{H^{1+\epsilon}(\Omega)^{2I}}^{2} \right)$$

$$\widetilde{\mathcal{R}}(q, u) = \widetilde{\mathcal{R}}(q) = \|\sigma - \frac{\overline{\sigma} + \sigma}{2}|_{L^{\infty}(\Omega)}, \quad \rho = \frac{\overline{\sigma} - \sigma}{2}$$

$$\mathcal{S}(y, \tilde{y}) = \max_{i \in \{1, \dots, I\}} \|v_{i} - \widetilde{v}_{i}\|_{L^{\infty}(\partial\Omega)} + \|\gamma_{i} - \widetilde{\gamma}_{i}\|_{L^{\infty}(\partial\Omega)}$$

Regularized variational EIT: well-definedness, convergence

$$(\sigma_n, \Phi_n, \Psi_n) \xrightarrow{\mathcal{T}} (\sigma, \Phi, \Psi) \Leftrightarrow \begin{cases} \sigma_n \xrightarrow{\simeq} \sigma \text{ and } \frac{1}{\sigma_n} \xrightarrow{\simeq} \frac{1}{\sigma} \text{ in } L^{\infty}(\Omega), \\ (\Phi_n, \Psi_n) \to (\Phi, \Psi) \text{ in } H^1(\Omega)^{2/} \\ (\Phi_n, \Psi_n) \to (\Phi, \Psi) \text{ in } H^{1+\epsilon}(\Omega)^{2/}, \\ \operatorname{tr}(\Phi_n, \Psi_n) \to \operatorname{tr}(\Phi, \Psi) \text{ in } L^{\infty}(\partial\Omega)^{2/} \end{cases}$$

Corollary

For each $y^{\delta} \in Y$ and $\alpha > 0$ a minimizer of (RegEIT) exists. Let $S(y, y^{\delta}) \leq \delta$, $\underline{\sigma} \leq \sigma^{\dagger} \leq \overline{\sigma}$ a.e. in Ω and choose $\alpha = \alpha(\delta, y^{\delta})$ such that $\alpha(\delta, y^{\delta}) \to 0$ as $\delta \to 0$. Then, as $\delta \to 0$, $(\sigma^{\delta}_{\alpha(\delta, y^{\delta})}, \Phi^{\delta}_{\alpha(\delta, y^{\delta})}, \Psi^{\delta}_{\alpha(\delta, y^{\delta})})) \xrightarrow{\mathcal{T}} (\sigma^{\dagger}, \Phi^{\dagger}, \Psi^{\dagger})$.

Regularized variational EIT: well-definedness, convergence

$$(\sigma_n, \Phi_n, \Psi_n) \xrightarrow{\mathcal{T}} (\sigma, \Phi, \Psi) \Leftrightarrow \begin{cases} \sigma_n \xrightarrow{\simeq} \sigma \text{ and } \frac{1}{\sigma_n} \xrightarrow{\simeq} \frac{1}{\sigma} \text{ in } L^{\infty}(\Omega), \\ (\Phi_n, \Psi_n) \to (\Phi, \Psi) \text{ in } H^1(\Omega)^{2/} \\ (\Phi_n, \Psi_n) \to (\Phi, \Psi) \text{ in } H^{1+\epsilon}(\Omega)^{2/}, \\ \operatorname{tr}(\Phi_n, \Psi_n) \to \operatorname{tr}(\Phi, \Psi) \text{ in } L^{\infty}(\partial\Omega)^{2/} \end{cases}$$

Corollary

For each $y^{\delta} \in Y$ and $\alpha > 0$ a minimizer of (RegEIT) exists. Let $S(y, y^{\delta}) \leq \delta$ $\underline{\sigma} \leq \sigma^{\dagger} \leq \overline{\sigma}$ a.e. in Ω and choose $\alpha = \alpha(\delta, y^{\delta})$ such that $\alpha(\delta, y^{\delta}) \to 0$ as $\delta \to 0$. Then, as $\delta \to 0$, $(\sigma^{\delta}_{\alpha(\delta, y^{\delta})}, \Phi^{\delta}_{\alpha(\delta, y^{\delta})}, \Psi^{\delta}_{\alpha(\delta, y^{\delta})})) \xrightarrow{\mathcal{T}} (\sigma^{\dagger}, \Phi^{\dagger}, \Psi^{\dagger})$

• Hilbert spaces X, V for design variables q, u (easier applicability of iterative minimization methods);

- Hilbert spaces X, V for design variables q, u (easier applicability of iterative minimization methods);
- cost function: J^{δ} differentiable;

- **A A B A B A**

- Hilbert spaces X, V for design variables q, u (easier applicability of iterative minimization methods);
- cost function: J^{δ} differentiable;
- constraints: pointwise bounds can be efficiently implemented [Hungerländer, BK and Rendl 2020] and are practically relevant in view of known a prior bounds on σ;

- **A B A B A B A**

- Hilbert spaces X, V for design variables q, u (easier applicability of iterative minimization methods);
- cost function: J^{δ} differentiable;
- constraints: pointwise bounds can be efficiently implemented [Hungerländer, BK and Rendl 2020] and are practically relevant in view of known a prior bounds on σ ;
- first order least squares formulation of the PDE model;

- **A A B A B A**

- Hilbert spaces X, V for design variables q, u (easier applicability of iterative minimization methods);
- cost function: J^{δ} differentiable;
- constraints: pointwise bounds can be efficiently implemented [Hungerländer, BK and Rendl 2020] and are practically relevant in view of known a prior bounds on σ;
- first order least squares formulation of the PDE model;
- Euler-Lagrange equation for unregularized problem yields second order PDE model ∇ · (σ∇φ_i) = 0;

- Hilbert spaces X, V for design variables q, u (easier applicability of iterative minimization methods);
- cost function: J^{δ} differentiable;
- constraints: pointwise bounds can be efficiently implemented [Hungerländer, BK and Rendl 2020] and are practically relevant in view of known a prior bounds on σ ;
- first order least squares formulation of the PDE model;
- Euler-Lagrange equation for unregularized problem yields second order PDE model ∇ · (σ∇φ_i) = 0;
- can be extended to complete electrode model CEM [Somersalo, Cheney, and Isaacson, 1992], see [Huynh and BK, 2020];

- Hilbert spaces X, V for design variables q, u (easier applicability of iterative minimization methods);
- cost function: J^{δ} differentiable;
- constraints: pointwise bounds can be efficiently implemented [Hungerländer, BK and Rendl 2020] and are practically relevant in view of known a prior bounds on σ ;
- first order least squares formulation of the PDE model;
- Euler-Lagrange equation for unregularized problem yields second order PDE model ∇ · (σ∇φ_i) = 0;
- can be extended to complete electrode model CEM [Somersalo, Cheney, and Isaacson, 1992], see [Huynh and BK, 2020];
- in case of finite dimensional data space (e.g. CEM) partial data inversion can be employed, see [Huynh and BK, 2020];

- Hilbert spaces X, V for design variables q, u (easier applicability of iterative minimization methods);
- cost function: J^{δ} differentiable;
- constraints: pointwise bounds can be efficiently implemented [Hungerländer, BK and Rendl 2020] and are practically relevant in view of known a prior bounds on σ ;
- first order least squares formulation of the PDE model;
- Euler-Lagrange equation for unregularized problem yields second order PDE model ∇ · (σ∇φ_i) = 0;
- can be extended to complete electrode model CEM [Somersalo, Cheney, and Isaacson, 1992], see [Huynh and BK, 2020];
- in case of finite dimensional data space (e.g. CEM) partial data inversion can be employed, see [Huynh and BK, 2020];
- analgously: permeabilities in magnetostatics, cracks from electrostatic measurements

Identification of sound sources from microphone array measurements

Identify number, locations, amplitudes of sound sources from microphone array measurements.

$$\frac{1}{c_0^2}p_{tt} - \Delta p = \sigma$$

measurements $p(x_{\ell})$, $\ell \in \{1, ..., L\}$ $x_{\ell} \in \Omega$... (known) location of ℓ -th micro p... acoustic pressure

 $\sigma.\,.\,.\,{\rm sound}$ source

Sound source localization: Formulation as 1st order system

linearized conservation of momentum: $\rho_0 v_t + \nabla p_{\sim} = f$, linearized conservation of mass: $\rho_{\sim t} + \rho_0 \nabla \cdot v = g$, linearized equation of state: $\rho_{\sim} = \frac{1}{c_s^2} p_{\sim}$,

$$\varrho_0 v_t + \nabla p_{\sim} = f,$$
(1)
$$\frac{1}{20} \rho_{\sim t} + \varrho_0 \nabla \cdot v = g,$$
(2)

 $\sim \dots$ fluctuating part $_0 \dots$ constant mean value

- $\varrho = \varrho_0 + \varrho_{\sim} \dots$ mass density
- $v = v_{\sim} \dots$ acoustic particle velocity,
- $p = p_0 + p_{\sim} \dots$ pressure,
- c_0 ... speed of sound.

$$\frac{\partial}{\partial t} (2) - \nabla \cdot (1) \Rightarrow \frac{1}{c_0^2} p_{tt} - \Delta p = \sigma = g_t - \nabla \cdot f \text{ 2nd order wave eq.}$$

Sound source localization

Boundary conditions:

$$\varrho_0 \mathbf{v} \cdot \mathbf{v} + \kappa \mathbf{p} = 0 \text{ on } \Gamma_a$$
 $\mathbf{v} \cdot \mathbf{v} = 0 \text{ on } \Gamma_r$

 Γ_a ... absorbing boundary part

 Γ_r ... reflecting boundary part

Measurements:

$$y_{\ell}=p(x_{\ell}),\ \ell\in\{1,\ldots,L\}$$

3 × 4 3 ×

4 11 1

in time domain:

$$\begin{aligned} \varrho_0 v_t + \nabla p &= f & \text{in } \Omega \times (0, T) \\ \frac{1}{c_0^2} p_t + \varrho_0 \nabla \cdot v &= 0 & \text{in } \Omega \times (0, T) \\ y_\ell &= p(x_\ell) \,, \ \ell \in \{1, \dots, L\} \end{aligned}$$

$$\begin{aligned} \varrho_0 \mathbf{v} \cdot \boldsymbol{\nu} + \kappa \boldsymbol{p} &= 0 \quad \text{on } \Gamma_a \times (0, T) \\ \mathbf{v} \cdot \boldsymbol{\nu} &= 0 \quad \text{on } \Gamma_r \times (0, T) \end{aligned}$$

in time domain:

$$\begin{array}{ll} \varrho_0 v_t + \nabla p = f & \text{in } \Omega \times (0, T) \\ \frac{1}{c_0^2} p_t + \varrho_0 \nabla \cdot v = 0 & \text{in } \Omega \times (0, T) \\ y_\ell = p(x_\ell), \ \ell \in \{1, \dots, L\} \end{array} \qquad \begin{array}{ll} \varrho_0 v \cdot \nu + \kappa p = 0 & \text{on } \Gamma_a \times (0, T) \\ v \cdot \nu = 0 & \text{on } \Gamma_r \times (0, T) \\ v \cdot \nu = 0 & \text{on } \Gamma_r \times (0, T) \end{array}$$

in frequency domain: (with fixed frequency ω)

$$\begin{array}{ll} \varrho_0 \imath \omega \hat{v} + \nabla \hat{p} = f & \text{in } \Omega \\ \frac{1}{c_0^2} \imath \omega \hat{p} + \varrho_0 \nabla \cdot \hat{v} = 0 & \text{in } \Omega \end{array} \qquad \begin{array}{ll} \varrho_0 \hat{v} \cdot \nu + \kappa \hat{p} = 0 & \text{on } \Gamma_a \\ \hat{v} \cdot \nu = 0 & \text{on } \Gamma_r \\ \hat{y}_\ell = \hat{p}(x_\ell), \ \ell \in \{1, \dots, L\} \end{array}$$

in frequency domain: (with fixed frequency ω)

$$\begin{array}{ll} \varrho_{0}\iota\omega\hat{v}+\nabla\hat{\rho}=f & \text{in }\Omega\\ \frac{1}{c_{0}^{2}}\iota\omega\hat{\rho}+\varrho_{0}\nabla\cdot\hat{v}=0 & \text{in }\Omega\\ \hat{\rho}_{\ell}=\hat{y}(x_{\ell})\,,\ \ell\in\{1,\ldots,L\}\end{array} \qquad \begin{array}{ll} \varrho_{0}\hat{v}\cdot\nu+\kappa\hat{\rho}=0 & \text{on }\Gamma_{a}\\ \hat{v}\cdot\nu=0 & \text{on }\Gamma_{r}\\ \hat{v}\cdot\nu=0 & \text{on }\Gamma_{r}\\ \end{array}$$

in frequency domain: (with fixed frequency ω)

$$\begin{array}{ll} \varrho_{0}\iota\omega\hat{v}+\nabla\hat{p}=f & \text{in }\Omega \\ \frac{1}{c_{0}^{2}}\iota\omega\hat{p}+\varrho_{0}\nabla\cdot\hat{v}=0 & \text{in }\Omega \\ \hat{p}_{\ell}=\hat{y}(x_{\ell})\,, \ \ell\in\{1,\ldots,L\} \end{array} \qquad \begin{array}{l} \varrho_{0}\hat{v}\cdot\nu+\kappa\hat{p}=0 & \text{on }\Gamma_{a} \\ \varphi_{0}\hat{v}\cdot\nu=0 & \text{on }\Gamma_{r} \\ \hat{v}\cdot\nu=0 & \text{on }\Gamma_{r} \end{array}$$

splitting \hat{v} , \hat{p} into real and imaginary parts:

$$\begin{array}{c} -\varrho_{0}\omega v_{\Im} + \nabla p_{\Re} - f_{\Re} = 0\\ \varrho_{0}\omega v_{\Re} + \nabla p_{\Im} - f_{\Im} = 0\\ -\frac{1}{c_{0}^{2}}\omega p_{\Im} + \varrho_{0}\nabla \cdot v_{\Re} = 0\\ \frac{1}{c_{0}^{2}}\omega p_{\Re} + \varrho_{0}\nabla \cdot v_{\Im} = 0 \end{array} \right\} \text{ in } \Omega \quad \begin{array}{c} \varrho_{0}v_{\Re} \cdot \nu + \kappa p_{\Re} = 0\\ \varrho_{0}v_{\Im} \cdot \nu + \kappa p_{\Im} = 0\\ v_{\Re} \cdot \nu = 0\\ v_{\Re} \cdot \nu = 0 \end{array} \right\} \text{ on } \Gamma_{r} \\ p_{\Re,\ell} = y_{\Re}(x_{\ell}), \ p_{\Im,\ell} = y_{\Im}(x_{\ell}), \ \ell \in \{1,\ldots,L\} \end{array}$$

to avoid the problem of nondifferentiability of $z \mapsto |z|^2$ in \mathbb{C} .

$$\begin{array}{l} \operatorname{res}_{mom,\Re} := -\varrho_0 \omega v_{\Im} + \nabla p_{\Re} - f_{\Re} = 0 \\ \operatorname{res}_{mom,\Im} := -\varrho_0 \omega v_{\Re} + \nabla p_{\Im} - f_{\Im} = 0 \\ \operatorname{res}_{mass,\Re} := -\frac{1}{c_0^2} \omega p_{\Im} + \varrho_0 \nabla \cdot v_{\Re} = 0 \\ \operatorname{res}_{mass,\Im} := -\frac{1}{c_0^2} \omega p_{\Re} + \varrho_0 \nabla \cdot v_{\Im} = 0 \\ \operatorname{res}_{mass,\Im} := -\frac{1}{c_0^2} \omega p_{\Re} + \varrho_0 \nabla \cdot v_{\Im} = 0 \\ p_{\Re,\ell} = y_{\Re}(x_\ell), \ p_{\Im,\ell} = y_{\Im}(x_\ell), \ \ell \in \{1,\ldots,L\} \end{array} \right\} \ \text{on} \ \Gamma_r$$

æ

イロト イボト イヨト イヨト

$$\begin{split} \operatorname{res}_{mom,\Re} &:= -\varrho_0 \omega v_{\Im} + \nabla p_{\Re} - f_{\Re} = 0 \\ \operatorname{res}_{mom,\Im} &:= -\varrho_0 \omega v_{\Re} + \nabla p_{\Im} - f_{\Im} = 0 \\ \operatorname{res}_{mass,\Re} &:= -\frac{1}{c_0^2} \omega p_{\Im} + \varrho_0 \nabla \cdot v_{\Re} = 0 \\ \operatorname{res}_{mass,\Im} &:= -\frac{1}{c_0^2} \omega p_{\Re} + \varrho_0 \nabla \cdot v_{\Re} = 0 \\ \operatorname{res}_{mass,\Im} &:= -\frac{1}{c_0^2} \omega p_{\Re} + \varrho_0 \nabla \cdot v_{\Im} = 0 \\ \operatorname{res}_{mass,\Im} &:= -\frac{1}{c_0^2} \omega p_{\Re} + \varrho_0 \nabla \cdot v_{\Im} = 0 \\ \operatorname{res}_{\Re} \cdot \nu = 0 \\ \operatorname{res}_{\Im} \cdot \neg = 0$$

equivalent to

$$\begin{split} & \min_{f_{\Re}, f_{\Im}, p_{\Re}, p_{\Im}, v_{\Re}, v_{\Im}} \int_{\Omega} \left(\operatorname{res}_{mom, \Re}^{2} + \operatorname{res}_{mom, \Im}^{2} + \operatorname{res}_{mass, \Re}^{2} + \operatorname{res}_{mass, \Im}^{2} \right) \, dx \\ & \text{s.t.} \quad \varrho_{0} \hat{v} \cdot \nu + \kappa \hat{p} = 0 \text{ on } \Gamma_{a} \,, \quad \hat{v} \cdot \nu = 0 \text{ on } \Gamma_{r} \\ & \hat{p}(x_{\ell}) = \hat{y}_{\ell} \,, \ \ell \in \{1, \dots, L\} \end{split}$$

Sound source localization: Regularized inverse problem inverse problem (SSL):

 $\min_{f_{\Re}, f_{\Im}, p_{\Re}, p_{\Im}, v_{\Re}, v_{\Im}} \int_{\Omega} \left(\operatorname{res}_{mom, \Re}^{2} + \operatorname{res}_{mom, \Im}^{2} + \operatorname{res}_{mass, \Re}^{2} + \operatorname{res}_{mass, \Im}^{2} \right) dx$ s.t. $\varrho_{0} \hat{v} \cdot \nu + \kappa \hat{\rho} = 0 \text{ on } \Gamma_{a}, \quad \hat{v} \cdot \nu = 0 \text{ on } \Gamma_{r}$ $\hat{\rho}(x_{\ell}) = \hat{y}_{\ell}, \ \ell \in \{1, \dots, L\}$

Sound source localization: Regularized inverse problem inverse problem (SSL):

$$\begin{split} & \min_{f_{\Re}, f_{\Im}, p_{\Re}, p_{\Im}, v_{\Re}, v_{\Im}} \int_{\Omega} \left(\operatorname{res}_{mom, \Re}^{2} + \operatorname{res}_{mom, \Im}^{2} + \operatorname{res}_{mass, \Re}^{2} + \operatorname{res}_{mass, \Im}^{2} \right) \, dx \\ & \text{s.t.} \quad \varrho_{0} \hat{v} \cdot \nu + \kappa \hat{p} = 0 \text{ on } \Gamma_{a}, \quad \hat{v} \cdot \nu = 0 \text{ on } \Gamma_{r} \\ & \hat{p}(x_{\ell}) = \hat{y}_{\ell}, \ \ell \in \{1, \dots, L\} \end{split}$$

regularization (RegSSL) (use measure norm $\|\cdot\|_{\mathcal{M}(\Omega)}$ to enhance sparsity):

 \sim special case of regularization with constraint on data misfit (RdmC)

Regularized sound source loc.: Function space setting

 $q = (f_{\Re}, f_{\Im}), \qquad u = (p_{\Re}, p_{\Im}, v_{\Re}, v_{\Im}), \qquad y = (y_1, \dots, y_L)$

 $\Omega_{mic} \subseteq \Omega$, Ω_{mic} open $X = \{(f_{\Re}, f_{\Im}) \in L^{2}(\Omega)^{6} : \operatorname{suppess}(f_{\Re}), \operatorname{suppess}(f_{\Im}) \subseteq \Omega \setminus \Omega_{mic}\}$ $Y = \mathbb{R}^{L}$ $V = \{(p_{\Re}, p_{\Im}, v_{\Re}, v_{\Im}) \in H^{1}(\Omega)^{2} \times H(\operatorname{div}, \Omega) \ (p_{\Re}, p_{\Im})|_{\Omega_{min}} \in H^{2}(\Omega_{mic})^{2} \subseteq C(\Omega_{mic})^{2}$ $\rho_0 \hat{\mathbf{v}} \cdot \mathbf{v} + \kappa \hat{\mathbf{p}} = 0$ in $H^{-1/2}(\Gamma_a)^2$, $\hat{\mathbf{v}} \cdot \mathbf{v} = 0$ in $H^{-1/2}(\Gamma_r)$ $W = L^2(\Omega)^8$ $A(q, u) = (\operatorname{res}_{mom,\Re}, \operatorname{res}_{mom,\Im}, \operatorname{res}_{mass,\Re}, \operatorname{res}_{mass,\Im}),$ $C = (\delta_{x_1} \dots \delta_{x_\ell})$ (point evaluation at the microphones) $Q(w) = \frac{1}{2} \|w\|_{L^2(\Omega)^L}^2$ $\mathcal{R}_1(q, u) = \|(f_{\Re}, f_{\Im}, p_{\Re}, p_{\Im}, v_{\Re}, v_{\Im})\|_{L^2(\Omega)^{14}}^2$ $\mathcal{R}_2(q, u) = \mathcal{R}_2(q) = \| (\nabla \cdot f_{\Re}, \nabla \cdot f_{\Im}) \|_{\mathcal{M}(\Omega)^2}$

$$\mathcal{S}(y,\widetilde{y}) = \max_{\ell \in \{1,...,L\}} |y_\ell - \widetilde{y}_\ell|$$

Regularized sound source localization: well-definedness, convergence

$$\begin{split} &(f_{\Re,n}, f_{\Im,n}, p_{\Re,n}, p_{\Im,n}, v_{\Re,n}, v_{\Im,n}) \xrightarrow{\mathcal{T}} (f_{\Re}, f_{\Im}, p_{\Re}, p_{\Im}, v_{\Re}, v_{\Im}) \Leftrightarrow \\ & \begin{cases} (\nabla \cdot f_{\Re,n}, \nabla \cdot f_{\Im,n}) \xrightarrow{\simeq} (\nabla \cdot f_{\Re}, \nabla \cdot f_{\Im}) \text{ in } \mathcal{M}(\Omega) \text{ and } (f_{\Re,n}, f_{\Im,n}) \xrightarrow{\sim} (f_{\Re}, f_{\Im}) \text{ in } L^{2}(\Omega), \\ (p_{\Re,n}, p_{\Im,n}) \xrightarrow{\sim} (p_{\Re}, p_{\Im}) \text{ in } H^{1}(\Omega)^{2} \\ (v_{\Re,n}, v_{\Im,n}) \xrightarrow{\sim} (v_{\Re}, v_{\Im}) \text{ in } H(\operatorname{div}, \Omega)^{2} \\ (p_{\Re,n}, p_{\Im,n})|_{\Omega_{mic}} \xrightarrow{\sim} (p_{\Re}, p_{\Im})|_{\Omega_{mic}} \text{ in } H^{2}(\Omega_{mic})^{2} \end{split}$$

Corollary

For each $y^{\delta} \in Y$ and $\alpha > 0$ a minimizer of (RegSSL) exists. Let $S(y, y^{\delta}) \leq \delta$ and $||y^{\delta} - y||_{Y} \to 0$ as $\delta \to 0$, and choose $\alpha = \alpha(\delta, y^{\delta}) > 0$ such that $\alpha(\delta, y^{\delta}) \to 0$ as $\delta \to 0$. Then, as $\delta \to 0$, $y^{\delta} \to y$, the family $(f^{\delta}_{\alpha(\delta, y^{\delta})}, \hat{p}^{\delta}_{\alpha(\delta, y^{\delta})}, \hat{v}^{\delta}_{\alpha(\delta, y^{\delta})})_{\delta \in (0,\bar{\delta}]}$ has a T convergent subsequence and the limit of every T convergent subsequence solves (SSL).

Remarks on sound source localization example

- Hilbert spaces X, V for design variables q, u (easier applicability of iterative minimization methods).
- cost function: J^{δ} differentiable;
- constraints: pointwise bounds can be efficiently implemented [Hungerländer, BK and Rendl 2020];
- first order least squares formulation of the PDE model;
- Euler-Lagrange equation for unregularized problem yields second order PDE model $-\frac{\omega^2}{c_c^2}\hat{p} \Delta p = 0$;
- due to finite dimensional data space partial data inversion can be employed, see [Huynh and BK, 2020].

numerical results for sound source localization

Computational setup

- Simplified SAE Type 4 Body^[5]
- Two acoustic sources with equal intensity
 - · Near the side mirror and near the wheel housing
 - Frequency of 500 Hz

^[1]Society of Automotive Engineers: Aerodynamic Testing of Road Vehicles in Open Jet Wind Tunnels. SAE Special Publication 1465 (1999).

- Realistic pressure values at the microphone positions
 - Forward simulation on a much finer computational grid as then used in the identification process
 - 4.6 million degrees of freedoms in contrast to 0.5 million
 - PML was twice as thick than on the coarse grid
 - Random noise was added (SNR of 26 dB)
 - Microphone positions on the fine and coarse differ slightly
 - Original source distribution

□ Three different microphone configurations have been considered

numerical experiments for a model problem

Identify spatially varying coefficient c in

$$\begin{aligned} -\Delta + cu &= b \text{ in } (-1,1)^2 \\ \text{with homogeneous} \begin{cases} \text{Dirichlet} \\ \text{Neumann} \end{cases} \text{ boundary data on} \begin{cases} \{-1,1\} \times (-1,1) \\ (-1,1) \times \{-1,1\} \end{cases} \\ \text{from interior observations of } u. \end{aligned}$$

Identify spatially varying coefficient c in

$$\begin{split} & -\Delta + cu = b \text{ in } (-1,1)^2 \\ \text{with homogeneous} \begin{cases} \text{Dirichlet} \\ \text{Neumann} \end{cases} \text{ boundary data on} \begin{cases} \{-1,1\} \times (-1,1) \\ (-1,1) \times \{-1,1\} \end{cases} \\ \text{from interior observations of } u. \\ & \min_{c,u} \|-\Delta + cu - b\|_{H^{-1}}^2 \text{ s.t. } -\tau \delta \leq u(x) - y^\delta \leq \tau \delta \text{ , } \underline{c} \leq c(x) \leq \overline{c} \text{ a.e.} \end{cases}$$

4 🗆 🕨 4 🗇 🕨 4 🖻 🕨 4 🖻 🕨

Identify spatially varying coefficient c in

$$\begin{aligned} -\Delta + cu &= b \text{ in } (-1,1)^2 \\ \text{with homogeneous} \begin{cases} \text{Dirichlet} \\ \text{Neumann} \end{cases} \text{boundary data on} \begin{cases} \{-1,1\} \times (-1,1) \\ (-1,1) \times \{-1,1\} \end{cases} \\ \text{from interior observations of } u. \\ \\ \underset{c,u}{\min} \|-\Delta + cu - b\|_{H^{-1}}^2 \quad \text{s.t.} \quad -\tau\delta \leq u(x) - y^\delta \leq \tau\delta , \ \underline{c} \leq c(x) \leq \overline{c} \text{ a.e.} \end{cases} \\ \\ \text{test 1: } c_{ex}(x,y) = 1 + 10 \cdot \mathbf{1}_{B_1} \qquad \underline{c} = 1, \qquad \overline{c} = 11, \\ \\ \text{test 2: } c_{ex}(x,y) = 1 - 10 \cdot \mathbf{1}_{B_1} + 5 \cdot \mathbf{1}_{B_2} \quad \underline{c} = -9, \qquad \overline{c} = 6, \\ \\ \text{test 3: } c_{ex}(x,y) = -10 \cdot \mathbf{1}_{B_1} - 5 \cdot \mathbf{1}_{B_2} \qquad \underline{c} = -10, \quad \overline{c} = 0, \end{aligned}$$

A 🗸 🖓

3

I I I I I

Identify spatially varying coefficient c in

$$\begin{aligned} -\Delta + cu &= b \text{ in } (-1,1)^2 \\ \text{with homogeneous} \begin{cases} \text{Dirichlet} \\ \text{Neumann} \end{cases} \text{ boundary data on} \begin{cases} \{-1,1\} \times (-1,1) \\ (-1,1) \times \{-1,1\} \end{cases} \\ \text{from interior observations of } u. \\ \min_{c,u} \|-\Delta + cu - b\|_{H^{-1}}^2 \text{ s.t. } -\tau \delta &\leq u(x) - y^\delta \leq \tau \delta , \ \underline{c} \leq c(x) \leq \overline{c} \text{ a.e.} \end{cases}$$

. 0

test 1:
$$c_{ex}(x, y) = 1 + 10 \cdot \mathbf{I}_{B_1}$$
 $\underline{c} = 1$, $\overline{c} = 11$,
test 2: $c_{ex}(x, y) = 1 - 10 \cdot \mathbf{I}_{B_1} + 5 \cdot \mathbf{I}_{B_2}$ $\underline{c} = -9$, $\overline{c} = 6$,
test 3: $c_{ex}(x, y) = -10 \cdot \mathbf{I}_{B_1} - 5 \cdot \mathbf{I}_{B_2}$ $\underline{c} = -10$, $\overline{c} = 0$,

- $B_1 = B_{0,2}(-0.4, -0.3), B_2 = B_{0,1}(0.5, 0.5)$
- piecewise linear/constant FE discretization of u/c
- Gauss-Newton method starting at $c_0 \equiv \frac{1}{2}(\underline{c} + \overline{c})$

• stopping criterion
$$\frac{J(x_k^{\delta}, u_k^{\delta})}{J(x_0, u_0)} < 1.e - 5$$

4 🗆 K 4 🗐 K 4 🗏 K 4 🗏 K
Test 1

Figure: left: exact coefficient c_{ex} ; $\underline{c} = 1$, $\overline{c} = 11$ right: locations of spots for testing weak * L^{∞} convergence

3 1 4 3 1

A D > A A + A

Comparison

- mkr_box ... recursive globalization of semismooth Newton
- mSN2_box ... combinatorial globalization of semismooth Newton
- quadprog (Matlab) with trust-region-reflective (subspace trust-region method based on interior-reflective Newton [Coleman&Li'96]

	quadprog	mSN2_box	mkr_box
k	5	4	4
$\frac{J(x_k^{\delta}, u_k^{\delta})}{J(x_0, u_0)}$	4.6671e-06	9.8449e-06	9.8449e-06
err _{spot1}	3.7548e-13	0	0
err _{spot2}	5.1669e-06	0	0
err _{spot3}	0.5280	1.3360	1.3360
$\operatorname{err}_{L^1(\Omega)}$	0.0882	0.0972	0.0972
CPU	30.77	35.22	6.55

k... number of Gauss-Newton steps

Convergence as $\delta \rightarrow \mathbf{0}$

δ	0.001	0.01	0.1
err _{spot1}	0	0	0
err _{spot2}	0	0.7960	4.8689
err _{spot3}	1.0840	2.1512	2.5862
$\operatorname{err}_{L^1(\Omega)}$	0.1472	0.2136	0.3671

Table: Averaged errors of five test runs on each noise level, with random uniform noise

(using mkr_box)

▲ (□) ► < (□) ► < (□) ►

4 11 1

Test 2

Figure: left: exact coefficient c_{ex} ; $\underline{c} = -9$, $\overline{c} = 6$ right: locations of spots for testing weak * L^{∞} convergence

3 1 4 3 1

A D > A A + A

Test 3

Figure:

left: exact coefficient c_{ex} ; $\underline{c} = -10$, $\overline{c} = 0$ right: locations of spots for testing weak * L^{∞} convergence

3 1 4 3 1

A D > A A + A

• Convergence analysis for a nonstandard variational regularization of a variational formulation

- Convergence analysis for a nonstandard variational regularization of a variational formulation
- for EIT

- Convergence analysis for a nonstandard variational regularization of a variational formulation
- for EIT
- for sound source localization

4 D b

- Convergence analysis for a nonstandard variational regularization of a variational formulation
- for EIT
- for sound source localization
- \rightarrow iterative methods

A D A D A D A

- Convergence analysis for a nonstandard variational regularization of a variational formulation
- for EIT
- for sound source localization
- \rightarrow iterative methods
- $\rightarrow\,$ other applications (e.g., distributed or nonlinear permeabilities in magnetostatics, Lamé parameters in elastostatics, cracks)

- **A A B A B A**

Thank you for your attention!

Ph. Hungerländer and F. Rendl,

A feasible active set method for strictly convex problems with simple bounds, SIAM J. Opt., 25 (2015).

Ph. Hungerländer, B. Kaltenbacher, and F Rendl.

Regularization of inverse problems via box constrained minimization. Inverse Problems and Imaging, 14 (2020)

Kha Van Huynh and B. Kaltenbacher.

Some application examples of minimization based formulations of inverse problems and their regularization submitted (2020)

B. Kaltenbacher.

Regularization based on all-at-once formulations for inverse problems. SIAM J. Numer. Anal., 54 (2016)

B. Kaltenbacher.

All-at-once versus reduced iterative methods for time dependent inverse problems. *Inverse Problems*, 33, (2017).

B. Kaltenbacher.

Minimization based formulations of inverse problems and their regularization. SIAM J. Opt., 28 (2018).

B. Kaltenbacher, A. Kirchner, and B. Vexler.

Goal oriented adaptivity in the IRGNM for parameter identification in PDEs II: all-at once formulations. *Inverse Problems*, 30, (2014).

S. Kindermann,

Convergence of the gradient method for ill-posed problems, Inverse Problems and Imaging 4 (2017).