Solving Inverse Problems

without using Forward Operators

Part II: Minimization Based Formulations

Barbara Kaltenbacher

Alpen-Adria-Universität Klagenfurt

joint work with

Kha Van Huynh, Philipp Hungerländer, and Franz Rendl, AAU Stefan Gombots and Manfred Kaltenbacher, TU Vienna/Graz

Woudschoten Conference, October 7, 2021

Modeling - Analysis - Optimization
UNIVERSITÄT KLAGENFURT

Outline

- minimization based formulation and regularization of inverse problems
- examples
- numerical results

FUF

Der Wissenschaftsfonds.
FWF project P30054
Solving Inverse Problems without Forward Operators

examples

Parameter Identification in Differential Equations:

Some Examples

- Identify spatially varying coefficients/source a, b, c in linear elliptic boundary value problem on $\Omega \subseteq \mathbb{R}^{d}, d \in\{1,2,3\}$

$$
-\nabla(a \nabla u)+c u=b \text { in } \Omega, \quad \frac{\partial u}{\partial n}=g \text { on } \partial \Omega
$$

from boundary or (restricted) interior observations of u.

- e.g. EIT: identify conductivity σ in

$$
-\nabla\left(\sigma \nabla \phi_{i}\right)=0 \text { in } \Omega
$$

from boundary observations
current $j_{i}=-\sigma \frac{\partial \phi_{i}}{\partial n}$ and voltage $v=\phi_{i}$ on $\partial \Omega \quad i \in\{1, \ldots l\}$

- Identify parameter ϑ in initial value problem for ODE / PDE

$$
\dot{u}(t)=f(t, u(t), \vartheta) t \in(0, T), \quad u(0)=u_{0}
$$

from discrete of continuous observations of u.

$$
y_{i}=g_{i}\left(u\left(t_{i}\right)\right), i \in\{1, \ldots, m\} \text { or } y(t)=g(t, y(t)), t \in(0, T)
$$

Parameter Identification in Differential Equations:

Some Examples

- Identify spatially varying coefficients/source a, b, c in linear elliptic boundary value problem on $\Omega \subseteq \mathbb{R}^{d}, d \in\{1,2,3\}$

$$
-\nabla(a \nabla u)+c u=b \text { in } \Omega, \quad \frac{\partial u}{\partial n}=g \text { on } \partial \Omega
$$

from boundary or (restricted) interior observations of u.

- e.g. EIT: identify conductivity σ in

$$
-\nabla\left(\sigma \nabla \phi_{i}\right)=0 \text { in } \Omega
$$

from boundary observations
current $j_{i}=-\sigma \frac{\partial \phi_{i}}{\partial n}$ and voltage $v=\phi_{i}$ on $\partial \Omega \quad i \in\{1, \ldots l\}$

- Identify parameter ϑ in initial value problem for ODE / PDE

$$
\dot{u}(t)=f(t, u(t), \vartheta) t \in(0, T), \quad u(0)=u_{0}
$$

from discrete of continuous observations of u.

$$
y_{i}=g_{i}\left(u\left(t_{i}\right)\right), i \in\{1, \ldots, m\} \text { or } y(t)=g(t, y(t)), t \in(0, T)
$$

Abstract Formulation as Operator Equation Identify parameter q in (PDE or ODE) model
 $$
A(q, u)=0
$$

from observations of the state u

$$
C(u)=y,
$$

where $q \in X, u \in V, y \in Y, X, V, Y \ldots$ Hilbert (Banach) spaces $A: X \times V \rightarrow W^{*}$...differential operator $C: V \rightarrow Y \ldots$ observation operator

Abstract Formulation as Operator Equation

Identify parameter q in (PDE or ODE) model

$$
A(q, u)=0
$$

from observations of the state u

$$
C(u)=y,
$$

where $q \in X, u \in V, y \in Y, X, V, Y \ldots$ Hilbert (Banach) spaces $A: X \times V \rightarrow W^{*} \ldots$ differential operator
$C: V \rightarrow Y \ldots$ observation operator

- reduced approach: operator equation for q

$$
\begin{gathered}
F(q)=y \\
F=C \circ S \text { with } S: X \rightarrow V, q \mapsto u \text { parameter-to-state map }
\end{gathered}
$$

Abstract Formulation as Operator Equation

Identify parameter q in (PDE or ODE) model

$$
A(q, u)=0
$$

from observations of the state u

$$
C(u)=y,
$$

where $q \in X, u \in V, y \in Y, X, V, Y \ldots$ Hilbert (Banach) spaces $A: X \times V \rightarrow W^{*} \ldots$ differential operator
$C: V \rightarrow Y \ldots$ observation operator

- reduced approach: operator equation for q

$$
\begin{gathered}
F(q)=y \\
F=C \circ S \text { with } S: X \rightarrow V, q \mapsto u \text { parameter-to-state map }
\end{gathered}
$$

- all-at once approach: observations - model system for (q, u)

$$
\begin{aligned}
A(q, u) & =0 \text { in } W^{*} \\
C(u) & =y \text { in } Y
\end{aligned} \Leftrightarrow \mathbf{F}(q, u)=\mathbf{y}
$$

Abstract Formulation as Operator Equation

Identify parameter q in (PDE or ODE) model

$$
A(q, u)=0
$$

from observations of the state u

$$
C(u)=y,
$$

where $q \in X, u \in V, y \in Y, X, V, Y \ldots$ Hilbert (Banach) spaces $A: X \times V \rightarrow W^{*} \ldots$ differential operator
$C: V \rightarrow Y \ldots$ observation operator

- reduced approach: operator equation for q

$$
\begin{gathered}
F(q)=y \\
F=C \circ S \text { with } S: X \rightarrow V, q \mapsto u \text { parameter-to-state map }
\end{gathered}
$$

- all-at once approach: observations - model system for (q, u)

$$
\begin{aligned}
A(q, u) & =0 \text { in } W^{*} \\
C(u) & =y \text { in } Y
\end{aligned} \Leftrightarrow \mathbf{F}(q, u)=\mathbf{y}
$$

- minimization based approach ...

minimization based formulation of inverse problems

Abstract Formulation as Operator Equation

Identify parameter q in (PDE or ODE) model

$$
A(q, u)=0
$$

from observations of the state u

$$
C(u)=y,
$$

where $q \in X, u \in V, y \in Y, X, V, Y \ldots$ Hilbert (Banach) spaces $A: X \times V \rightarrow W^{*} \ldots$ differential operator
$C: V \rightarrow Y \ldots$ observation operator

- reduced approach: operator equation for q

$$
\begin{gathered}
F(q)=y \\
F=C \circ S \text { with } S: X \rightarrow V, q \mapsto u \text { parameter-to-state map }
\end{gathered}
$$

- all-at once approach: observations-model system for (q, u)

$$
\begin{aligned}
A(q, u) & =0 \text { in } W^{*} \\
C(u) & =y \text { in } Y
\end{aligned} \Leftrightarrow \mathbf{F}(q, u)=\mathbf{y}
$$

- minimization based approach ...

Abstract Formulation as Minimization Problem: Basic Idea

$$
F(q)=y \quad \text { i.e., } \quad\left\{\begin{array}{l}
A(q, u)=0 \\
C(u)=y
\end{array}\right.
$$

Abstract Formulation as Minimization Problem: Basic Idea

$$
F(q)=y \quad \text { i.e., } \quad\left\{\begin{array}{l}
A(q, u)=0 \\
C(u)=y
\end{array}\right.
$$

is equivalent to

$$
\min _{q}\|F(q)-y\|^{2}
$$

Abstract Formulation as Minimization Problem: Basic Idea

$$
F(q)=y \quad \text { i.e., } \quad\left\{\begin{array}{l}
A(q, u)=0 \\
C(u)=y
\end{array}\right.
$$

is equivalent to

$$
\min _{q}\|F(q)-y\|^{2}
$$

or equivalent to

$$
\min _{q, u}\|C(u)-y\|^{2}+\|A(q, u)\|^{2}
$$

Abstract Formulation as Minimization Problem: Basic Idea

$$
F(q)=y \quad \text { i.e., } \quad\left\{\begin{array}{l}
A(q, u)=0 \\
C(u)=y
\end{array}\right.
$$

is equivalent to

$$
\min _{q}\|F(q)-y\|^{2}
$$

or equivalent to

$$
\min _{q, u}\|C(u)-y\|^{2}+\|A(q, u)\|^{2}
$$

or equivalent to

$$
\min _{q, u}\|C(u)-y\|^{2} \text { s.t. } A(q, u)=0
$$

Abstract Formulation as Minimization Problem: Basic Idea

$$
F(q)=y \quad \text { i.e., } \quad\left\{\begin{array}{l}
A(q, u)=0 \\
C(u)=y
\end{array}\right.
$$

is equivalent to

$$
\min _{q}\|F(q)-y\|^{2}
$$

or equivalent to

$$
\min _{q, u}\|C(u)-y\|^{2}+\|A(q, u)\|^{2}
$$

or equivalent to

$$
\min _{q, u}\|C(u)-y\|^{2} \text { s.t. } A(q, u)=0
$$

or equivalent to

$$
\min _{q, u}\|A(q, u)\|^{2} \text { s.t. } C(u)=y
$$

Abstract Formulation as Minimization Problem: Basic Idea

$$
F(q)=y \quad \text { i.e., } \quad\left\{\begin{array}{l}
A(q, u)=0 \\
C(u)=y
\end{array}\right.
$$

is equivalent to

$$
\min _{q}\|F(q)-y\|^{2}
$$

or equivalent to

$$
\min _{q, u}\|C(u)-y\|^{2}+\|A(q, u)\|^{2}
$$

or equivalent to

$$
\min _{q, u}\|C(u)-y\|^{2} \text { s.t. } A(q, u)=0
$$

or equivalent to

$$
\min _{q, u}\|A(q, u)\|^{2} \text { s.t. } C(u)=y
$$

... and beyond, e.g., variational formulation of EIT [Kohn\&Vogelius'87]

Abstract Formulation as Minimization Problem: Basic Idea

$$
F(q)=y \quad \text { i.e., } \quad\left\{\begin{array}{l}
A(q, u)=0 \\
C(u)=y
\end{array}\right.
$$

is equivalent to

$$
\min _{q}\|F(q)-y\|^{2}
$$

or equivalent to

$$
\min _{q, u}\|C(u)-y\|^{2}+\|A(q, u)\|^{2}
$$

or equivalent to

$$
\min _{q, u}\|C(u)-y\|^{2} \text { s.t. } A(q, u)=0
$$

or equivalent to

$$
\min _{q, u}\|A(q, u)\|^{2} \text { s.t. } C(u)=y
$$

.... and beyond, e.g., variational formulation of EIT [Kohn\&Vogelius'87]
....and several other application examples, see below.

Formulation and Regularization via Minimization

 inverse problem:$$
(q, u) \in \operatorname{argmin}\left\{\mathcal{J}(q, u ; y):(q, u) \in M_{\mathrm{ad}}(y)\right\}
$$

Formulation and Regularization via Minimization

 inverse problem:$$
(q, u) \in \operatorname{argmin}\left\{\mathcal{J}(q, u ; y):(q, u) \in M_{\mathrm{ad}}(y)\right\}
$$

$y^{\delta} \ldots$ perturbed measured data; noise level $\mathcal{S}\left(y, y^{\delta}\right) \leq \delta$ inverse problem is ill-posed: minimizer does not depend continuiously on y

Formulation and Regularization via Minimization

 inverse problem:$$
(q, u) \in \operatorname{argmin}\left\{\mathcal{J}(q, u ; y):(q, u) \in M_{\mathrm{ad}}(y)\right\}
$$

$y^{\delta} \ldots$ perturbed measured data; noise level $\mathcal{S}\left(y, y^{\delta}\right) \leq \delta$ inverse problem is ill-posed: minimizer does not depend continuiously on y
\rightsquigarrow regularized inverse problem:

$$
\left(q_{\alpha}^{\delta}, u_{\alpha}^{\delta}\right) \in \operatorname{argmin}\left\{\mathcal{J}\left(q, u ; y^{\delta}\right)+\alpha \cdot \mathcal{R}(q, u):(q, u) \in M_{\mathrm{ad}}^{\delta}\left(y^{\delta}\right)\right\}
$$

regularize by

- adding penalties (Tikhonov type) and/or
- imposing constraints (Ivanov type)

Formulation and Regularization via Minimization

 inverse problem:$$
(q, u) \in \operatorname{argmin}\left\{\mathcal{J}(q, u ; y):(q, u) \in M_{\mathrm{ad}}(y)\right\}
$$

$y^{\delta} \ldots$ perturbed measured data; noise level $\mathcal{S}\left(y, y^{\delta}\right) \leq \delta$ inverse problem is ill-posed: minimizer does not depend continuiously on y
\rightsquigarrow regularized inverse problem:

$$
\left(q_{\alpha}^{\delta}, u_{\alpha}^{\delta}\right) \in \operatorname{argmin}\left\{\mathcal{J}\left(q, u ; y^{\delta}\right)+\alpha \cdot \mathcal{R}(q, u):(q, u) \in M_{\mathrm{ad}}^{\delta}\left(y^{\delta}\right)\right\}
$$

regularize by

- adding penalties (Tikhonov type) and/or
- imposing constraints (Ivanov type)
treat data misfit by
- penalty term in cost function (Tikhonov type) or
- constraint (Morozov type)

Regularization with data misfit Penalization

 inverse problem (IP):$$
\begin{aligned}
& \min _{(q, u) \in X \times V} \mathcal{S}(C(u), y)+\mathcal{Q}(A(q, u)) \\
& \quad \text { s.t. }(q, u) \in M_{\mathrm{ad}}(y)=X \times V
\end{aligned}
$$

regularization (RdmP):

$$
\begin{aligned}
& \min _{(q, u) \in X \times V} \mathcal{S}\left(C(u), y^{\delta}\right)+\mathcal{Q}(A(q, u))+\alpha \cdot \mathcal{R}(q, u) \\
& \quad \text { s.t. }(q, u) \in M_{\mathrm{ad}}^{\delta}\left(y^{\delta}\right)=\{(q, u) \in X \times V: \widetilde{\mathcal{R}}(q, u) \leq \rho\} .
\end{aligned}
$$

where $\mathcal{S}: Y \times Y \rightarrow \overline{\mathbb{R}}, \mathcal{Q}: W \rightarrow \overline{\mathbb{R}}$ are positive definite functionals

$$
\begin{gathered}
\forall y_{1}, y_{2} \in Y: \quad \mathcal{S}\left(y_{1}, y_{2}\right) \geq 0 \quad \text { and } \quad\left(y_{1}=y_{2} \Leftrightarrow \mathcal{S}\left(y_{1}, y_{2}\right)=0\right), \\
\forall w \in W: \quad \mathcal{Q}(w) \geq 0 \quad \text { and } \quad(w=0 \Leftrightarrow \mathcal{Q}(w)=0) .
\end{gathered}
$$

e.g., just norms or derived from statistical noise model

Regularization with data misfit Constraint

 inverse problem (IP):$$
\begin{array}{ll}
& \min _{(q, u) \in X \times V} \mathcal{Q}(A(q, u)) \\
\text { s.t. } & (q, u) \in M_{\mathrm{ad}}(y)=\{(q, u) \in X \times V: C(u)=y\},
\end{array}
$$

regularization (RdmC):

$$
\begin{aligned}
& \min _{(q, u) \in X \times V} \mathcal{Q}(A(q, u))+\alpha \cdot \mathcal{R}(q, u) \\
& \quad \text { s.t. }(q, u) \in M_{\mathrm{ad}}^{\delta}\left(y^{\delta}\right)=\left\{(q, u) \in X \times V: \mathcal{S}\left(C(u), y^{\delta}\right) \leq \tau \delta\right. \\
& \quad \text { and } \widetilde{\mathcal{R}}(q, u) \leq \rho\} .
\end{aligned}
$$

where $\mathcal{S}: Y \times Y \rightarrow \overline{\mathbb{R}}, \mathcal{Q}: W \rightarrow \overline{\mathbb{R}}$ are positive definite functionals

$$
\begin{gathered}
\forall y_{1}, y_{2} \in Y: \quad \mathcal{S}\left(y_{1}, y_{2}\right) \geq 0 \quad \text { and } \quad\left(y_{1}=y_{2} \Leftrightarrow \mathcal{S}\left(y_{1}, y_{2}\right)=0\right), \\
\forall w \in W: \quad \mathcal{Q}(w) \geq 0 \quad \text { and } \quad(w=0 \Leftrightarrow \mathcal{Q}(w)=0) .
\end{gathered}
$$

e.g., just norms or derived from statistical noise model

examples

The variational approach to EIT

see, e.g., [Kohn\&Vogelius'87, Kohn\&McKenny'90, Knowles'98]

The reduced formulation of EIT

identify conductivity σ in

$$
-\nabla\left(\sigma \nabla \phi_{i}\right)=0 \text { in } \Omega
$$

from boundary observations
current $j_{i}=-\sigma \frac{\partial \phi_{i}}{\partial n}$ and voltage $v=\phi_{i}$ on $\partial \Omega \quad i \in\{1, \ldots l\}$

The reduced formulation of EIT

identify conductivity σ in

$$
\begin{equation*}
-\nabla(\sigma \nabla \phi)=0 \text { in } \Omega \tag{*}
\end{equation*}
$$

from Neumann-Dirichlet operator
$\Lambda_{\sigma}:\left.j \mapsto \phi\right|_{\partial \Omega}$ where ϕ solves $(*)$ with $\sigma \frac{\partial \phi}{\partial n}=j$ on $\partial \Omega, \int_{\partial \Omega} \phi d s=0$
(Calderón problem)

The variational approach to EIT

see, e.g., [Kohn\&Vogelius'87, Kohn\&McKenny'90, Knowles'98]

The variational approach to EIT

see, e.g., [Kohn\&Vogelius'87, Kohn\&McKenny'90, Knowles'98] Identify spatially distributed conductivity σ in $\Omega \subseteq \mathbb{R}^{2}$

$$
\nabla \cdot J_{i}=0, \quad \nabla^{\perp} \cdot E_{i}=0, \quad J_{i}=\sigma E_{i} \quad \text { in } \Omega, \quad i=1, \ldots, l,
$$

(with $\nabla^{\perp} \psi=\left(-\frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{1}}\right)^{T}$ so that ∇^{\perp}. $=$ curl)
from observations of boundary currents j_{i} and voltages v_{i}.

The variational approach to EIT

see, e.g., [Kohn\&Vogelius'87, Kohn\&McKenny'90, Knowles'98] Identify spatially distributed conductivity σ in $\Omega \subseteq \mathbb{R}^{2}$

$$
\nabla \cdot J_{i}=0, \quad \nabla^{\perp} \cdot E_{i}=0, \quad J_{i}=\sigma E_{i} \quad \text { in } \Omega, \quad i=1, \ldots, l
$$

(with $\nabla^{\perp} \psi=\left(-\frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{1}}\right)^{T}$ so that ∇^{\perp}. $=$ curl)
from observations of boundary currents j_{i} and voltages v_{i}.
Using potentials ϕ_{i} and ψ_{i}
for current densities J_{i} and electric fields E_{i}

$$
J_{i}=-\nabla^{\perp} \psi_{i}, \quad E_{i}=-\nabla \phi_{i}, \quad i=1, \ldots, l,
$$

we can rewrite the problem as

$$
\sqrt{\sigma} \nabla \phi_{i}=\frac{1}{\sqrt{\sigma}} \nabla^{\perp} \psi_{i} \text { in } \Omega ; \psi_{i}=\gamma_{i}, \phi_{i}=v_{i} \text { on } \partial \Omega, i=1, \ldots, l,
$$

where $\gamma_{i}(x(s))=-\int_{0}^{s} j_{i}(x(r)) d r$ for $\partial \Omega=\{x(s): s \in(0$, length $(\partial \Omega))\}$.

The variational approach to EIT

$$
\sqrt{\sigma} \nabla \phi_{i}=\frac{1}{\sqrt{\sigma}} \nabla^{\perp} \psi_{i} \text { in } \Omega, \quad \psi_{i}=\gamma_{i}, \phi_{i}=v_{i} \text { on } \partial \Omega, \quad i=1, \ldots, l
$$

The variational approach to EIT

$$
\sqrt{\sigma} \nabla \phi_{i}=\frac{1}{\sqrt{\sigma}} \nabla^{\perp} \psi_{i} \text { in } \Omega, \quad \psi_{i}=\gamma_{i}, \phi_{i}=v_{i} \text { on } \partial \Omega, \quad i=1, \ldots, l,
$$

equivalent to

$$
\begin{aligned}
& \min _{\sigma, \phi, \psi} \sum_{i=1}^{1} \frac{1}{2} \int_{\Omega}\left|\sqrt{\sigma} \nabla \phi_{i}-\frac{1}{\sqrt{\sigma}} \nabla^{\perp} \psi_{i}\right|^{2} d x \\
& \text { s.t. } \psi_{i}=\gamma_{i}, \phi_{i}=v_{i} \text { on } \partial \Omega, \quad i=1, \ldots, l
\end{aligned}
$$

The variational approach to EIT

$\sqrt{\sigma} \nabla \phi_{i}=\frac{1}{\sqrt{\sigma}} \nabla^{\perp} \psi_{i}$ in $\Omega, \quad \psi_{i}=\gamma_{i}, \phi_{i}=v_{i}$ on $\partial \Omega, \quad i=1, \ldots, l$,
equivalent to

$$
\begin{aligned}
& \min _{\sigma, \phi, \psi} \sum_{i=1}^{l} \frac{1}{2} \int_{\Omega}\left|\sqrt{\sigma} \nabla \phi_{i}-\frac{1}{\sqrt{\sigma}} \nabla^{\perp} \psi_{i}\right|^{2} d x \\
& \text { s.t. } \psi_{i}=\gamma_{i}, \phi_{i}=v_{i} \text { on } \partial \Omega, \quad i=1, \ldots, l
\end{aligned}
$$

equivalent to (since $\int_{\Omega} \nabla \phi_{i} \cdot \nabla^{\perp} \psi_{i} d x=\int_{\partial \Omega} v_{i} j_{i} d x$)

$$
\begin{aligned}
& \min _{\sigma, \phi, \psi} \sum_{i=1}^{l} \frac{1}{2} \int_{\Omega}\left(\sigma\left|\nabla \phi_{i}\right|^{2}+\frac{1}{\sigma}\left|\nabla^{\perp} \psi_{i}\right|^{2}\right) d x \\
& \text { s.t. } \psi_{i}=\gamma_{i}, \phi_{i}=v_{i} \text { on } \partial \Omega, \quad i=1, \ldots, l
\end{aligned}
$$

Regularized variational EIT

inverse problem (EIT):

$$
\begin{aligned}
& \min _{\sigma, \phi, \psi} \sum_{i=1}^{l} \frac{1}{2} \int_{\Omega}\left|\sqrt{\sigma} \nabla \phi_{i}-\frac{1}{\sqrt{\sigma}} \nabla^{\perp} \psi_{i}\right|^{2} d x \\
& \text { s.t. } \psi_{i}=\gamma_{i}, \phi_{i}=v_{i} \text { on } \partial \Omega, \quad i=1, \ldots, l
\end{aligned}
$$

Regularized variational EIT

 inverse problem (EIT):$$
\begin{aligned}
& \min _{\sigma, \phi, \psi} \sum_{i=1}^{l} \frac{1}{2} \int_{\Omega}\left|\sqrt{\sigma} \nabla \phi_{i}-\frac{1}{\sqrt{\sigma}} \nabla^{\perp} \psi_{i}\right|^{2} d x \\
& \text { s.t. } \psi_{i}=\gamma_{i}, \phi_{i}=v_{i} \text { on } \partial \Omega, \quad i=1, \ldots, l
\end{aligned}
$$

regularization (RegEIT):
$\min _{\sigma, \Phi, \Psi} \sum_{i=1}^{\prime}\left\{\frac{1}{2} \int_{\Omega}\left|\sqrt{\sigma} \nabla \phi_{i}-\frac{1}{\sqrt{\sigma}} \nabla^{\perp} \psi_{i}\right|^{2} d x+\frac{\alpha}{2}\left(\left\|\phi_{i}\right\|_{H^{1+\epsilon}(\Omega)}^{2}+\left\|\psi_{i}\right\|_{H^{1+\epsilon}(\Omega)}^{2}\right)\right\}$
s.t. $\quad \underline{\sigma} \leq \sigma \leq \bar{\sigma}$ on Ω,

$$
\left.\begin{array}{l}
v_{i}^{\delta}-\tau \delta \leq \phi_{i} \leq v_{i}^{\delta}+\tau \delta, \\
\gamma_{i}^{\delta}-\tau \delta \leq \psi_{i} \leq \gamma_{i}^{\delta}+\tau \delta,
\end{array}\right\} \quad \text { on } \partial \Omega, \quad i=1, \ldots, l .
$$

\rightsquigarrow special case of regularization with constraint on data misfit (RdmC)

Regularized variational EIT: Function space setting

$$
\begin{aligned}
& q=\sigma, \quad u=\left(\phi_{1}, \ldots, \phi_{l}, \psi_{1}, \ldots, \psi_{l}\right), \quad y=\left(v_{1}, \ldots, v_{l}, \gamma_{1}, \ldots, \gamma_{l}\right) \\
& X=L^{2}(\Omega) \\
& Y=L^{\infty}(\partial \Omega)^{\prime} \times W^{1,1}(\partial \Omega)^{\prime} \\
& V=\left\{\left(\phi_{1}, \ldots, \phi_{l}, \psi_{1}, \ldots, \psi_{l}\right) \in H^{1}(\Omega)^{2 \prime}: \operatorname{tr}_{\partial \Omega}^{2 \prime}\left(\phi_{1}, \ldots, \phi_{l}, \psi_{1}, \ldots, \psi_{l}\right) \in Y\right\} \\
& W=L^{2}(\Omega)^{\prime}
\end{aligned}
$$

$$
A(q, u)=\left(\sqrt{\sigma} \nabla \phi_{1}-\frac{1}{\sqrt{\sigma}} \nabla^{\perp} \psi_{1}, \ldots, \sqrt{\sigma} \nabla \phi_{l}-\frac{1}{\sqrt{\sigma}} \nabla^{\perp} \psi_{l}\right),
$$

$$
C=\operatorname{tr}_{\partial \Omega}^{2 \prime}
$$

$$
\mathcal{Q}(w)=\frac{1}{2}\|w\|_{L^{2}(\Omega)^{\prime}}^{2}
$$

$$
\mathcal{R}(q, u)=\mathcal{R}(u)=\sum_{i=1}^{\prime}\left(\left\|\phi_{i}\right\|_{H^{1+\epsilon}(\Omega)^{2 l}}^{2}+\left\|\psi_{i}\right\|_{H^{1+\epsilon}(\Omega)^{2 l}}^{2}\right)
$$

$$
\widetilde{\mathcal{R}}(q, u)=\widetilde{\mathcal{R}}(q)=\| \sigma-\left.\frac{\bar{\sigma}+\frac{\sigma}{2}}{2}\right|_{L \infty(\Omega)}, \quad \rho=\frac{\bar{\sigma}-\underline{\sigma}}{2}
$$

$$
\mathcal{S}(y, \tilde{y})=\max _{i \in\{1, \ldots, l\}}\left\|v_{i}-\widetilde{v}_{i}\right\|_{L^{\infty}(\partial \Omega)}+\left\|\gamma_{i}-\widetilde{\gamma}_{i}\right\|_{L^{\infty}(\partial \Omega)}
$$

Regularized variational EIT: well-definedness, convergence

$$
\left(\sigma_{n}, \Phi_{n}, \Psi_{n}\right) \xrightarrow{\mathcal{T}}(\sigma, \Phi, \Psi) \Leftrightarrow\left\{\begin{array}{l}
\sigma_{n} \stackrel{*}{\rightharpoonup} \sigma \text { and } \frac{1}{\sigma_{n}} \stackrel{*}{\rightharpoonup} \frac{1}{\sigma} \text { in } L^{\infty}(\Omega), \\
\left(\Phi_{n}, \Psi_{n}\right) \rightarrow(\Phi, \Psi) \text { in } H^{1}(\Omega)^{2 \prime} \\
\left(\Phi_{n}, \Psi_{n}\right) \rightharpoonup(\Phi, \Psi) \text { in } H^{1+\epsilon}(\Omega)^{2 \prime} \\
\operatorname{tr}\left(\Phi_{n}, \Psi_{n}\right) \rightarrow \operatorname{tr}(\Phi, \Psi) \text { in } L^{\infty}(\partial \Omega)^{2 \prime}
\end{array}\right.
$$

Corollary

For each $y^{\delta} \in Y$ and $\alpha>0$ a minimizer of (RegEIT) exists.
Let $\mathcal{S}\left(y, y^{\delta}\right) \leq \delta$,
$\underline{\sigma} \leq \sigma^{\dagger} \leq \bar{\sigma}$ a.e. in Ω
and choose $\alpha=\alpha\left(\delta, y^{\delta}\right)$ such that $\alpha\left(\delta, y^{\delta}\right) \rightarrow 0$ as $\delta \rightarrow 0$.
Then, as $\left.\delta \rightarrow 0,\left(\sigma_{\alpha\left(\delta, y^{\delta}\right)}^{\delta}, \Phi_{\alpha\left(\delta, y^{\delta}\right)}^{\delta}, \Psi_{\alpha\left(\delta, y^{\delta}\right)}^{\delta}\right)\right) \xrightarrow{\mathcal{T}}\left(\sigma^{\dagger}, \Phi^{\dagger}, \Psi^{\dagger}\right)$.

Regularized variational EIT: well-definedness, convergence

$$
\left(\sigma_{n}, \Phi_{n}, \Psi_{n}\right) \xrightarrow{\mathcal{T}}(\sigma, \Phi, \Psi) \Leftrightarrow\left\{\begin{array}{l}
\sigma_{n} \stackrel{*}{\sim} \sigma \text { and } \frac{1}{\sigma_{n}} \stackrel{*}{\sim} \frac{1}{\sigma} \text { in } L^{\infty}(\Omega), \\
\left(\Phi_{n}, \Psi_{n}\right) \rightarrow(\Phi, \Psi) \text { in } H^{1}(\Omega)^{21} \\
\left(\Phi_{n}, \psi_{n}\right) \rightarrow(\Phi, \psi) \text { in } H^{1+\epsilon}(\Omega)^{21}, \\
\operatorname{tr}\left(\Phi_{n}, \psi_{n}\right) \rightarrow \operatorname{tr}(\Phi, \Psi) \text { in } L^{\infty}(\partial \Omega)^{21}
\end{array}\right.
$$

Corollary

For each $y^{\delta} \in Y$ and $\alpha>0$ a minimizer of (RegEIT) exists.
Let $\mathcal{S}\left(y, y^{\delta}\right) \leq \delta$
$\underline{\sigma} \leq \sigma^{\dagger} \leq \bar{\sigma}$ a.e. in Ω
and choose $\alpha=\alpha\left(\delta, y^{\delta}\right)$ such that $\alpha\left(\delta, y^{\delta}\right) \rightarrow 0$ as $\delta \rightarrow 0$.
Then, as $\left.\delta \rightarrow 0,\left(\sigma_{\alpha\left(\delta, y^{\delta}\right)}^{\delta}, \Phi_{\alpha\left(\delta, y^{\delta}\right)}^{\delta}, \Psi_{\alpha\left(\delta, y^{\delta}\right)}^{\delta}\right)\right) \xrightarrow{\mathcal{T}}\left(\sigma^{\dagger}, \Phi^{\dagger}, \Psi^{\dagger}\right)$

Remarks on EIT example

- Hilbert spaces X, V for design variables q, u (easier applicability of iterative minimization methods);

Remarks on EIT example

- Hilbert spaces X, V for design variables q, u (easier applicability of iterative minimization methods);
- cost function: J^{δ} differentiable;

Remarks on EIT example

- Hilbert spaces X, V for design variables q, u (easier applicability of iterative minimization methods);
- cost function: J^{δ} differentiable;
- constraints: pointwise bounds can be efficiently implemented [Hungerländer, BK and Rendl 2020] and are practically relevant in view of known a prior bounds on σ;

Remarks on EIT example

- Hilbert spaces X, V for design variables q, u (easier applicability of iterative minimization methods);
- cost function: J^{δ} differentiable;
- constraints: pointwise bounds can be efficiently implemented [Hungerländer, BK and Rendl 2020] and are practically relevant in view of known a prior bounds on σ;
- first order least squares formulation of the PDE model;

Remarks on EIT example

- Hilbert spaces X, V for design variables q, u (easier applicability of iterative minimization methods);
- cost function: J^{δ} differentiable;
- constraints: pointwise bounds can be efficiently implemented [Hungerländer, BK and Rendl 2020] and are practically relevant in view of known a prior bounds on σ;
- first order least squares formulation of the PDE model;
- Euler-Lagrange equation for unregularized problem yields second order PDE model $\nabla \cdot\left(\sigma \nabla \phi_{i}\right)=0$;

Remarks on EIT example

- Hilbert spaces X, V for design variables q, u (easier applicability of iterative minimization methods);
- cost function: J^{δ} differentiable;
- constraints: pointwise bounds can be efficiently implemented [Hungerländer, BK and Rendl 2020] and are practically relevant in view of known a prior bounds on σ;
- first order least squares formulation of the PDE model;
- Euler-Lagrange equation for unregularized problem yields second order PDE model $\nabla \cdot\left(\sigma \nabla \phi_{i}\right)=0$;
- can be extended to complete electrode model CEM [Somersalo, Cheney, and Isaacson, 1992], see [Huynh and BK, 2020];

Remarks on EIT example

- Hilbert spaces X, V for design variables q, u (easier applicability of iterative minimization methods);
- cost function: J^{δ} differentiable;
- constraints: pointwise bounds can be efficiently implemented [Hungerländer, BK and Rendl 2020] and are practically relevant in view of known a prior bounds on σ;
- first order least squares formulation of the PDE model;
- Euler-Lagrange equation for unregularized problem yields second order PDE model $\nabla \cdot\left(\sigma \nabla \phi_{i}\right)=0$;
- can be extended to complete electrode model CEM [Somersalo, Cheney, and Isaacson, 1992], see [Huynh and BK, 2020];
- in case of finite dimensional data space (e.g. CEM) partial data inversion can be employed, see [Huynh and BK, 2020];

Remarks on EIT example

- Hilbert spaces X, V for design variables q, u (easier applicability of iterative minimization methods);
- cost function: J^{δ} differentiable;
- constraints: pointwise bounds can be efficiently implemented [Hungerländer, BK and Rendl 2020] and are practically relevant in view of known a prior bounds on σ;
- first order least squares formulation of the PDE model;
- Euler-Lagrange equation for unregularized problem yields second order PDE model $\nabla \cdot\left(\sigma \nabla \phi_{i}\right)=0$;
- can be extended to complete electrode model CEM [Somersalo, Cheney, and Isaacson, 1992], see [Huynh and BK, 2020];
- in case of finite dimensional data space (e.g. CEM) partial data inversion can be employed, see [Huynh and BK, 2020];
- analgously: permeabilities in magnetostatics, cracks from electrostatic measurements

Identification of sound sources from microphone array measurements

Identify number, locations, amplitudes of sound sources from microphone array measurements.

$$
\frac{1}{c_{0}^{2}} p_{t t}-\Delta p=\sigma
$$

measurements $p\left(x_{\ell}\right), \ell \in\{1, \ldots, L\}$
$x_{\ell} \in \Omega \ldots$ (known) location of ℓ-th micro
p... acoustic pressure
$\sigma \ldots$.. sound source

Sound source localization: Formulation as 1st order system

linearized conservation of momentum: $\varrho_{0} v_{t}+\nabla p_{\sim}=f$,
linearized conservation of mass: $\varrho_{\sim t}+\varrho_{0} \nabla \cdot v=g$,
linearized equation of state: $\varrho_{\sim}=\frac{1}{c_{0}^{2}} p_{\sim}$,

$$
\begin{gather*}
\varrho_{0} v_{t}+\nabla p_{\sim}=f \tag{1}\\
\frac{1}{c_{0}^{2}} p_{\sim t}+\varrho_{0} \nabla \cdot v=g \tag{2}
\end{gather*}
$$

~...fluctuating part $0 \ldots$ constant mean value

- $\varrho=\varrho_{0}+\varrho_{\sim} \ldots$ mass density
- $v=v_{\sim} \ldots$ acoustic particle velocity,
- $p=p_{0}+p_{\sim} \ldots$ pressure,
- $c_{0} \ldots$ speed of sound.
$\frac{\partial}{\partial t}(2)-\nabla \cdot(1) \Rightarrow \frac{1}{c_{0}^{2}} p_{t t}-\Delta p=\sigma=g_{t}-\nabla \cdot f$ 2nd order wave eq.

Sound source localization

Boundary conditions:

$$
\begin{aligned}
\varrho_{0} v \cdot \nu+\kappa p & =0 \text { on } \Gamma_{a} \\
v \cdot \nu & =0 \text { on } \Gamma_{r}
\end{aligned}
$$

$\Gamma_{a} \ldots$ absorbing boundary part
$\Gamma_{r} \ldots$ reflecting boundary part

Measurements:
$y_{\ell}=p\left(x_{\ell}\right), \ell \in\{1, \ldots, L\}$

Sound source localization: Inverse problem

 in time domain:$$
\begin{array}{lll}
\varrho_{0} v_{t}+\nabla p=f & \text { in } \Omega \times(0, T) & \varrho_{0} v \cdot \nu+\kappa p=0 \\
\frac{1}{c_{0}^{2}} p_{t}+\varrho_{0} \nabla \cdot v=0 & \text { in } \Omega \times(0, T) & v \cdot \nu=0
\end{array}
$$

Sound source localization: Inverse problem

in time domain:

$$
\begin{array}{lll}
\varrho_{0} v_{t}+\nabla p=f & \text { in } \Omega \times(0, T) & \varrho_{0} v \cdot \nu+\kappa p=0 \\
\frac{1}{c_{0}^{2}} p_{t}+\varrho_{0} \nabla \cdot v=0 & \text { in } \Omega \times(0, T) & v \cdot \nu=0
\end{array}
$$

in frequency domain: (with fixed frequency ω)

$$
\begin{array}{cll}
\varrho_{0} \imath \omega \hat{v}+\nabla \hat{p}=f \quad \text { in } \Omega & \varrho_{0} \hat{v} \cdot \nu+\kappa \hat{p}=0 & \text { on } \Gamma_{a} \\
\frac{1}{c_{0}^{2}} \imath \omega \hat{p}+\varrho_{0} \nabla \cdot \hat{v}=0 \text { in } \Omega & \hat{v} \cdot \nu=0 & \text { on } \Gamma_{r} \\
\hat{y}_{\ell}=\hat{p}\left(x_{\ell}\right), \ell \in\{1, \ldots, L\} & &
\end{array}
$$

Sound source localization: Inverse problem

in frequency domain: (with fixed frequency ω)

$$
\begin{array}{cll}
\varrho_{0} \imath \omega \hat{v}+\nabla \hat{p}=f \quad \text { in } \Omega & \varrho_{0} \hat{v} \cdot \nu+\kappa \hat{p}=0 & \text { on } \Gamma_{a} \\
\frac{1}{c_{0}^{2}} \imath \omega \hat{p}+\varrho_{0} \nabla \cdot \hat{v}=0 \text { in } \Omega & \hat{v} \cdot \nu=0 & \text { on } \Gamma_{r} \\
\hat{p}_{\ell}=\hat{y}\left(x_{\ell}\right), \ell \in\{1, \ldots, L\} & &
\end{array}
$$

Sound source localization: Inverse problem

in frequency domain: (with fixed frequency ω)

$$
\begin{array}{cll}
\varrho_{0} \imath \omega \hat{v}+\nabla \hat{p}=f \quad \text { in } \Omega & \varrho_{0} \hat{v} \cdot \nu+\kappa \hat{p}=0 & \text { on } \Gamma_{a} \\
\frac{1}{c_{0}^{2}} \imath \omega \hat{p}+\varrho_{0} \nabla \cdot \hat{v}=0 \text { in } \Omega & \hat{v} \cdot \nu=0 & \text { on } \Gamma_{r} \\
\hat{p}_{\ell}=\hat{y}\left(x_{\ell}\right), \ell \in\{1, \ldots, L\} & &
\end{array}
$$

splitting \hat{v}, \hat{p} into real and imaginary parts:

$$
\left.\left.\begin{array}{r}
-\varrho_{0} \omega v_{\Im}+\nabla p_{\Re}-f_{\Re}=0 \\
\varrho_{0} \omega v_{\Re}+\nabla p_{\Im}-f_{\Im}=0 \\
-\frac{1}{c_{0}^{2}} \omega p_{\Im}+\varrho_{0} \nabla \cdot v_{\Re}=0 \\
\frac{1}{c_{0}^{2}} \omega p_{\Re}+\varrho_{0} \nabla \cdot v_{\Im}=0
\end{array}\right\} \text { in } \Omega \begin{array}{l}
\varrho_{0} v_{\Re} \cdot \nu+\kappa p_{\Re}=0 \\
\varrho_{0} v_{\Im} \cdot \nu+\kappa p_{\Im}=0
\end{array}\right\} \text { on } \Gamma_{\text {a }}
$$

to avoid the problem of nondifferentiability of $z \mapsto|z|^{2}$ in \mathbb{C}.

Sound source localization: Inverse problem

$$
\left.\left.\begin{array}{rl}
\operatorname{res}_{\text {mom }, \Re} & :=-\varrho_{0} \omega v_{\Im}+\nabla p_{\Re}-f_{\Re}=0 \\
\operatorname{res}_{\text {mom }, \Im} & :=\varrho_{0} \omega v_{\Re}+\nabla p_{\Im}-f_{\Im}=0 \\
\operatorname{res}_{\text {mass }, \Re} & :=-\frac{1}{c_{0}^{2}} \omega p_{\Im}+\varrho_{0} \nabla \cdot v_{\Re}=0 \\
\operatorname{res}_{\text {mass }, \Im} & :=\frac{1}{c_{0}^{2}} \omega p_{\Re}+\varrho_{0} \nabla \cdot v_{\Im}=0
\end{array}\right\} \text { in } \Omega \quad \begin{array}{l}
\varrho_{0} v_{\Re} \cdot \nu+\kappa p_{\Re}=0 \\
\varrho_{0} v_{\Im} \cdot \nu+\kappa p_{\Im}=0
\end{array}\right\} \text { on } \Gamma_{a}
$$

Sound source localization: Inverse problem

$$
\left.\left.\left.\begin{array}{rl}
\operatorname{res}_{\text {mom }, \Re} & :=-\varrho_{0} \omega v_{\Im}+\nabla p_{\Re}-f_{\Re}=0 \\
\operatorname{res}_{\text {mom }, \Im} & :=\varrho_{0} \omega v_{\Re}+\nabla p_{\Im}-f_{\Im}=0 \\
\operatorname{res}_{\text {mass }, \Re} & :=-\frac{1}{c_{0}^{2}} \omega p_{\Im}+\varrho_{0} \nabla \cdot v_{\Re}=0 \\
\operatorname{res}_{\text {mass }, \Im} & :=\frac{1}{c_{0}^{2}} \omega p_{\Re}+\varrho_{0} \nabla \cdot v_{\Im}=0
\end{array}\right\} \text { in } \Omega \quad \begin{array}{l}
\varrho_{0} v_{\Re} \cdot \nu+\kappa p_{\Re}=0 \\
\varrho_{0} v_{\Im} \cdot \nu+\kappa p_{\Im}=0 \\
p_{\Re, \ell}
\end{array}\right\} \text { o } \begin{array}{l}
\Re \\
v_{\Re}
\end{array} x_{\ell}\right), p_{\Im, \ell}=y_{\Im}\left(x_{\ell}\right), \ell \in\{1, \ldots, L\}
$$

equivalent to

$$
\begin{aligned}
& \min _{f_{\Re}, f_{\Im}, p_{\Re}, p_{\Im}, v_{\Re}, v_{\Im}} \int_{\Omega}\left(\operatorname{res}_{\text {mom }, \Re}^{2}+\operatorname{res}_{\text {mom }, \Im}^{2}+\operatorname{res}_{\text {mass }, \Re}^{2}+\operatorname{res}_{\text {mass }, \Im}^{2}\right) d x \\
& \text { s.t. } \quad \varrho_{0} \hat{v} \cdot \nu+\kappa \hat{p}=0 \text { on } \Gamma_{a}, \quad \hat{v} \cdot \nu=0 \text { on } \Gamma_{r} \\
& \quad \hat{p}\left(x_{\ell}\right)=\hat{y} \ell, \ell \in\{1, \ldots, L\}
\end{aligned}
$$

Sound source localization: Regularized inverse problem

 inverse problem (SSL):$$
\begin{array}{ll}
& \min _{f_{\Re}, f_{\Im}, p_{\Re}, p_{\Im}, v_{\Re}, v_{\Im}} \int_{\Omega}\left(\operatorname{res}_{\text {mom }, \Re}^{2}+\operatorname{res}_{\text {mom }, \Im}^{2}+\operatorname{res}_{\text {mass }, \Re}^{2}+\operatorname{res}_{\text {mass }, \Im}^{2}\right) d x \\
\text { s.t. } \quad \varrho_{0} \hat{v} \cdot \nu+\kappa \hat{p}=0 \text { on } \Gamma_{a}, \quad \hat{v} \cdot \nu=0 \text { on } \Gamma_{r} \\
& \hat{p}\left(x_{\ell}\right)=\hat{y} \ell
\end{array}, \ell \in\{1, \ldots, L\} \text {, }
$$

Sound source localization: Regularized inverse problem

 inverse problem (SSL):$$
\begin{aligned}
& \quad \min _{f_{\Re,}, f_{\Im}, p_{\Re}, p_{\Im}, \vartheta_{\Re}, v_{\Im}} \int_{\Omega}\left(\text { res }_{\text {mom }, \Re}^{2}+\operatorname{res}_{\text {mom }, \Im}^{2}+\operatorname{res}_{\text {mass }, \Re}^{2}+\operatorname{res}_{\text {mass }, \Im}^{2}\right) d x \\
& \text { s.t. } \quad \varrho_{0} \hat{v} \cdot \nu+\kappa \hat{p}=0 \text { on } \Gamma_{a}, \quad \hat{v} \cdot \nu=0 \text { on } \Gamma_{r} \\
& \quad \hat{p}\left(x_{\ell}\right)=\hat{y_{\ell}}, \ell \in\{1, \ldots, L\}
\end{aligned}
$$

regularization (RegSSL)
(use measure norm $\|\cdot\|_{\mathcal{M}(\Omega)}$ to enhance sparsity):

$$
\begin{aligned}
& \min _{\hat{f}, \hat{p}, \hat{V}} \int_{\Omega}\left(\text { res }_{\text {mom }, \Re}^{2}+\operatorname{res}_{\text {mom }, \Im}^{2}+\operatorname{res}_{\text {mass }, \Re}^{2}+\operatorname{res}_{\text {mass }, \Im}^{2}\right) d x \\
& +\alpha_{1}\left\|\left(f_{\Re}, f_{\Im}, p_{\Re}, p_{\Im}, v_{\Re}, v_{\Im}\right)\right\|_{L^{2}(\Omega) 1^{14}}^{2}+\alpha_{2}\left\|\left(\nabla \cdot f_{\Re}, \nabla \cdot f_{\Im}\right)\right\|_{\mathcal{M}(\Omega)^{2}} \\
& \text { s.t. } \varrho_{0} \hat{v} \cdot \nu+\kappa \hat{p}=0 \text { on } \Gamma_{a}, \quad \hat{v} \cdot \nu=0 \text { on } \Gamma_{r} \\
& \quad \hat{y}_{\ell}-\tau \delta \leq \hat{p}\left(x_{\ell}\right) \leq \hat{y}_{\ell}+\tau \delta, \ell \in\{1, \ldots, L\}
\end{aligned}
$$

\rightsquigarrow special case of regularization with constraint on data misfritu (RdmC)

Regularized sound source loc.: Function space setting

$$
q=\left(f_{\Re}, f_{\Im}\right), \quad u=\left(p_{\Re}, p_{\Im}, v_{\Re}, v_{\Im}\right), \quad y=\left(y_{1}, \ldots, y_{L}\right)
$$

$\Omega_{\text {mic }} \subseteq \Omega, \Omega_{\text {mic }}$ open
$X=\left\{\left(f_{\Re}, f_{\Im}\right) \in L^{2}(\Omega)^{6}: \operatorname{suppess}\left(f_{\Re}\right), \operatorname{suppess}\left(f_{\Im}\right) \subseteq \Omega \backslash \Omega_{\text {mic }}\right\}$
$Y=\mathbb{R}^{L}$
$V=\left\{\left(p_{\Re}, p_{\Im}, v_{\Re}, v_{\Im}\right) \in H^{1}(\Omega)^{2} \times\left. H(\operatorname{div}, \Omega)\left(p_{\Re}, p_{\Im}\right)\right|_{\Omega_{\text {mic }}} \in H^{2}\left(\Omega_{\text {mic }}\right)^{2} \subseteq C\left(\Omega_{\text {mic }}\right)^{2}\right.$ $\varrho_{0} \hat{v} \cdot \nu+\kappa \hat{p}=0$ in $H^{-1 / 2}\left(\Gamma_{a}\right)^{2}, \hat{v} \cdot \nu=0$ in $\left.H^{-1 / 2}\left(\Gamma_{r}\right)\right\}$
$W=L^{2}(\Omega)^{8}$
$A(q, u)=\left(\right.$ res $_{\text {mom }, \Re}$, res $_{\text {mom }, \Im}, \operatorname{res}_{\text {mass }, \Re}$, res $\left._{\text {mass }, \Im}\right)$,
$C=\left(\delta_{x_{1}} \ldots \delta_{x_{L}}\right) \quad$ (point evaluation at the microphones)
$\mathcal{Q}(w)=\frac{1}{2}\|w\|_{L^{2}(\Omega)^{L}}^{2}$
$\mathcal{R}_{1}(q, u)=\left\|\left(f_{\Re}, f_{\Im}, p_{\Re}, p_{\Im}, v_{\Re}, v_{\Im}\right)\right\|_{L^{2}(\Omega)^{14}}^{2}$
$\mathcal{R}_{2}(q, u)=\mathcal{R}_{2}(q)=\left\|\left(\nabla \cdot f_{\Re}, \nabla \cdot f_{\Im}\right)\right\|_{\mathcal{M}(\Omega)^{2}}$
$\mathcal{S}(y, \tilde{y})=\max _{\ell \in\{1, \ldots, L\}}\left|y_{\ell}-\tilde{y}_{\ell}\right|$

Regularized sound source localization:

 well-definedness, convergence$$
\begin{aligned}
& \left(f_{\Re, n}, f_{\Im, n}, p_{\Re, n}, p_{\Im, n}, v_{\Re, n}, v_{\Im, n}\right) \stackrel{\mathcal{T}}{\rightarrow}\left(f_{\Re}, f_{\Im}, p_{\Re}, p_{\Im}, v_{\Re}, v_{\Im}\right) \Leftrightarrow \\
& \left\{\begin{array}{l}
\left(\nabla \cdot f_{\Re, n}, \nabla \cdot f_{\Im, n}\right) \stackrel{*}{\rightharpoonup}\left(\nabla \cdot f_{\Re}, \nabla \cdot f_{\Im}\right) \text { in } \mathcal{M}(\Omega) \text { and }\left(f_{\Re, n}, f_{\Im, n}\right) \rightharpoonup\left(f_{\Re}, f_{\Im}\right) \text { in } L^{2}(\Omega), \\
\left(p_{\Re, n}, p_{\Im, n}\right) \rightharpoonup\left(p_{\Re}, p_{\Im}\right) \text { in } H^{1}(\Omega)^{2} \\
\left(v_{\Re, n}, v_{\Im, n}\right) \rightharpoonup\left(v_{\Re}, v_{\Im}\right) \text { in } H(\operatorname{div}, \Omega)^{2} \\
\left.\left.\left(p_{\Re, n}, p_{\Im, n}\right)\right|_{\Omega_{\text {mic }}} \rightharpoonup\left(p_{\Re}, p_{\Im}\right)\right|_{\Omega_{\text {mic }}} \text { in } H^{2}\left(\Omega_{\text {mic }}\right)^{2}
\end{array}\right.
\end{aligned}
$$

Corollary

For each $y^{\delta} \in Y$ and $\alpha>0$ a minimizer of (RegSSL) exists.
Let $\mathcal{S}\left(y, y^{\delta}\right) \leq \delta$ and $\left\|y^{\delta}-y\right\|_{Y} \rightarrow 0$ as $\delta \rightarrow 0$, and choose $\alpha=\alpha\left(\delta, y^{\delta}\right)>0$ such that $\alpha\left(\delta, y^{\delta}\right) \rightarrow 0$ as $\delta \rightarrow 0$.
Then, as $\delta \rightarrow 0, y^{\delta} \rightarrow y$, the family
$\left(f_{\alpha\left(\delta, y^{\delta}\right)}^{\delta}, \hat{p}_{\alpha\left(\delta, y^{\delta}\right)}^{\delta}, \hat{v}_{\alpha\left(\delta, y^{\delta}\right)}^{\delta}\right)_{\delta \in(0, \bar{\delta}]}$ has a \mathcal{T} convergent subsequence and the limit of every \mathcal{T} convergent subsequence solves (SSL).

Remarks on sound source localization example

- Hilbert spaces X, V for design variables q, u (easier applicability of iterative minimization methods).
- cost function: J^{δ} differentiable;
- constraints: pointwise bounds can be efficiently implemented [Hungerländer, BK and Rendl 2020];
- first order least squares formulation of the PDE model;
- Euler-Lagrange equation for unregularized problem yields second order PDE model $-\frac{\omega^{2}}{c_{0}^{2}} \hat{p}-\Delta p=0$;
- due to finite dimensional data space partial data inversion can be employed, see [Huynh and BK, 2020].
numerical results for sound source localization

Computational setup
$>$ Simplified SAE Type 4 Body ${ }^{[5]}$
$>$ Two acoustic sources with equal intensity

- Near the side mirror and near the wheel housing
- Frequency of 500 Hz

${ }^{[1]}$ Society of Automotive Engineers: Aerodynamic Testing of Road Vehicles in Open Jet Wind Tunnels. SAE Special Publication 1465 (1999).

Realistic pressure values at the microphone positions
$>$ Forward simulation on a much finer computational grid as then used in the identification process

- 4.6 million degrees of freedoms in contrast to 0.5 million
> PML was twice as thick than on the coarse grid
$>$ Random noise was added (SNR of 26 dB)
$>$ Microphone positions on the fine and coarse differ slightly
> Original source distribution

Three different microphone configurations have been considered

a)

165 microphones equally spaced (0.34 m)

b)
c)

124 microphones different planes

98 microphones

Original source distribution

Microphone configurations

| -25 | -20 | -15 | -10 | -5 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Original sound pressure distribution

Sound pressure based on identified sources

a)

65	70	75	80	85	90	95

numerical experiments for a model problem

Numerical Experiments

Identify spatially varying coefficient c in

$$
-\Delta+c u=b \text { in }(-1,1)^{2}
$$

with homogeneous $\left\{\begin{array}{l}\text { Dirichlet } \\ \text { Neumann }\end{array}\right.$ boundary data on $\left\{\begin{array}{l}\{-1,1\} \times(-1,1) \\ (-1,1) \times\{-1,1\}\end{array}\right.$ from interior observations of u.

Numerical Experiments

Identify spatially varying coefficient c in

$$
-\Delta+c u=b \text { in }(-1,1)^{2}
$$

with homogeneous $\left\{\begin{array}{l}\text { Dirichlet } \\ \text { Neumann }\end{array}\right.$ boundary data on $\left\{\begin{array}{l}\{-1,1\} \times(-1,1) \\ (-1,1) \times\{-1,1\}\end{array}\right.$ from interior observations of u.

$$
\min _{c, u}\|-\Delta+c u-b\|_{H^{-1}}^{2} \text { s.t. }-\tau \delta \leq u(x)-y^{\delta} \leq \tau \delta, \underline{c} \leq c(x) \leq \bar{c} \text { a.e. }
$$

Numerical Experiments

Identify spatially varying coefficient c in

$$
-\Delta+c u=b \text { in }(-1,1)^{2}
$$

with homogeneous $\left\{\begin{array}{l}\text { Dirichlet } \\ \text { Neumann }\end{array}\right.$ boundary data on $\left\{\begin{array}{l}\{-1,1\} \times(-1,1) \\ (-1,1) \times\{-1,1\}\end{array}\right.$ from interior observations of u.
$\min _{c, u}\|-\Delta+c u-b\|_{H^{-1}}^{2}$ s.t. $-\tau \delta \leq u(x)-y^{\delta} \leq \tau \delta, \underline{c} \leq c(x) \leq \bar{c}$ a.e.

$$
\begin{array}{lll}
\text { test 1: } & c_{e x}(x, y)=1+10 \cdot \mathbf{I}_{B_{1}} & \underline{c}=1, \\
\text { test 2: } & c_{e x}(x, y)=1-10 \cdot \mathbf{I}_{B_{1}}+5 \cdot \mathbf{I}_{B_{2}} & \underline{c}=-9, \\
\text { test 3: } & c_{e x}(x, y)=-10 \cdot \mathbf{I}_{B_{1}}-5 \cdot \mathbf{I}_{B_{2}} & \underline{c}=-10, \\
\bar{c}=0
\end{array}
$$

Numerical Experiments

Identify spatially varying coefficient c in

$$
-\Delta+c u=b \text { in }(-1,1)^{2}
$$

with homogeneous $\left\{\begin{array}{l}\text { Dirichlet } \\ \text { Neumann }\end{array}\right.$ boundary data on $\left\{\begin{array}{l}\{-1,1\} \times(-1,1) \\ (-1,1) \times\{-1,1\}\end{array}\right.$ from interior observations of u.
$\min _{c, u}\|-\Delta+c u-b\|_{H^{-1}}^{2}$ s.t. $-\tau \delta \leq u(x)-y^{\delta} \leq \tau \delta, \underline{c} \leq c(x) \leq \bar{c}$ a.e.

$$
\text { test 1: } c_{e x}(x, y)=1+10 \cdot \mathbb{I}_{B_{1}} \quad \underline{c}=1, \quad \bar{c}=11
$$

$$
\text { test 2: } c_{e x}(x, y)=1-10 \cdot \mathbb{1}_{B_{1}}+5 \cdot \mathbf{I}_{B_{2}} \quad \underline{c}=-9, \quad \bar{c}=6,
$$

$$
\text { test 3: } c_{e x}(x, y)=-10 \cdot \mathbb{I}_{B_{1}}-5 \cdot \mathbf{I}_{B_{2}} \quad \underline{c}=-10, \quad \bar{c}=0
$$

- $B_{1}=B_{0.2}(-0.4,-0.3), B_{2}=B_{0.1}(0.5,0.5)$
- piecewise linear/constant FE discretization of u / c
- Gauss-Newton method starting at $c_{0} \equiv \frac{1}{2}(\underline{c}+\bar{c})$
- stopping criterion $\frac{J\left(x_{k}^{s}, u_{k}^{\delta}\right)}{J\left(x_{0}, u_{0}\right)}<1 . e-5$
- $\tau=1.1$

Test 1

Figure:
left: exact coefficient $c_{\text {ex }} ; \underline{c}=1, \bar{c}=11$
right: locations of spots for testing weak * L^{∞} convergence

Comparison

- mkr_box ... recursive globalization of semismooth Newton
- mSN2_box ...combinatorial globalization of semismooth Newton
- quadprog (Matlab) with trust-region-reflective (subspace trust-region method based on interior-reflective Newton [Coleman\&Li'96]

	quadprog	mSN2_box	mkr_box
k	5	4	4
$\frac{J\left(x_{k}^{\delta}, u_{k}^{\delta}\right)}{J\left(x_{0} u_{0}\right)}$	$4.6671 \mathrm{e}-06$	$9.8449 \mathrm{e}-06$	$9.8449 \mathrm{e}-06$
$\mathrm{err}_{\text {spot }_{1}}$	$3.7548 \mathrm{e}-13$	0	0
$\mathrm{err}_{\text {spot }_{2}}$	$5.1669 \mathrm{e}-06$	0	0
$\mathrm{err}_{\text {spot }_{3}}$	0.5280	1.3360	1.3360
$\mathrm{err}_{L^{1}(\Omega)}$	0.0882	0.0972	0.0972
CPU	30.77	35.22	6.55

k. . . number of Gauss-Newton steps

Convergence as $\delta \rightarrow 0$

δ	0.001	0.01	0.1
$\operatorname{err}_{\text {spot }_{1}}$	0	0	0
$\operatorname{err}_{\text {spot }_{2}}$	0	0.7960	4.8689
$\operatorname{err}_{\text {spot }_{3}}$	1.0840	2.1512	2.5862
$\operatorname{err}_{L^{1}(\Omega)}$	0.1472	0.2136	0.3671

Table: Averaged errors of five test runs on each noise level, with random uniform noise
(using mkr_box)
reconstruction $c_{k} ; \quad$ active set lower bound; active set upper bound; $\quad \delta=10 \%$

reconstruction $c_{k} ; \quad$ active set lower bound; active set upper bound; $\quad \delta=1 \%$

Test 2

left: exact coefficient $c_{\text {ex }} ; \underline{c}=-9, \bar{c}=6$
Figure: right: locations of spots for testing weak * L^{∞} convergence
reconstruction $c_{k} ; \quad$ active set lower bound; active set upper bound; $\quad \delta=1 \%$

Test 3

left: exact coefficient $c_{e x} ; \underline{c}=-10, \bar{c}=0$
Figure: right: locations of spots for testing weak * L^{∞} convergence
reconstruction $c_{k} ; \quad$ active set lower bound; active set upper bound; $\quad \delta=1 \%$

Conclusions

- Convergence analysis for a nonstandard variational regularization of a variational formulation

Conclusions

- Convergence analysis for a nonstandard variational regularization of a variational formulation
- for EIT

Conclusions

- Convergence analysis for a nonstandard variational regularization of a variational formulation
- for EIT
- for sound source localization

Conclusions

- Convergence analysis for a nonstandard variational regularization of a variational formulation
- for EIT
- for sound source localization
\rightarrow iterative methods

Conclusions

- Convergence analysis for a nonstandard variational regularization of a variational formulation
- for EIT
- for sound source localization
\rightarrow iterative methods
\rightarrow other applications (e.g., distributed or nonlinear permeabilities in magnetostatics, Lamé parameters in elastostatics, cracks)

Thank you for your attention!

Ph. Hungerländer and F. Rendl,
A feasible active set method for strictly convex problems with simple bounds, SIAM J. Opt., 25 (2015).
Ph. Hungerländer, B. Kaltenbacher, and F Rendl.
Regularization of inverse problems via box constrained minimization. Inverse Problems and Imaging, 14 (2020)

Kha Van Huynh and B. Kaltenbacher.
Some application examples of minimization based formulations of inverse problems and their regularization submitted (2020)
B. Kaltenbacher.

Regularization based on all-at-once formulations for inverse problems. SIAM J. Numer. Anal., 54 (2016)
B. Kaltenbacher.

All-at-once versus reduced iterative methods for time dependent inverse problems. Inverse Problems, 33, (2017).
B. Kaltenbacher.

Minimization based formulations of inverse problems and their regularization. SIAM J. Opt., 28 (2018).
B. Kaltenbacher, A. Kirchner, and B. Vexler.

Goal oriented adaptivity in the IRGNM for parameter identification in PDEs II: all-at once formulations. Inverse Problems, 30, (2014).
S. Kindermann,

Convergence of the gradient method for ill-posed problems, Inverse Problems and Imaging 4 (2017).

