
Introduction on Reduced Order Methods in CFD: State of the art and
Perspectives

Gianluigi Rozza

MathLab, Mathematics Area, SISSA
International School for Advanced Studies,

Trieste, Italy

2019 Woudschoten Conference

The Netherlands

9-11 October, 2019



Leading Motivation: Computational Sciences challenges

• Reduced order modelling is a quickly emerging field in applied mathematics and
computational science and engineering.

• Present and future efforts: towards multiphysics problems, as well as coupled systems.
• Growing demand of
∗ efficient computational tools for
∗ many query and real time computations,
∗ parametric formulations,
∗ simulations of increasingly complex systems with uncertain scenarios,
by industrial and clinical research partners.

• The need of a computational collaboration rather than a competition between High
Performance Computing (HPC) and Reduced Order Methods (ROM), as well as
Full/High Order and Reduced Order Methods.
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Overview
our current efforts, aims and perspectives at SISSA mathLab
A team developing Advanced Reduced Order Methods for parametric PDEs with
a special focus on Computational Fluid Dynamics
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Overview:
our current efforts, aims and perspectives at SISSA mathLab

A team developing Advanced Reduced Order Methods with special focus on
Computational Fluid Dynamics:

• to face and overcome several limitations of the state of the art for parametric ROM
in CFD;

• to improve capabilities of reduced order methodologies for more demanding
applications in industrial, medical and applied sciences settings;

• to carry out important methodological developments in Numerical Analysis, with
special emphasis on mathematical modelling and a more extensive exploitation of
Computational Science and Engineering;

• focus on Computational Fluid Dynamics as a central topic to enhance broader
applications in multiphysics and coupled settings, as well as more realistic models
(e.g. aeronautical, mechanical, naval, off-shore, wind, sport, biomedical engineering and also cardiovascular surgery
planning).
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Overview of the physical problems
The interest is in viscous parametrized incompressible flows

Industrial Flows

Naval Eng. Aeronautics Industrial App.

Biomedical Applications

Possible applications can be found in naval and nautical engineering, aeronautical engineering and
industrial engineering.

In general any application dealing with incompressible fluid dynamic problems that has the response
depending on parameter changes (Reynolds Number, Grashof Number, Geometrical parameters ..)
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Overview: our current efforts, aims and perspectives
• Towards Real-Time Computing and Visualization, through an Offline–Online

computational paradigm that combines
High Performance to Advanced Reduced Order

Computing Modelling techniques.

• Export numerical simulations and scientific computing in fields and places where at
the state of the art there is still little exploitation.

• Development of new open-source tools based on reduced order methods:
∗ ITHACA, In real Time Highly Advanced Computational Applications, as an add-on to integrate already well

established CSE/CFD open-source software libraries (FV, SEM) with ROMs
(OpenFoam, Nektar, FEniCS, Libmesh)

∗ RBniCS as educational initiative (FEM) for newcomer ROM users (training).
∗ Argos Advanced Reduced order modellinG Online computational web server for parametric Systems
∗ ATLAS

http://mathlab.sissa.it/cse-software
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Intrusive Reduced Order Methods in a nutshell

• ()N : “truth” full order method (FEM, FV, FD, SEM) – to be accelerated
• ()N : reduced order method (ROM) – the accelerator

∗ Input parameters:
µ (geometry, physical properties, etc.)

∗ Parametrized PDE:
A(u(µ); µ) = 0  AN (µ)uN (µ) = 0

full order
 AN(µ)uN(µ) = 0

reduced order

∗ Output:
s(µ) ≈ sN (µ)

full order
≈ sN(µ)

reduced order

∗ Input-Output evaluation:
µ → sN (µ) → sN(µ)

• Reduced Basis Method(RB): continuation method in non-linear structural
mechanics...

• Proper Orthogonal Decomposition(POD): transient and turbulent flows...
• Other methodologies: Proper Generalized Decomposition (PGD), Hierarchical Model

Reduction (HiMod).
J. S. Hesthaven, G. Rozza, B. Stamm. Certified Reduced Basis Methods for Parametrized
Partial Differential Equations. SpringerBriefs in Mathematics. Springer, 2015
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Intrusive Reduced Order Methods in a nutshell

• ()N : “truth” full order method (FEM, FV, FD, SEM) – to be accelerated
• ()N : reduced order method (ROM) – the accelerator

Offline: very expensive preprocessing (full order): basis calculation (done once) after
suitable parameters sampling (greedy, POD, ...)

Online: extremely fast (reduced order): real-time input-output evaluation
µ → sN(µ)

thanks to an efficient assembly of problem operators
AN(µ) =

∑
q

θq(µ)Aq
N , where Aq

N = ZTAN ,qZ

where

Numerical issues: approximation stability, error bounds and stability factors, efficient
(geometrical) parametrization, sampling, coupling, nonlinearities...

... reduction in parameter space
J. S. Hesthaven, G. Rozza, B. Stamm. Certified Reduced Basis Methods for Parametrized
Partial Differential Equations. SpringerBriefs in Mathematics. Springer, 2015
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Overview on the topics: from intrusive to non-intrusive ROM

• ROMs exploit a parametrized formulation of the problem. In particular, an
efficient geometrical parametrization is required when interested in the
variation of the domain/interface, such as in shape optimization or
fluid-structure interaction problems Ωo(µ) = T (Ω; µ).

• Focus of this lecture: show some
state of the art and perspectives in
parametric flow problems treated in
the reduced order context for
◦ complex computational mechanics

phenomena and bifurcations;
◦ fluid-structure interaction (FSI)

reduced problems;
◦ flow control;
◦ uncertainty quantification (UQ);
◦ inverse problems;
◦ shape optimization;
◦ and some perspectives and

challenges.

Shape parameterization for ROM
• Free-Form Deformations (FFD)

[Lassila, Rozza, CMAME, 2010],
[Salmoiraghi et al., AMSES, 2016].

• Radial Basis Functions (RBF)
[Manzoni et al., IJNMBE, 2011].

• Transfinite Mapping (TM)
[Løvgren, Maday, Rønquist, 2006],
[Iapichino et al., CMAME, 2012].

• Vascular shape parametrization
[Ballarin et al., JCP, 2016].

• Reduced inverse Distance
Weighting [D’Amario et al, 2017].
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#CFD #intrusive #ROM

ROM and stability
for fluid mechanics problems

with Francesco Ballarin, Giovanni Stabile, Shafqat Ali,
Enrique Delgado
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Reduced-order numerical simulations by POD-Galerkin ROM

• parametrized formulation of Navier-Stokes equations (modelling Newtonian
fluid);

• offline stage:
◦ intensive phase, on HPC architectures, to be done once;
◦ Finite Element approximation of the problem for few values of the
parameters (snapshots):

for µ ∈ D, find (uN (µ), pN (µ)) ∈ RNu × RNp , large N

[
AN (µ) + CN (uN (µ); µ) BN (µ)T

BN (µ) O

][
uN (µ)
pN (µ)

]
=
[
f N (µ)

0

]

◦ [POD] Proper Orthogonal Decomposition (based on singular value
decomposition) to extract optimal basis functions from the set of numerical
simulations (snapshots) of the system to build Z. [RB] Greedy as an
alternative.
Aubry et al. J. Fluid Mech. 1988; Ravindran, Int. J. Numer. Meth. Fluids, 2000

◦ online stage
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Reduced-order numerical simulations by POD-Galerkin ROM

• parametrized formulation of Navier-Stokes equations (modelling Newtonian
fluid);

• offline stage:
◦ intensive phase, on HPC architectures, to be done once;
◦ Finite Element approximation of the problem for few values of the
parameters (snapshots)

◦ [POD] Proper Orthogonal Decomposition (based on singular value
decomposition) to extract optimal basis functions from the set of numerical
simulations (snapshots) of the system to build Z.

Build the correlation matrices Cuuu,Cppp ∈ RNtrain×Ntrain , where Ntrain is the
dimension of the training set and
Cuuu
ij = (uuuN (µµµi),uuuN (µµµj)) and Cppp

ij = (pppN (µµµi),pppN (µµµj)) i , j = 1, . . . ,Ntrain.

Then we find (λuuui , vuuui ) and (λpppi , v
ppp
i ) such that Cuuuvuuui = λuuui vuuui and

Cpppvpppi = λpppi v
ppp
i . We retain only the first Nuuu and Nppp eigenvalues for pressure

and velocity, respectively.
The reduced space is span{Φuuu

1 , . . . ,Φuuu
Nuuu ,Φ

ppp
1 , . . . ,Φ

ppp
Nppp
}, where the basis

function Φuuu
i and Φppp

i are the eigenvectors of λuuui and λpppi , respectively.
Aubry et al. J. Fluid Mech. 1988; Ravindran, Int. J. Numer. Meth. Fluids. 2000

◦ online stage
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Reduced-order numerical simulations by POD-Galerkin ROM

• parametrized formulation of Navier-Stokes equations (modelling Newtonian
fluid);

• offline stage
• online stage:
◦ inexpensive and very fast, on a laptop, to be done multiple times (for each
new value of the parameters);

◦ Galerkin projection over a reduced basis space:

for µ ∈ D, find (uN(µ), p
N

(µ)) ∈ RNu × RNp , N = Nu + Np � N

[
AN(µ) + CN(uN(µ); µ) BN(µ)T

BN(µ) O

][
uN(µ)
p
N

(µ)

]
=
[
f N(µ)
0

]
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Inf-sup stabilization and pressure recovery

• inf-sup condition is not necessarily preserved by Galerkin projection in the
online phase.

• reduced velocity space enrichment by supremizer solutions,

VN = POD({uN (µi)}Ntrain
i=1 ;Nu) ⊕ POD({Sµi

pN (µi)}Ntrain
i=1 ;Ns),

QN = POD({pN (µi)}Ntrain
i=1 ;Np),

where Sµ : QN → VN is the supremizer operator given by
(SµpN ,wN )V = b(pN ,wN ; µ), ∀w ∈ VN .

where b(·, ·;µµµ) =
∫

Ω
pdivwwwdΩ (pressure-divergence term)

In order to fulfill an inf-sup condition at the reduced-order level too:

βN(µ) = inf
q
N
6=0

sup
vN 6=0

qT
N
BN(µ)vN

‖vN‖VN‖qN‖QN
≥ β̃N > 0 ∀µ ∈ D.

where BN(µ) is the reduced-order matrix associated to the divergence term.
(Rozza, Veroy. CMAME, 2007, Rozza et al, Numerische Mathematik, 2013. Ballarin et al.
IJNME, 2015). Other options: residual-based stabilization procedures for
POD-Galerkin (Caiazzo, Iliescu et al. JCP, 2014), Petrov-Galerkin (Dahmen; Carlberg;
Abdulle, Budac), div-free approach (Lovgren et al.).
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Inf-sup stabilization and pressure recovery

• inf-sup condition is not necessarily preserved by Galerkin projection in the
online phase.

• reduced velocity space enrichment by supremizer solutions,
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i=1 ;Nu) ⊕ POD({Sµi
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Some ROM challenges in CFD: to higher Reynolds parametrized flows
• ROMs of parametrized viscous flows for low and moderate Reynolds number are well developed:

we need to increase Reynolds number for several industrial applications.

• Offline–Online stabilization techniques for parametrized flows (geometry, physics) is derived from
streamline upwind Petrov-Galerkin (SUPG), . . .

sup
vvvN 6=0

b(vvvN , qN ;µµµ)
‖vvvN‖VN

+s(qN , qN)
1
2 ≥ β̃N‖qN‖QN > 0, ∀qN ∈ QN , ∀µ ∈ D (Generalized inf-sup).

• A ROM variational multiscale approach in parametrized context towards turbulence modelling and
a Smagorinski turbulent model have been recently proposed

G. Stabile, F. Ballarin, G. Zuccarino and G. Rozza. A reduced order variational multiscale
approach for turbulent flows, submitted, 2018, https://arxiv.org/abs/1809.11101

F. Ballarin, T. Chacón Rebollo, E. Delgado Ávila, M. Gómez Mármol, and G. Rozza, Certified
Reduced Basis VMS-Smagorinsky model for natural convection flow in a cavity with variable
height. ArXiV preprint. http://arxiv.org/abs/1902.05729

T. Chacón Rebollo, E. Delgado Ávila, M. Gómez Mármol, F. Ballarin, and G. Rozza On a certified
Smagorinsky reduced basis turbulence model. SIAM Journal on Numerical Analysis, 55 (2017) pp.
3047-3067

• Important expectations and needs dealing with industrial and cardiovascular flows.
• ROM developments in FV and also higher order methods.

G. Rozza ROM for PDEs



Unsteady incompressible Navier-Stokes equations
• Numerical simulations on a lid driven cavity using FE discretization P2/P2.
• Classical stabilization technique is implemented in the high order and then projected

on reduced basis.
• RB stabilization is based on Streamline Upwind Petrov Galerkin (SUPG) and

compared with the supremizer enrichment approach
• A significant reduction in the computational cost of offline-online stabilization

without supremizer could be achieved

Error comparison for Velocity (left) and Pressure (right). Parameter range in offline stage is
Re ∈ [100, 200], FE dimension N=3327, RB dimension, N = 60 (with supremizer), N = 40 (without
supremizer).
S. Ali, S. Hijazi, G. Stabile, F. Ballarin, G. Rozza, The effort of increasing Reynolds number in
POD-Galerkin Reduced Order Methods: from laminar to turbulent flows, for the special volume of the
FEF conference, in press, 2019.
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#Fluid Dynamics #Embedded-Immersed FEMs
#ROMS on a Background Geometry

with Efthymios Karatzas, Francesco Ballarin, Giovanni
Stabile

Guglielmo Scovazzi, Leo Nouveau, Nabil Atallah
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ROMS for systems with Parametric Geometry and Embedded FEMs
• Equations: Multiphase fluid dynamics, viscous steady and unsteady
incompressible flows, Stokes, Navier-Stokes, Cahn-Hilliard

• Methodology: SBM, CutFEM, EBM/IBM, differences/advantages with
respect to a reference domain approach
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Supremizers enrichment: No Yes
Number of modes relative error u relative error p relative error u relative error p

8 0.0947158 12.309881 0.2406999 22.319781
12 0.0723268 12.133591 0.2078557 5.7159319
16 0.0610052 9.6652163 0.1692787 2.6962056
20 0.0538906 6.1692750 0.1243368 1.2535779
25 0.0434925 3.2331644 0.0770726 0.5568314
30 0.0396132 1.4693532 0.0437348 0.2504069
35 0.0298269 0.7455038 0.0262345 0.1356788
40 0.0177170 0.2918072 0.0121903 0.0611154
45 0.0085905 0.0923509 0.0060355 0.0330206
50 0.0053882 0.0473412 0.0046300 0.0279857

E.N. Karatzas, G. Stabile, L. Nouveau, G. Scovazzi, G. Rozza. A reduced basis approach for PDEs on
parametrized geometries based on the shifted boundary finite element method and application to a
Stokes flow, CMAME, (347), pp. 568-587, 2019
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Some ROM challenges for Embedded FEMs

Model for multiphase fluids dynamics: hydrodynamic effects/polymer fluids

• ct − 1
Pe∇ · (b(c)∇w) + u · ∇c = 0,

w = Φ′(c)− γ2∆c, Φ(c) = 1
4 (1− c2)2

ut − 1
Re ∆u + u · ∇u +∇p +Kc∇w = 0 ,

∇ · u = 0, u = 1+c
2 u1 + 1−c

2 u2
Notation: concentration c, chemical
potential w , capillary number K , interface
parameter γ, mobility function b(·), Péclet
adv/diff transport rate number Pe.

• Software packages used, Offline: Nalu,
ngsxfem, Online: ITHACA, RBniCS.
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#FSI

Monolithic ROMs for FSI problems
with Francesco Ballarin, Monica Nonino

and Yvon Maday
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Formulation of FSI problems

• Fluid variables: (uf , p, df ),
• Structure variables: (us , ds),
• Fluid-structure interaction problem three-fields formulation:{ F (uf , p, df ; ds) = 0, Fluid

S(us , ds) = 0, Structure
I(df , ds) = 0, Interface

subject to interface (coupling) conditions{ ds − df = 0 on Γ, geometric continuity
us − uf = 0 on Γ, velocity continuity

σf · nf + σs · ns = 0 on Γ, balance of normal forces.
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Reduced order monolithic formulation of FSI problems

Truth Finite Element discretization (P2-P1 Taylor-Hood)
For µ ∈ D, solve large N

FN (uNf (µ), pN (µ), dNf (µ); dNs (µ); µ) = 0 Fluid
SN (uNs (µ), dNs (µ); µ) = 0 Structure
IN (dNf (µ), dNs (µ); µ) = 0 Interface, coupled conditions

OFFLINE – Space construction and matrices assembling
• Space construction by Proper Orthogonal Decomposition for global variables.
• Additional computations related to inf-sup stabilization procedure by means of

supremizer enrichment → accurate pressure recovery for balance of normal forces.
[Ballarin et al., 2015], [Rozza et al., 2012], [Rozza, Veroy, 2007].

ONLINE – Galerkin projection over the enriched space
For µ ∈ D, solve N� N

FN(uN
f (µ), pN(µ), dN

f (µ); dN
s (µ); µ) = 0 Reduced fluid

SN(uN
s (µ), dN

s (µ); µ) = 0 Reduced structure
IN(dN

f (µ), dN
s (µ); µ) = 0 Reduced interface, coupled conditions

Our approach:
• POD–Galerkin method for global variables u, p, d (monolithic approach), time

dependent,
• capability to parametrize the initial configuration (geometry).
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Ongoing applications to cardiovascular modelling

Increase leaflet length: (same inlet velocity)

Increase inlet velocity: (same leaflet length)
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Ongoing applications to cardiovascular modelling

Increase leaflet length:

(same inlet velocity,
same material properties)

Increase inlet vel. (5×):

(same leaflet length,
same material properties)

Increase µs (8×):

(same leaflet length,
same inlet velocity)

• Ballarin, Rozza. POD–Galerkin monolithic reduced order models for parametrized fluid-structure
interaction problems. IJNMF, 82(12):1010–1034, 2016.

• F. Ballarin, G. Rozza, Y. Maday. Reduced-order semi-implicit schemes for fluid-structure
interaction problems. MS&A, vol. 17, 2017. Springer [segregated approach]
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Reduction of Kolmogorov n-width
• Coupled problem: tube with a fluid, and solid walls at the top and at the bottom.
• Time t ∈ [0,T ] is the only parameter; the problem is transport dominated.
Example: pressure (t = 0.0024, 0.006, 0.011):

Pressure wave travelling through the domain, causing a slower decay of the Kolmogorov
n-width of the solution manifold.
• Offline step (preprocessing): store the snapshots and then stretch them so that we

move the peak of the pressure wave at the same point.
Example: preprocessed pressure (t = 0.0024, 0.006, 0.011):

N. Cagniart, Y. Maday, B. Stamm. Model Order Reduction for problems with large convection effects.
https://hal.upmc.fr/hal-01395571. 2016.

Results: comparison of the rate of decay of the singular values of the POD on the pressure and
displacement.
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#Advanced #CFD & #Structural #Mechanics

ROM for Stability and Bifurcations Studies
with Martin Hess, Federico Pichi

Annalisa Quaini, Max Gunzburger and Anthony Patera
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Bifurcation analysis with ROMs in fluid dynamics
Bifurcation and stability analysis of parametrized Navier-Stokes models by
global and localized ROMs

• Stability studies in nonlinear problems are very expensive.
• Understand and detect complex phenomena, such as bifurcations, leading to loss of uniqueness

with changing geometry and physical parameters, using spectral element simulations.
• Efficient reduced numerical techniques to detect steady and Hopf bifurcations and branching.
• continuation, eigenvalues analysis, long-term goal: use in multi-physics studies.
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• this work is presented in
– M. Hess, A. Quaini, G. Rozza. "Reduced Basis Model Order Reduction for Navier-Stokes equations

in domains with walls of varying curvature", 2019, ArXiv arxiv.org/abs/1901.03708
– M. Hess, A. Quaini, and G. Rozza, “A Spectral Element Reduced Basis Method for Navier-Stokes

Equations with Geometric Variations”, 2018, ArXiv arxiv.org/abs/1812.11051
– M. Hess, A. Alla, A. Quaini, G. Rozza, and M. Gunzburger, “A Localized Reduced-Order Modeling

Approach for PDEs with Bifurcating Solutions”, 2018, ArXiv arxiv.org/abs/1807.08851
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Some ROM challenges in CFD
• Complex CFD problems in 3D setting characterized by bifurcations, e.g. Coanda effect during

mitral valves regurgitation, influence of more complex geometries and multiphysics on bifurcations
and stability.

Investigations on bifurcations and loss of uniqueness of the solution require ROM for parametrized
eigenvalue analysis. [Pitton, Rozza, 2017, Journal of Scientific Computing; Pitton, Quaini, Rozza,
2017, Journal of Computational physics]
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Some ROM challenges in Structural Mechanics
• Computational mechanics problems to study the deformation of a plate under compression (load λ

and shape ψ) and the bifurcations of the Von Kaŕmań model through the linearized eigenproblem.
[Pichi, F. , Rozza, G., 2018, Reduced basis approaches for parametrized bifurcation problems held
by non-linear Von Kármán equations, arXiv:1804.02014]

• Secondary bifurcations, better computations of parametric stability factors
• Quantum mechanics problems to study the Gross–Pitaevskii equation that describes the ground

state of a quantum system of identical bosons.
[Pichi, F. , Quaini, A., Rozza, G., 2019, Reduced deflation technique in bifurcating phenomena:
application to the Gross–Pitaevskii equation, In progress]

Further investigations on: Empirical Interpolation techniques, Neo-Hookean beam 2D/3D problem and
a posteriori error estimate are in progress.
FVG - MIT project ROM2S
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#UQ #CFD # FEM
Weighted reduced methods for parametrized problems

with random inputs
with Francesco Ballarin, Davide Torlo and Luca Venturi
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Uncertainty quantification problems with weighted reduced approach
• extension of (deterministic) reduced order methods to stochastic PDEs:
◦ weighting to account for the probability space;
◦ sampling from representative probability distribution;
◦ exploitation of sparse grids to reduce the computational cost for high
dimensional parameter spaces to break the curse of dimensionality;

• application to advection dominated problems by means of reduced order
stabilization techniques.
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L. Venturi, D. Torlo, F. Ballarin, and G. Rozza. “Weighted reduced order methods for parametrized
partial differential equations with random inputs”. Uncertainty Modeling for Engineering Applications,
Springer, 2019.
L. Venturi, F. Ballarin, and G. Rozza. “A weighted POD method for elliptic PDEs with random
inputs”. Journal of Scientific Computing, in press, 2019.
D. Torlo, F. Ballarin, and G. Rozza. “Stabilized weighted reduced basis methods for parametrized
advection dominated problems with random inputs”. SIAM/ASA Journal on Uncertainty
Quantification, 2018.
Former works in collaboration with A. Quarteroni and C. Peng
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#Applications
# ROMs # CFD # OFCPs # CAD # CABGs

Parametrized reduced order optimal control for blood
flows in patients’ specific geometries
with Zakia Zainib, Francesco Ballarin

Piero Triverio, Laura Jiménez, Stephen Fremes
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Triple Coronary Artery Bypass Grafts (CABGs)

• Medical image data (CT-scan) from Sunnybrook Health Sciences Center,
Toronto, Canada.

• Three grafts attached to three different diseased arteries,
– Right internal mammary artery (RIMA) to left

anterior descending artery (LAD).

RIMA LAD

– Vein graft to first obtuse marginal artery (OM1).

Vein graft OM1

– Vein graft to posterior descending artery (PDA).

Vein graft PDA

F. Auricchio, M. Conti, A. Lefieux, S. Morganti, A. Reali, G. Rozza, and A. Veneziani. Cardiovascular Mechanics,

chapter: Computational Methods in Cardiovascular Mechanics. CRC Press Taylor and Francis Group, 2018.
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Physiological data assimilation

Problem description:

Navier-Stokes equations constrained boundary control with physical
parametrization, and geometrical and physiological data assimilation.

min
(v,u)
J (v (µ) , p (µ) , u (µ)) =

1
2

∫
Ω
|v (µ)− vd |2 +

α

2

∫
Γout

|u (µ) |2

subject to


−η∆v (µ) + (v (µ) · ∇) v (µ) +∇p (µ) = 0, in Ω
∇ · v (µ) = 0, in Ω
v (µ) = vin, on Γin
v (µ) = 0, on Γwall
η∇v (µ) · n − p (µ) n = u (µ) on Γout

• Patient-specific computational domain Ω.
• Patient-specific physiological data vd acquired through 4D-MRI.

The goal: rely on simplier Neumann boundary conditions, but tune u (µ) to best
match vd acquired by measurement of the velocity profile.
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Patient-specific physiological

data assimilation in J

Physical parametrization µ

Derive coupled optimality system[
A
]︸︷︷︸

non-linear

[
s
]︸︷︷︸

unknowns

=
[

vd
]︸︷︷︸

known data

POD–Galerkin

Select sample of

parameters Λ ⊂ D

Gather snapshots, that is,

Galerkin FE solutions for Λ.

Generate reduced order

solution spaces from

orthonormal POD bases.

Perform Galerkin projection of

full order manifold to reduced

order solution manifold.

Suprem
izers

enrichm
ent

&
aggregated

spaces

Calculations performed

in offline phase

Calculations performed

in online phase

(xN , zN ),

minimized J

Repeat for new µ

Figure: Reduced order optimal control pipeline: an overview

Negri, Manzoni, and Rozza, Comp. Math. App., 2015.

Negri, Rozza, Manzoni, and Quarteroni, SIAM J. Sci. Comp., 2013.
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Reliability of the reduced order model

Test case: Vein graft to OM1, µ = Re ∈ [45, 50]

Figure: Velocity
magnitude Figure: Control

magnitude

FE approx. ROM approx.
Mesh size 27398 -

Degrees of freedom 280274 43
CPU time (secs) 634 118 (online)

Table: Computational performance

Zainib et al., in preparation, 2019.

Figure: Relative error b/w FE and
POD approximations of variables

Figure: Relative error b/w FE and
POD reduction in J
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#Applications #Environmental #CFD #DataAssimilation
#InverseProblems

Reduced Order Methods for Parametrized Optimal Flow
Control in Environmental Marine Sciences

with Maria Strazzullo and Francesco Ballarin
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Pollutant Control on Gulf of Trieste, Italy
Motivations: forecasting, data assimilation, ecological
and touristic and geographical interest.
Collaborations: National Institute of Oceanography
and Applied Geophysics, OGS, Trieste, Italy.
Problem formulation
y ∈ H1

ΓD
(Ω), u ∈ R, yd ∈ R (safeguard threshold)

Weak formulation
Minimise with respect to
(y(µµµ), u(µ)) ∈ Y × U

1
2

∫
ΩOBS

(y(µ)− yd )2 dΩy +
α

2

∫
Ωu

u(µµµ)2 dΩu

constrained to an advection-diffusion
state equation:

a(y(µ), q) = c(u(µ), q), ∀q ∈ Q.

Boundaries:
ΓD = coasts, ΓN = Adriatic Sea.
Subdomains:
ΩOBS = Natural area of Miramare;
Ωu = Source of pollutant (in front of the city of Trieste).
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Weak Formulation of the Parametric Inverse problem
• a : Y × Q → R :
a(y , q,µµµ) =

∫
Ω

(ν(µµµ)∇y · ∇q + βββ(µµµ) · ∇yq) dΩ,

• c : U × Q → R :
c(u, q) = Lu

∫
Ωu

qdΩu, [L = 103 → non-dimensional system]

Parameters (D = [0.5, 1]× [−1, 1]× [−1, 1])
ν(µµµ) ≡ µ1 is the diffusivity parameter,

βββ(µµµ) = [β1(µ2), β2(µ3)] is the transport field,

Control and cost functional value for several parameters
µµµ u Jr

No wind (1,0,0) 7.6901 · 10−1 5.1320 · 10−5
Bora (1,-1,1) 7.3698 · 10−1 4.9167 · 10−5
Scirocco (1,1,-1) 8.0800 · 10−1 5.3417 · 10−5

Time of a run: tN = 2.79s,tN = 2.41 · 10−2s.
Dimensions: N = 5639 and N = 20.
[Strazzullo et al., Model Reduction for Parametrized Optimal Control Problems in Environmental
Marine Sciences and Engineering. SIAM SISC, 40:4, B1055-B1079, 2018]
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Numerical Results: FE – POD Errors

Parameter: µµµ = (1,−1, 1).
Sampling distribution for POD: Uniform.
Training set dimension: 100.

Bora Errors. Bottom left: monolithic (one POD for U(µµµ) = (y(µµµ), u(µµµ), q(µµµ))) and
partitioned (different POD reductions for state, control and adjoint variables) error com-
parison.

[Strazzullo et al., Model Reduction for Parametrized Optimal Control Problems in Envi-
ronmental Marine Sciences and Engineering. SIAM SISC, 40:4, B1055-B1079, 2018]
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Application: Oceanographic Solution Tracking
Motivations: unify standard model and data giving more reliable simulations as quickly as
possible.
Aim: make the y ∈ H1

0 (Ω) the most similar to a given data yd (Gulf Stream Dynamic).

OFCP(µµµ) governed by Quasi-Geostrophic Equation
given µµµ ∈ [10−4, 1]× [10−4, 1]× [10−4, 0.0452]., find (y(µµµ), u(µµµ)) ∈ Y × U := L2(Ω)
which solves

min
(y,u)

1
2

∫
Ω

(y(µµµ)− yd )2 dΩ +
α

2

∫
Ω

u(µµµ)2 dΩ

s.t.


∂y
∂x0

+ µ1∆y + µ2∆2y + µ3

(
∂y
∂x0

∂∆y
∂x1

−
∂∆y
∂x0

∂y
∂x1

)
= u in Ω

y = 0, on ∂Ω,
∆y = 0, on ∂Ω.

Streamline Formulation:
y = streamfunction, ∆y = −vorticity. The
velocity field vvv of Oceanic current, solution
of the Geophysical Navier-Stokes Equation
[Navier-Stokes Equation + Earth rotation
effect], could be recovered by
(v1, v2) = (yx1 ,−yx0 ).
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Results: Oceanographic Solution Tracking

Speed up and system dimensions
µµµ = (10−4, 0.073, 0.0452)
Time of a run: tN = 5.59s,tN = 2.38 · 10−1s.
Dimensions: N = 6490 and N = 125.

µµµ1,µµµ2: diffusivity parameter,
µµµ3: advection parameter,

Nmax: 100,
α: 10−5.

[Strazzullo et al., Model Reduction for Parametrized Optimal Control Problems in Environmental
Marine Sciences and Engineering. SIAM SISC, 40:4, B1055-B1079, 2018]
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Numerical Results: State Equation Stokes
Aim: recover vvvd = [µ3(8(v 3 − v 2 − v + 1) + 2(−v 3 − v 2 + v + 1)), 0] in ΩOBS with
a Neumann control.
OFCP(µµµ) governed by time dependent Stokes
given µµµ ∈ [1/20, 1/6]× [1, 2]× [1, 3], find (v(µµµ), p(µµµ), u(µµµ)) ∈ X which solves

min
(vvv,p,uuu)∈X

1
2

∫ T

0

∫
ΓOBS

(vvv−vvvd (µ3))2dsdt+α1

2

∫ T

0

∫
ΓC

uuu2dsdt+α2

2

∫ T

0

∫
ΓC

|∇uuu·ttt|2dsdt

s.t.



vvv t − µ1∆vvv +∇p = 0 in Ω(µ2)× [0, 1],
div(vvv) = 0 in Ω(µ2)× [0, 1],
vvv = ggg on ΓIN(µ2)× [0, 1],
vvv = 0 on ΓD(µ2)× [0, 1],
−pnnn +∇vvv · nnn = uuu on ΓC (µ2)× [0, 1],
vvv(0) = vvv 0 in Ω(µ2)× {0}.

µµµ1: diffusivity parameter,
µµµ2: length of Ω2,
Nmax: 70,
Nt : 20,
α1, α2: 10−3, 10−4.
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Numerical Results: State Equation Stokes - results

N Speedup
15 66338
20 47579
25 34335
30 22477
35 17420

Speed up and system dimensions µµµ = (0.5, 1.5, 1)
Speed up: 104,
Errors: state 10−4, control 10−3,
Dimensions: N = 313830 and N = 9100.

[Strazzullo, Zainib, Ballarin, Rozza, Reduced order methods for parametrized nonlinear and time de-
pendent optimal flow control problems, towards applications in biomedical and environmental sciences.
In preparation]
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#CFD #FV

ROM for Finite Volume Discretization
of viscous flows with stable pressure

with Giovanni Stabile, Saddam Hijazi, Andrea Lario and
Matteo Zancanaro

f

Sf1

F1

f

C

c1u

f1u

cu

Why Finite Volumes?

It became the standard for real world applications in several engineering fields
(Aeronautics, Industrial flows, Automotive, Naval Engineering)

For increasing Reynolds numbers there are less problems concerning stability and
several turbulence models are already available.
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Numerical examples

The lid driven cavity problem
The first proposed benchmark
consists into the well known lid
driven cavity problem:

ΓD Γ0
u u = (1, 0) u = (0, 0)
p ∇p · n = 0 ∇p · n = 0

The mesh is structured and counts
40000 quadrilateral cells, 200 on
each dimension of the square. The
kinematic viscosity is equal to
ν = 1× 10−4m2/s that leads to a
Reynolds number of 10000.
In this case no parametrization is
introduced.

Comparison of the velocity and pressure fields for
high fidelity, SUP-ROM and PPE-ROM.

The fields are depicted for different time instant
equal to t = 0.2s, 0.5s, 1s and 5s.
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Numerical examples
The L2 norm of the relative error over time for three different models.
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The table contains the cumulative eigenvalues for the lid driven cavity test. The last
column contains the value of the inf-sup constant, in the supremizer stabilization case, for
different different number of supremizer modes and with a fixed number of velocity and

pressure modes.

N Modes u p s β
1 0.978946 0.975406 0.980260 9.264e-05
2 0.994184 0.991528 0.995232 9.264e-05
3 0.997737 0.995385 0.997912 7.175e-04
4 0.998990 0.998116 0.999400 7.175e-04
5 0.999483 0.999270 0.999844 7.175e-04
10 0.999971 0.999971 0.999997 1.551e-02
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Numerical examples

The flow around a circular cylinder

ΓIn Γ0 Γs ΓOut
u u = (1, 0) u = (0, 0) u · n = 0 ∇u · n = 0
p ∇p · n = 0 ∇p · n = 0 ∇p · n = 0 p = 0

The properties of the presented algorithms have been tested also with
the benchmark of the laminar flow around a circular cylinder. In
this case the viscosity have been parametrized and results refer to a
parameter non experimented in the full order simulations. The
parameter space is given by 5 different values of the viscosity:
ν ∈ [0.005, 0.01]. These values of viscosity result into the values of
the Reynolds number Re ∈ [100, 200].
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Numerical examples

First four modes for velocity pressure and supremizers

Cumulative eigenvalues

N Modes u p s β
1 0.390813 0.793239 0.921046 2.608e-04
2 0.598176 0.85809 0.941746 4.492e-04
3 0.802176 0.911636 0.961438 7.869e-03
4 0.879096 0.934997 0.978072 1.662e-02
5 0.949519 0.955578 0.98669 1.662e-02
10 0.986025 0.992347 0.998307 1.098e-01
15 0.995922 0.997994 0.999732 1.199e-01
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Numerical examples
Comparison of the velocity field

Comparison of the pressure field
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Numerical examples
Comparison on the same time window ans computational costs
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Cavity Exp. Cylinder Exp.
HF 25min 18.5min× 6proc.
SUP-ROM 7.64s 3.14s
PPE-ROM 4.86s 0.971s

• The velocity field is reproduced in a more accurate way using the Poisson equation
approach. This is due to the “pollution” given by the non-necessary supremizer modes.

• On the other side the pressure field is better reproduced using a supremizer approach.
• The cavity example has run serially with OpenFOAM 5.0 (i7 laptop).
• The cylinder example has run in parallel with OpenFOAM 5.0.
• The reduced order models have run in serial in ITHACA-FV.

It is available on github
https://github.com/mathLab/ITHACA-FV.

• In the worst case the speed up is equal to approx. 200.

G. Stabile and G. Rozza, Stabilized Reduced order POD-Galerkin techniques for finite volume
approximation of the parametrized Navier–Stokes equations, Computer & Fluids, 2018.
S. Ali, S. Hijazi, G. Stabile, F. Ballarin, G. Rozza, The effort of increasing Reynolds number in
POD-Galerkin Reduced Order Methods: from laminar to turbulent flows, FEF, 2017, in press, 2019.
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#CFD

ROM and Finite Volume Discretization
for fluid mechanics of turbulent flows

Joint Work with G. Stabile, S. Hijazi, S. Georgaka,
K. Star, M. Zancanaro
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Reduced order methods for FV

Why Finite Volumes?
The finite element method is nowadays the standard in the reduced order
modelling community so why to use a different discretisation technique?

It became the standard for real world applications in several engineering fields
(Aeronautics, Industrial flows, Automotive, Naval Engineering)

One can find well developed open source libraries, OpenFOAM is today
probably the most spread CFD open-source solver.

For increasing Reynolds numbers there are less problems concerning stability
and several turbulence models are already available.

More difficulties into the affine decomposition of the differential operators.

The ROM methodology, mainly developed for FEM solvers, needs to be
adapted.

The geometrical parametrization includes many more difficulties with
respect to a finite element setting

G. Rozza Increasing Reynolds Number



Reduced order methods for FV - Laminar Flows

Issues in FV and Reduced Order Modelling
To export the ROM methodology, mainly developed for finite element solvers, into
a Finite Volume setting several issues need to be tackled.

• Adapt ROMs to finite volume approximations [Haasdonk and Ohlberger
(2008)].

• Geometrical Parametrisation [Drohmann et al (2009)].

• Stabilisation issues for incompressible flows [Rozza et al., Noack, Akhtar,
Iliescu, Iollo, ..]

• Stabilisation for compressible flows and long time intervals [Carlberg et al
(2017) , Balajewicz et al (2016), Fick et al 2017)][Carlberg 2018].

• Develop ROMs beyond the laminar assumption [Lorenzi 2016].

Sta-Ro (2018). Finite volume POD-Galerkin stabilized reduced order methods for the parametrised incompressible
Navier-Stokes equations. Computers & Fluids, 173, 273-284.

Sta-Hi-Mo-Lo-Ro (2017) POD-Galerkin reduced order methods for CFD using finite volume discretisation: vortex
shedding around a circular cylinder. Communications in Applied and Industrial Mathematics, 8 (1), pp 210-236, 2017
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Reduced order methods for finite volume discretization

Reduced order methods for turbulent flows
• The goal is to develop reduced order methods dedicated for the treatment of
turbulent flows.

• Development of Reduced Order Models which merge projection-based
methods and data-driven techniques.

• The model has been tested on benchmark cases like the Pitz-Daily case and
the flow around a circular cylinder.

• The Reynolds number in the cases is up to Re = 104-106.
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The Idea
RANS Equations.
• The k − ω turbulence model, has been used in this work





∂u
∂t + ∇ · (u ⊗ u) = lam. terms + g(νt), in Ω× [0,T ],
∇ · u = 0, in Ω× [0,T ],
u(t, x) = f (x,µ), on ΓIn × [0,T ],
u(t, x) = 0, on Γ0 × [0,T ],
(ν∇u − pI)n = 0, on ΓOut × [0,T ],
u(0, x) = k(x), in (Ω, 0),
νt = F (k, ω), in Ω,
Transport-Diffusion equation for k,
Transport-Diffusion equation for ω,

(6)

k is the turbulent kinetic energy
ω is the rate of dissipation for turbulent kinetic energy
• One could project the standard Navier Stokes equations without the eddy
viscosity contribution on the modes computed using a stabilized FOM but this
approach fails. → We have to consider the contribution given by the
additional eddy viscosity term.
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The Reduced Order Model

• One idea could be to decompose all turbulence variables as was done with
velocity and pressure and then projecting the additional PDEs onto the spaces
spanned by the POD modes of the turbulence variables, namely:

k(x, t;µ) ≈
Nk∑

i=1

ei (t,µ)βi (x), (7)

ω(x, t;µ) ≈
Nω∑

i=1

fi (t,µ)γi (x), (8)

(βi ,A1(k))L2(Ω) = 0,
(γi ,A2(ω))L2(Ω) = 0, (9)

where A1(k) and A2(ω) are the differential operators that correspond to the
transport diffusion PDEs.

• This approach is problem dependent and thus a different ROM has to be
developed for each turbulence model.

• The operators A1(k) and A2(ω) have strong non-linearities and treating them
in ROM is quite challenging.

• This makes the approach inconvenient, the interest is in building ROM which is
more general and less expensive.
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The Reduced Order Model

• We use just the decomposition of the eddy viscosity field:

νt(x, t;µ) ≈
Nνt∑

i=1

gi (t,µ)ηi (x),

• The projection of the momentum equation gives:
{

Mȧ = ν(B + BT )a − aT Ca + gT (CT1 + CT2)a −Hb,
Pa = 0,

where g is the vector of the coefficients [gi (t,µ)]Nνt
i=1 , and the new terms are

computed as follows:

BTij =
(
φi ,∇ · (∇φT

j )
)

L2(Ω) ,

CT1ijk = (φi , ηj∆φk ))L2(Ω) ,

CT2ijk =
(
φi ,∇ · ηj (∇φT

k )
)

L2(Ω) .

• Once the vector g is computed, the system can be solved for a and b.
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The Reduced Order Model

• The problem is now to compute the coefficients g of the eddy viscosity
equations without relying on the projection of the equations → POD-I.

• The proper orthogonal decomposition with interpolation is a method to
approximate the numerical solution of a parametric partial differential equations
as combination of few solutions computed for some properly chosen parameters.

∀µk ∈ Ptrain, u(µk ) ≈ uN(µk ) =
N∑

i=1

ai (µk )φi ,

uN
NEW =

N∑

i=1

ai (µNEW )φi .

• Each function ai (µ) is approximated using approximated interpolant
functions.

• It relies only on the snapshots: it does not require any information about the
system (non-intrusive approach).

• The interpolation is carried out using Radial Basis Functions.
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Numerical results : steady case

Steady state case: the backstep

Figure: The computational domain used in the numerical simulations, L is equal to 50.8
meters.

The parameter vector is µ = [µ1, µ2]
µ1: the magnitude of the velocity at the inlet
µ2: the inclination of the velocity with respect to the inlet which is
measured in degrees.

G. Rozza Increasing Reynolds Number



Numerical results : Pitz-Daily benchmark steady case

Velocity results
• Fixed viscosity value ν = 10−3

• Parametrized inlet velocity in inclination and magnitude µ1 ∈ [0.18, 0.3] and
µ2 ∈ [0, 30], Reynolds number ranges from 9.144× 103–1.524× 104

(a) (b)

(c)
Figure: Velocity fields for µ∗ = (0.22089, 24.484): (a) shows the DD-ROM Velocity,
while in (b) one can see the ROM Velocity (without viscosity incorporated in ROM),
and finally in (c) we have the FOM Velocity.

Hi-Ali-Sta-Ba-Ro (2018) The Effort of Increasing Reynolds Number in Projection-Based Reduced Order Methods:
from Laminar to Turbulent Flows, FEF Special Volume
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Numerical results : Pitz-Daily benchmark steady case

Pressure results
• The relative L2 error are 2.957% and 222.96% for DD-ROM and ROM,
respectively.

(a) (b)

(c)
Figure: Pressure fields for µ∗ = (0.22089, 24.484): (a) shows the DD-ROM Pressure,
while in (b) one can see the ROM Pressure (without viscosity incorporated in ROM),
and finally in (c) we have the FOM Pressure.
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Numerical results : Flow around a cylinder, unsteady case

• Results for the mixed Data-Driven and projection-based Reduced Order Model
(DD-ROM) proved accuracy and efficiency compared to the ones obtained from
a fully projection-based strategy.
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Figure: FOM,ROM and DD-ROM lift coefficients for the forces acting on the cylinder,
in this case Re = 104. Turbulence model: K-omega.

• DD-ROM relative error is in the range of 1− 5 %, while ROM has a relative
error of 20%, TCPUFOM = 525.32 s, TCPUDD−ROM = 1.095 s, Speed up of 479.

S. Hijazi, G. Stabile, A. Mola and G. Rozza (2018) Data-Driven POD–Galerkin reduced order model for turbulent flows
POD–Galerkin reduced order model for turbulent flows, In Preparation
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TOPIC #2 

Monolithic ROMs for FSI problems

G. Rozza               ROM for PDEs

#Shape parametrisation #Active Subspaces 
#POD-Galerkin 

Combined parameter and model reduction 

with Marco Tezzele and Francesco Ballarin

Tezzele et al. “Combined parameter and model reduction of cardiovascular problems by means of active subspaces and POD-Galerkin methods”. 2018 
Tezzele et al. “Dimension reduction in heterogeneous parametric spaces with application to naval engineering shape design problems”. 2018
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Active subspaces property

f : Rm ! R

C = W⇤WT

C = E [rxf rxfT ] =

Z
(rxf)(rxf)T ⇢ dx

x 2 Rm f is a scalar function that takes as arguments 
the parameters x 

C is the uncentered covariance matrix of the 
gradients of f, symmetric, positive 
semidefinite 

E is the expected value and rho a probability 
density function

In many cases the dimension of the parametrised problem is only artificially high 

‣ Active subspaces property identifies a set of important directions in the space of all inputs

Constantine. “Active subspaces: Emerging ideas for dimension reduction in parameter studies.” SIAM, 2015.

⇤ =


⇤1

⇤2

�

y = WT
1 x 2 Rn z = WT

2 x 2 Rm�n

W = [W1 W2] 2 Mm⇥m

f(x) ⇡ g(WT
1 x) = g(y)

‣ We define the active subspace to be the range of the first n eigenvectors of W

‣ With the basis identified, we can map forward to the active subspace. So y is the 
active variable and z the inactive one. The surrogate model g is used to approximate f



Active Subspaces - A quadratic example

M. Tezzele, F. Ballarin and G. Rozza “Combined parameter and model reduction
of cardiovascular problems by means of active subspaces and POD-Galerkin
methods”. 2018
M. Tezzele, F. Salmoiraghi, A. Mola, G. Rozza. “Dimension reduction in
heterogeneous parametric spaces with application to naval engineering shape
design problems”. 2018
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Flow across parametrised carotid bifurcations

Deformed carotid with the 
deforming control points (red) and 
the undeformed state (black)

‣ Vessels geometry strongly influences hemodynamics behaviour. 

‣ The output function is the relative pressure drop of the two branches, computing the 
integral of the pressure on selected sections.

‣ We deform the carotid after the bifurcation moving 10 RBF 
control points (in red) solving an interpolation system.

Vorticity Velocity
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Spectral analysis

‣ The two dimensional active subspace spanned by the first two eigenvectors of 
the covariance matrix seems to better capture the behaviour of the output 
function. We use this information perform a further reduction by a POD-Galerkin 
ROM. 

‣ We exploit a 2-dimensional active subspace to compute the POD snapshots in 
a reduced space with respect to the full 10-dimensional parameter space. 

‣ Typical reduced space dimensions and computational speedup for cardiovascular 
flows: 500:1.

Eigenvalues analysis One active variable Two active variables
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POD analysis

Here the POD singular values for velocity, supremizers and pressure, as a function of the number 
N of selected POD modes:

Velocity Supremizers Pressure

‣ The standard approach presents a slower 
decay, meaning that it has to deal with a 
considerably larger solution manifold. 

‣ The combined methodology is able to reach 
relative errors which are up to one order of 
magnitude smaller when compared to the 
standard one, for both velocity and pressure 
when N = 20.

Velocity Pressure



TOPIC #2 

Monolithic ROMs for FSI problems
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#GeometricalMorphing 
#Industrial #applications #FFD 

A full data-driven computational pipeline 

with Marco Tezzele, Nicola Demo, Andrea Mola
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‣ PyGeM is a python library using Free Form Deformation, Radial Basis Function 
and Inverse Distance Weighting interpolation technique to parametrize and 
morph complex geometries. It is developed by N. Demo and M. Tezzele [*] 

‣ The main focus of PyGeM is to interact with the major industrial file formats 
used for CAD management. Since it has to integrate itself in the industrial 
workflow we have chosen python

PyGeM: Python Geometrical Morphing

Morphing of the bumper using an OpenFOAM file. DrivAer model.

‣  It allows to handle: 

• Computer Aided Design 
files (.iges, .step and .stl) 

• Mesh files (.unv and 
OpenFOAM)  

• Output files (.vtk)

[*]  PyGeM on Github: github.com/mathLab/PyGeM
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Tool for the automatic shape parametrization

1. Mapping the physical domain to the 
reference one: 

2. Moving some control points to deform the 
lattice: 

3. Mapping back to the physical domain: 

FFD: composition of the three maps

 

T̂

 �1

T (·, µ) = ( �1 � T̂ �  )(·, µ)
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Efficient and accurate geometrical parametrization techniques

‣ At the state of the art free-form parametrization techniques for geometries are receiving a 
growing interest, in view of strong integration with CAD tools, as well as for design and shape 
optimization 

‣ Extending isogeometric analysis (IGA) for viscous flows in the reduced basis context (AMSES, 
2016, Salmoiraghi et al., QUIET 2017 special issue, Garotta et al.)

In collaboration with: F. Salmoiraghi, N. Demo, M. Tezzele, F. Ballarin, L. Heltai, A. Mola (SISSA), H. Telib (Optimad-PoliTo), F. Garotta

T (x, µ) : ⌦ ! ⌦0(µ)
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Hull optimization pipeline - From FFD to PODI

‣ Given the time-average solutions, we combine the 
vectors containing the average force coefficients with 
the proper orthogonal decomposition (POD) 
interpolation technique implemented in EZyRB. 

‣ Here we have the first POD modes and the optimized 
bulb.



Reduced Order Model for industrial shape problems

original
hull FFD FV DMD PODI OPT optimized

hull

In collaboration with Fincantieri, leader in cruise ship
manifacturing, we developed an innovative pipeline
involving data-driven reduced order modeling techniques
for shape optimization in naval problems.
• Shape parametrization (FFD)
• Proper orthogonal decomposition with
interpolation

• Dynamic mode decomposition

G. Rozza ROM for PDEs



Reduced Order Model for industrial shape problems

• POR FESR: SOPHYA the main goal of the project is to
improve planing yacht hulls the performance in non-calm
sea conditions. A set of specific methodologies have been
developed to be able to parameterize the hull geometry
and carry out a shape optimization campaign based both
on high fidelity RANS and non-intrusive ROM
simulations.

• POR FESR: PRELICA the main goal of the project is to
improve ship propeller performance both in terms of
thrust and acoustic emissions. A specific python package
(BladeX) has been developed to generate parametrized
propeller geometries. The optimal propeller shape has
been identified making use of both high order LES and
non-intrusive ROM hydroacoustic simulations.

G. Rozza ROM for PDEs



Vision and Perspective: to real-time computing
Model order reduction for web server: from biomedical to naval applications

CSE-Apps
• HPC, data science
• Web computing
• Digital twin
• 3D printing
• SMACT Industry4.0

G. Rozza ROM for PDEs



Conclusion

• It is time to better integrate Data, Modelling, Analysis, Numerics, Control,
Optimization and Uncertainty Quantification in a new parametrized,
reduced and coupled paradigm.

• We need to draw the attention to the fact that “Science and Industry
advance with Mathematics”.

• Applied Mathematics as propeller for Innovation and Technology Transfer
by a new generation of computational scientists.

www.sissa.it

math.sissa.it

mathlab.sissa.it

people.sissa.it/~grozza

Thanks for your attention!

G. Rozza ROM for PDEs

www.sissa.it
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mathlab.sissa.it
people.sissa.it/~grozza
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