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Mathematics of Deep Neural Networks
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The Mathematics of Deep Neural Networks

Definition:
Assume the following notions:

d ∈ N: Dimension of input layer.

L: Number of layers.

N: Number of neurons.

ρ : R→ R: (Non-linear) function called activation function.

T` : RN`−1 → RN` , ` = 1, . . . , L: Affine linear maps.

Then Φ : Rd → RNL given by

Φ(x) = TLρ(TL−1ρ(. . . ρ(T1(x))), x ∈ Rd ,

is called (deep) neural network (DNN).
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Training of Deep Neural Networks

High-Level Set Up:

Samples (xi , f (xi ))mi=1 of a function
such as f :M→ {1, 2, . . . ,K}.

Select an architecture of a deep neural network,
i.e., a choice of d , L, (N`)

L
`=1, and ρ.

Sometimes selected entries of the matrices (A`)
L
`=1,

i.e., weights, are set to zero at this point.

Learn the affine-linear functions (T`)
L
`=1 = (A` ·+b`)

L
`=1 by

min
(A`,b`)`

m∑
i=1

L(Φ(A`,b`)`(xi ), f (xi )) + λR((A`, b`)`)

yielding the network Φ(A`,b`)` : Rd → RNL ,

Φ(A`,b`)`(x) = TLρ(TL−1ρ(. . . ρ(T1(x))).

This is often done by stochastic gradient descent.

Goal: Φ(A`,b`)` ≈ f
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Fundamental Questions concerning Deep Neural Networks

Expressivity:
I How powerful is the network architecture?
I Can it indeed represent the correct functions?

 Applied Harmonic Analysis, Approximation Theory, ...

Learning:
I Why does the current learning algorithm produce anything reasonable?
I What are good starting values?

 Differential Geometry, Optimal Control, Optimization, ...

Generalization:
I Why do deep neural networks perform that well on data sets, which do

not belong to the input-output pairs from a training set?
I What impact has the depth of the network?

 Learning Theory, Optimization, Statistics, ...

Interpretability:
I Why did a trained deep neural network reach a certain decision?
I Which components of the input do contribute most?

 Information Theory, Uncertainty Quantification, ...
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What is Interpretability?

Main Questions: Given a trained deep neural network...

Which input features contribute most to the decision?

How can the outcome be explained?

Some Recent Work:

Sensitivity Analysis (Simonyan, Vedaldi, Zisserman; 2013)

Layer-wise Relevance Propagation (Bach, Müller, Samek at al.; 2015)

Deep Taylor Decompositions (Montavon, Samek, Müller; 2018)

Rate Distortion Explanation (Waeldchen, Macdonald, Hauch, K; 2019)
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Quality Measure of Interpretability

Classification of the Digit 6:

Quality Measure:
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Impact of Deep Learning on Mathematics

Some Examples:

Inverse Problems
 Image denoising (Burger, Schuler, Harmeling; 2012)
 Superresolution (Klatzer, Soukup, Kobler,

Hammernik, Pock; 2017)
 Limited-angle tomography (Bubba, K, Lassas,

März, Samek, Siltanen, Srinivan; 2018)
 Edge detection (Andrade-Loarca, K, Öktem,

Petersen; 2019)

Numerical Analysis of Partial Differential Equations
 Schrödinger equation (Rupp, Tkatchenko, Müller,

von Lilienfeld; 2012 –)
 Black-Scholes PDEs (Grohs, Hornung,

Jentzen,von Wurstemberger; 2018)
 Parametric PDEs (Schwab, Zech; 2018)
 Parametric PDEs (K, Petersen, Raslan, Schneider; 2019)
Modelling
 Learning equations from data (Sahoo, Lampert, Martius; 2018)
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Let’s Now Enter the World of Parametric PDEs
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Why Parametric PDEs?

Parameter dependent families of PDEs arise in basically any branch of
science and engineering.

Some Exemplary Problem Classes:

Complex design problems

Inverse problems

Optimization tasks

Uncertainty quantification

...

The number of parameters can be

finite (physical properties such as domain geometry, ...)

infinite (modeling of random stochastic diffusion field, ...)

Parametric Map:

Y 3 y 7→ uy ∈ H such that L(uy , y) = fy .
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Parametric Partial Differential Equations

Our Setting: We will consider parameter-dependent equations of the form

by (uy , v) = fy (v), for all y ∈ Y, v ∈ H,
where

(i) Y ⊆ Rp (p large) is the compact parameter set,

(ii) H is a Hilbert space,

(ii) by : H×H → R is a symmetric, uniformally coercive, and uniformally
continuous bilinear form,

(iv) fy ∈ H∗ is the uniformly bounded, parameter-dependent right-hand
side,

(v) uy ∈ H is the solution.

We also assume the solution manifold

S(Y) := {uy : y ∈ Y}
to be compact in H.
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Multi-Query Situation

Many applications require solving the parametric PDE multiple times for
different parameters:

Rp ⊃ Y 3 y = (y1, . . . , yp) 7→ uy ∈ H

Examples:

Design optimization

Optimal control

Routine analysis

Uncertainty quantification

Inverse problems

Curse of Dimensionality:

Computational cost often much too high!
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High-Fidelity Approximations

Galerkin Approach: Instead of by (uy , v) = fy (v), we solve

by
(
uhy , v

)
= fy (v) for all v ∈ Uh,

where Uh ⊂ H with D := dim
(
Uh
)
<∞ is the high-fidelity discretization

and uhy ∈ Uh is the solution.

Cea’s Lemma: uhy is (up to a constant) a best approximation of uy by

elements in Uh.

Galerkin Solution: Let (ϕi )
D
i=1 be a basis for Uh. Then uhy satisfies

uhy =
D∑
i=1

(uhy )iϕi with uhy :=
(
Bh

y

)−1
fhy ∈ RD ,

where Bh
y := (by (ϕj , ϕi ))Di ,j=1 and fhy := (fy (ϕi ))Di=1.
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What about Deep Neural Networks?

Parametric Map:

Y 3 y 7→ uhy ∈ RD such that by
(
uhy , v

)
= fy (v) ∀v ∈ Uh.

Can a Neural Network Approximate the Parametric Map?

Advantages:

After training, extremely rapid computation of the map.

Flexible, universal approach.

Questions: Let ε > 0.

(1) Does there exist a neural network Φ such that

‖Φ− uhy‖ ≤ ε for all y ∈ Y?

(2) How does the complexity of Φ depend on p and D?
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Deep Learning Approaches to PDEs

Common Approach to Solve PDEs with Neural Networks:
Approximate the solution u of a PDE L(u) = f by a neural network Φ, i.e.,
solve

L(Φ) = f .

Key Idea: The size of the neural network does not depend exponentially on
the underlying dimension.

Incomplete List:

Lagaris, Likas, Fotiadis; 1998

E, Yu; 2017

Sirignano, Spiliopoulos; 2017

Han, Jentzen, E; 2017

Berner, Grohs, Jentzen; 2018

Eigel, Schneider, Trunschke, Wolf; 2018

Reisinger, Zhang; 2019

...
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Solving Parametric PDEs

List of Deep Learning Approaches:

K. Lee, K. Carlberg; 2018:
Learn a parametrisation of S(Y) represented by neural networks.

J.S. Hesthaven, S. Ubbiali; 2018:
Find reduced basis and then train neural networks to predict coeffcients
of solution in that basis.

Schwab, Zech; 2018:
Assume that there is a reduced basis of polynomial chaos functions.
These and the coefficients can be efficiently represented by neural
networks.
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Expressivity of Deep Neural Networks
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Complexity of a Deep Neural Network

Recall:

d ∈ N: Dimension of input layer.

L: Number of layers.

N: Number of neurons.

ρ : R→ R: (Non-linear) function called activation function.

T` : RN`−1 → RN` , ` = 1, . . . , L: Affine linear maps x 7→ A`x + b`.

Then Φ : Rd → RNL given by

Φ(x) = TLρ(TL−1ρ(. . . ρ(T1(x))), x ∈ Rd ,

is called (deep) neural network (DNN).

Measure for Complexity: The number of weights W (Φ) is defined by

W (Φ) :=
L∑
`=1

(‖A`‖0 + ‖b`‖0) .

We write Φ ∈ NNL,W (Φ),d ,ρ.
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One Size Fits All?

Universal Approximation Theorem (Cybenko, 1989)(Hornik, 1991):
Let d ∈ N, K ⊂ Rd compact, f : K → R continuous, ρ : R→ R
continuous and not a polynomial. Then, for each ε > 0, there exist
N ∈ N, ak , bk ∈ R,wk ∈ Rd such that

‖f −
N∑

k=1

akρ(〈wk , ·〉 − bk)‖∞ ≤ ε.

The complexity can be arbitrarily large!

Theorem (Yarotsky; 2017): For all f ∈ C = C s([0, 1]d) and ρ the ReLU
(Rectifiable Linear Unit ρ(x) = max{0, x}), there exist neural networks
(Φn)n∈N with L(Φn) ≈ log(n) such that

‖f − Φn‖∞ .W (Φn)−
s
d → 0 as n→∞.

This result is not optimal!

Correct Function Spaces? (Gribonval, K, Nielsen, Voigtlaender; 2019)
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A Fundamental Lower Bound

Key Ingredient from Information Theory:
Given C ⊆ L2(Rd). With E : L2(Rd)→ {0, 1}`, D : {0, 1}` → L2(Rd), set

L(ε, C) := min{` ∈ N : ∃(E ,D) ∈ E` ×D` : sup
f∈C
‖D(E (f ))− f ‖L2(Rd ) ≤ ε}.

Then the optimal exponent γ∗(C) is γ∗(C) := inf{γ ∈ R : L(ε, C) = O(ε−γ)}.

Theorem (Bölcskei, Grohs, K, and Petersen; 2017):
Let d ∈ N, ρ : R→ R, and let C ⊂ L2(Rd). Assume that

Learn : (0, 1)× C → NN∞,∞,d,ρ

satisfies that, for each f ∈ C and 0 < ε < 1

sup
f∈C
‖f − Learn(ε, f )‖L2(Rd ) ≤ ε.

Then, for all γ < γ∗(C), there is no C > 0 with

sup
f∈C

W (Learn(ε, f )) ≤ Cε−γ for all ε > 0
ε

W (Learn(ε, C))

What happens for γ = γ∗(C)?
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DNNs and Representation Systems, I

Observation: Assume a system (ϕi )i∈I ⊂ L2(Rd) satisfies:

For each i ∈ I , there exists a neural network Φi with at most C > 0
edges such that ϕi = Φi .

Then we can construct a network Φ with O(M) edges with

Φ =
∑
i∈IM

ciϕi , if |IM | = M.
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DNNs and Representation Systems, II

Observation: Assume a system (ϕi )i∈I ⊂ L2(Rd) satisfies:

For each i ∈ I , there exists a neural network Φi with at most C > 0
edges such that ϕi = Φi .

There exists C̃ > 0 such that, for all f ∈ C ⊂ L2(Rd), there exists
IM ⊂ I with

‖f −
∑
i∈IM

ciϕi‖ ≤ C̃M−1/γ∗(C).

Then every f ∈ C can be approximated up to an error of ε by a neural
network with only O(ε−γ

∗(C)) edges.

Recall: Then, for all γ < γ∗(C), there is no C > 0 with

sup
f ∈C

W (Learn(ε, f )) ≤ Cε−γ for all ε > 0.
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Road Map

General Approach:

(1) Determine a class of functions C ⊆ L2(R2).
Yes

(2) Determine an associated representation system with the following
properties:
Yes

I The elements of this system can be realized by a neural network with
controlled number of edges.
Yes

I This system provides optimally sparse approximations for C.
This has been proven!
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 Cartoon-like functions!

(2) Determine an associated representation system with the following
properties:
 Shearlets!

I The elements of this system can be realized by a neural network with
controlled number of edges.
 Still to be analyzed!

I This system provides optimally sparse approximations for C.
 This has been proven!

Gitta Kutyniok Deep Learning meets PDEs 2019 Woudschoten Conference 21 / 36



Affine Transforms

Building Principle:
Many systems from applied harmonic analysis such as

wavelets,

ridgelets,

shearlets,

constitute affine systems:

{| detA|d/2ψ(A · −t) : A ∈ G ⊆ GL(d), t ∈ Zd}, ψ ∈ L2(Rd).

Realization by Neural Networks:
The following conditions are equivalent:

(i) | detA|d/2ψ(A · −t) can be realized by a neural network Φ1.

(ii) ψ can be realized by a neural network Φ2.

Also, Φ1 and Φ2 have the same number of edges up to a constant factor.
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Construction of Generators

Wavelet generators (LeCun; 1987), (Shaham, Cloninger, Coifman; 2017):

Assume activation function ρ(x) = max{x , 0} (ReLUs).

Define
t(x) := ρ(x)− ρ(x − 1)− ρ(x − 2) + ρ(x − 3).

t

 t can be constructed with a 2 layer network.

Observe that
φ(x1, x2) := ρ(t(x1) + t(x2)− 1)

yields a 2D bump function.

Summing up shifted versions of φ yields a function ψ with vanishing
moments.
 ψ can be realized by a 3 layer neural network.
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yields a 2D bump function.

Summing up shifted versions of φ yields a function ψ with vanishing
moments.
 ψ can be realized by a 3 layer neural network.

This cannot yield differentiable functions ψ!
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Wavelet generators (LeCun; 1987), (Shaham, Cloninger, Coifman; 2017):

Assume activation function ρ(x) = max{x , 0} (ReLUs).

Define
t(x) := ρ(x)− ρ(x − 1)− ρ(x − 2) + ρ(x − 3).

t

 t can be constructed with a 2 layer network.

Observe that
φ(x1, x2) := ρ(t(x1) + t(x2)− 1)

yields a 2D bump function.

Summing up shifted versions of φ yields a function ψ with vanishing
moments.
 ψ can be realized by a 3 layer neural network.

Our Construction: Use a smoothed version of a ReLU.
 Leads to appropriate shearlet generators!
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Optimal Approximation

Theorem (Bölcskei, Grohs, K, and Petersen; 2017): Let ρ be an admissible
smooth rectifier, and let ε > 0. Then there exist Cε > 0 such that, for all
cartoon-like functions f and N ∈ N, we can construct a neural network
Φ ∈ NN3,O(N),2,ρ satisfying

‖f − Φ‖L2(R2) ≤ CεN
−1+ε.

Function classes which are optimal representable by affine systems
are also optimally approximated by sparsely connected neural networks!
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Numerical Experiments (with ReLUs & Backpropagation)
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Deep Learning for Parametric PDEs

or

How to Beat the Curse of Dimensionality
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Parametric Partial Differential Equations

Our Setting: We will consider parameter-dependent equations of the form

by (uy , v) = fy (v), for all y ∈ Y, v ∈ H,
where

(i) Y ⊆ Rp (p large) is the compact parameter set,

(ii) H is a Hilbert space,

(ii) by : H×H → R is a symmetric, uniformally coercive, and uniformally
continuous bilinear form,

(iv) fy ∈ H∗ is the uniformly bounded, parameter-dependent right-hand
side,

(v) uy ∈ H is the solution.

We also assume the solution manifold

S(Y) := {uy : y ∈ Y}
to be compact in H.

Gitta Kutyniok Deep Learning meets PDEs 2019 Woudschoten Conference 26 / 36



Reduced Basis Method: Key Idea

High-Fidelity Discretization:

Key Idea:

Offline (slow):

Compute snap shots

Online (fast):

Compute solutions for new parameters
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Reduced Basis Method: Details

Assumption: For all ε > ε0, there exists Urb ⊂ H, d(ε) := dim
(
Urb
)
� D

such that
sup
y∈Y

inf
w∈Urb

‖uy − w‖H ≤ ε.

 Optimality through Kolmogorov N-width!

Transfer to Reduced Basis:

Let Urb := span (ψi )
d(ε)
i=1 with (ψi )

d(ε)
i=1 =

(∑D
j=1 Vj ,iϕj

)d(ε)

i=1
.

Set Brb
y := (by (ψj , ψi ))

d(ε)
i ,j=1 = VTBh

yV ∈ Rd(ε)×d(ε).

Set frby := (fy (ψi ))
d(ε)
i=1 = VT fhy ∈ Rd(ε).

Galerkin Solution: (supy∈Y ‖uy − urby ‖H ≤ Cε)

urby =

d(ε)∑
i=1

(
urby

)
i
ψi =

D∑
j=1

(
Vurby

)
j
ϕj =

D∑
j=1

(
V(Brb

y )−1VT fhy

)
j
ϕj .
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Our Analysis
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Statistical Learning Problem = Parametric Problem?

Comparison/Similarities:

Statistical Learning Problem Parametric Problem

Learn f : X → Y

Learn Y 3 y 7→ uy ∈ H

Distribution on X × Y

PDE

Loss function L : Y × Y → R+

Metric on state space

Training data (xi , yi )
N
i=1

Snapshots

Training phase
∑N

i=1 L(f (xi ), yi )

Offline phase
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Our Results: Discrete Version

Theorem (K, Petersen, Raslan, Schneider; 2019):
We assume the following:

For all ε > 0, there exists d(ε)� D, V ∈ RD×d(ε), such that for all
y ∈ Y there exists Brb

y ∈ Rd(ε)×d(ε) with

‖V(Brb
y )−1V T fhy − uhy‖ ≤ ε.

There exist ReLU neural networks ΦB and Φf of size
O(poly(p)d(ε)2polylog(ε)) such that, for all y ∈ Y,

‖ΦB − Brb
y ‖ ≤ ε and ‖Φf − V T fhy ‖ ≤ ε.

Then there exists a ReLU neural network Φ of size O(d(ε)3polylog(ε)+
D + poly(p)d(ε)2polylog(ε)) such that

‖Φ− uhy‖ ≤ ε for all y ∈ Y.

Extremely fast computation of the parametric map,
while beating the curse of dimensionality!
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Our Results: Continuous Version

Theorem (K, Petersen, Raslan, Schneider; 2019):

Let (ψi )
d(ε)
i=1 denote the reduced basis. We assume in addition the following:

There exist ReLU neural networks (Φi )
d(ε)
i=1 of size O(polylog(ε))

such that ‖Φi − ψi‖H ≤ ε for all i = 1, . . . , d(ε).

Then there exists a ReLU neural network Φ of size O(d(ε)3polylog(ε)+
poly(p)d(ε)2polylog(ε)) such that

‖Φ− uy‖H ≤ ε for all y ∈ Y.

Remark: The hypotheses are fulfilled, for example, by

Diffusion equations,

Linear elasticity equations.
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Key Idea of the Proof

Main Task: Approximate V(Brb
y )−1VT fhy by a ReLU neural network and

control its size!

Step 1 (Scalar Multiplication from Yarotsky; 2017):
For g(x) := min{2x , 2− 2x} and gs := g ◦ . . . ◦ g (s times), we have

x2 = lim
n→∞

x −
n∑

s=1

gs(x)

22s
for all x ∈ [0, 1].

Also, g can be represented by a neural network due to

g(x) = 2ρ(x)− 4ρ(x − 1

2
) + 2ρ(x − 2) for all x ∈ [0, 1].

Moreover,

xz = 1/4((x + z)2 − (x − z)2) for all x , z ∈ R.

=⇒ Scalar multiplication on [−1, 1]2 can be ε-approximated by a
neural network of size O(log2(1/ε)).
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Key Idea of the Proof

Step 2 (Multiplication):
A matrix multiplication of two matrices of size d × d can be performed by
d3 scalar multiplications.
=⇒ Matrix multiplication can be ε-approximated by a neural network of size
O(d(ε)3 log2(1/ε)).

Step 3 (Inversion):

Neural networks can approximate matrix polynomials.

Neural networks can the inversion operator A 7→ A−1 using

m∑
s=0

As −→ (IdRd − A)−1 as m→∞.

=⇒ Matrix inversion can be ε-approximated by a neural network of size
O(d(ε)3 logq2(1/ε)) for a constant q > 0.
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Key Idea of the Proof

Step 4 (Discrete Parametric Map w.r.t Reduced Basis):

Now use the assumptions on Brb
y and frby .

=⇒ The map y 7→ (Brb
y )−1frby can be ε-approximated by a neural

network Φrb of size O(d(ε)3 logq2(1/ε) + poly(p)d(ε)2 logq2(1/ε)).

For Theorem 1:

Now use the assumption that every element from the reduced basis can
be approximately represented in the high-fidelity basis.

Consider then V ◦ Φrb.

=⇒ The discrete parametric map can be ε-approximated by a neural
network of size O(d(ε)3 logq2(1/ε) + d(ε)D + poly(p)d(ε)2 logq2(1/ε)).

For Theorem 2:

Now use the assumption that neural networks can approximate each
element of the reduced basis.

=⇒ The continuous parametric map can be ε-approximated by a neural
network of size O(d(ε)3 logq2(1/ε) + poly(p)d(ε)2 logq2(1/ε)).
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Conclusions
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What to take Home...?

Deep Learning:

Impressive performance in combination with classical model-based methods
(Inverse Problems, PDEs, ...)  Limited-Angle CT.

Theoretical foundation of neural networks almost entirely missing:
Expressivity, Learning, Generalization, and Explainability.

Expressivity of Deep Neural Networks:

We derive a fundamental lower bound on the complexity, which each learning
algorithm has to obey.

Neural networks are as powerful approximators as classical affine systems such
as wavelets, shearlets, ...

Deep Neural Networks for Parametric PDEs:

We theoretically show that in this setting neural networks beat the curse of
dimensionality by explicably constructing such networks.

Once the network is trained, the parametric map can be computed
extremely fast.
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