Solving Mathematical Problems by Deep Learning: Partial Differential Equations

Gitta Kutyniok

(Technische Universität Berlin and University of Tromsø)

2019 Woudschoten Conference Zeist, The Netherlands, October 9–11, 2019

Mathematics of Deep Neural Networks

The Mathematics of Deep Neural Networks

Definition:

Assume the following notions:

- $d \in \mathbb{N}$: Dimension of input layer.
- L: Number of layers.
- N: Number of neurons.

- $\rho : \mathbb{R} \to \mathbb{R}$: (Non-linear) function called *activation function*.
- $T_{\ell} : \mathbb{R}^{N_{\ell-1}} \to \mathbb{R}^{N_{\ell}}$, $\ell = 1, \dots, L$: Affine linear maps.

Then $\Phi : \mathbb{R}^d \to \mathbb{R}^{N_L}$ given by

$$\Phi(x) = T_L \rho(T_{L-1}\rho(\ldots \rho(T_1(x)))), \quad x \in \mathbb{R}^d,$$

is called (deep) neural network (DNN).

Training of Deep Neural Networks

High-Level Set Up:

• Samples $(x_i, f(x_i))_{i=1}^m$ of a function such as $f : \mathcal{M} \to \{1, 2, \dots, K\}$.

Select an architecture of a deep neural network, i.e., a choice of *d*, *L*, (*N*_ℓ)^L_{ℓ=1}, and *ρ*. Sometimes selected entries of the matrices (*A*_ℓ)^L_{ℓ=1}, i.e., weights, are set to zero at this point.

• Learn the affine-linear functions $(T_\ell)_{\ell=1}^L = (A_\ell \cdot + b_\ell)_{\ell=1}^L$ by

$$\min_{(\mathcal{A}_\ell, b_\ell)_\ell} \sum_{i=1}^m \mathcal{L}(\Phi_{(\mathcal{A}_\ell, b_\ell)_\ell}(x_i), f(x_i)) + \lambda \mathcal{R}((\mathcal{A}_\ell, b_\ell)_\ell)$$

yielding the network $\Phi_{(\mathcal{A}_\ell, b_\ell)_\ell}: \mathbb{R}^d
ightarrow \mathbb{R}^{N_L}$,

$$\Phi_{(A_{\ell},b_{\ell})_{\ell}}(x)=T_L\rho(T_{L-1}\rho(\ldots\rho(T_1(x))).$$

This is often done by stochastic gradient descent.

Goal:
$$\Phi_{(A_\ell,b_\ell)_\ell} \approx f$$

Gitta Kutyniok

Fundamental Questions concerning Deep Neural Networks

• Expressivity:

- How powerful is the network architecture?
- Can it indeed represent the correct functions?

→ Applied Harmonic Analysis, Approximation Theory, ...

- Learning:
 - Why does the current learning algorithm produce anything reasonable?
 - What are good starting values?
 - → Differential Geometry, Optimal Control, Optimization, ...

• Generalization:

- Why do deep neural networks perform that well on data sets, which do not belong to the input-output pairs from a training set?
- What impact has the depth of the network?

 \rightsquigarrow Learning Theory, Optimization, Statistics, ...

Interpretability:

- Why did a trained deep neural network reach a certain decision?
- Which components of the input do contribute most?
- \rightsquigarrow Information Theory, Uncertainty Quantification, ...

What is Interpretability?

Main Questions: Given a trained deep neural network...

- Which input features contribute most to the decision?
- How can the outcome be explained?

What is Interpretability?

Main Questions: Given a trained deep neural network...

- Which input features contribute most to the decision?
- How can the outcome be explained?

Some Recent Work:

- Sensitivity Analysis (Simonyan, Vedaldi, Zisserman; 2013)
- Layer-wise Relevance Propagation (Bach, Müller, Samek at al.; 2015)
- Deep Taylor Decompositions (Montavon, Samek, Müller; 2018)
- Rate Distortion Explanation (Waeldchen, Macdonald, Hauch, K; 2019)

Quality Measure of Interpretability

Classification of the Digit 6:

Quality Measure:

Gitta Kutyniok

Deep Learning meets PDEs

Fundamental Questions concerning Deep Neural Networks

• Expressivity:

- How powerful is the network architecture?
- Can it indeed represent the correct functions?

→ Applied Harmonic Analysis, Approximation Theory, ...

- Learning:
 - Why does the current learning algorithm produce anything reasonable?
 - What are good starting values?
 - → Differential Geometry, Optimal Control, Optimization, ...

• Generalization:

- Why do deep neural networks perform that well on data sets, which do not belong to the input-output pairs from a training set?
- What impact has the depth of the network?

 \rightsquigarrow Learning Theory, Optimization, Statistics, ...

Interpretability:

- Why did a trained deep neural network reach a certain decision?
- Which components of the input do contribute most?
- → Information Theory, Uncertainty Quantification, ...

Impact of Deep Learning on Mathematics

Some Examples:

- Inverse Problems
 - → Image denoising (Burger, Schuler, Harmeling; 2012)
 - → Superresolution (Klatzer, Soukup, Kobler, Hammernik, Pock; 2017)
 - → Limited-angle tomography (Bubba, K, Lassas, März, Samek, Siltanen, Srinivan; 2018)
 - → Edge detection (Andrade-Loarca, K, Öktem, Petersen; 2019)
- Numerical Analysis of Partial Differential Equations
 → Schrödinger equation (Rupp, Tkatchenko, Müller, von Lilienfeld; 2012 –)
 - → Black-Scholes PDEs (Grohs, Hornung, Jentzen,von Wurstemberger; 2018)
 - → Parametric PDEs (Schwab, Zech; 2018)
 - → Parametric PDEs (K, Petersen, Raslan, Schneider; 2019)
- Modelling
 - → Learning equations from data (Sahoo, Lampert, Martius; 2018)

8/36

Let's Now Enter the World of Parametric PDEs

Why Parametric PDEs?

Parameter dependent families of PDEs arise in basically any branch of science and engineering.

Some Exemplary Problem Classes:

- Complex design problems
- Inverse problems
- Optimization tasks
- Uncertainty quantification
- ...

The number of parameters can be

- finite (physical properties such as domain geometry, ...)
- infinite (modeling of random stochastic diffusion field, ...)

Parametric Map:

$$\mathcal{Y}
i y \mapsto u_y \in \mathcal{H}$$
 such that $\mathcal{L}(u_y, y) = f_y.$

Parametric Partial Differential Equations

Our Setting: We will consider parameter-dependent equations of the form

$$b_y\left(u_y, v
ight) = f_y(v), \quad ext{ for all } y \in \mathcal{Y}, \,\, v \in \mathcal{H},$$

where

- (i) $\mathcal{Y} \subseteq \mathbb{R}^p$ (p large) is the compact parameter set,
- (ii) \mathcal{H} is a Hilbert space,
- (ii) $b_y \colon \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ is a symmetric, uniformally coercive, and uniformally continuous bilinear form,
- (iv) $f_y \in \mathcal{H}^*$ is the uniformly bounded, parameter-dependent right-hand side,
- (v) $u_y \in \mathcal{H}$ is the solution.

We also assume the solution manifold

$$S(\mathcal{Y}) := \{u_y : y \in \mathcal{Y}\}$$

to be compact in \mathcal{H} .

Multi-Query Situation

Many applications require solving the parametric PDE multiple times for different parameters:

$$\mathbb{R}^{p} \supset \mathcal{Y} \ni y = (y_{1}, \dots, y_{p}) \quad \mapsto \quad u_{y} \in \mathcal{H}$$

Examples:

- Design optimization
- Optimal control
- Routine analysis
- Uncertainty quantification
- Inverse problems

Multi-Query Situation

Many applications require solving the parametric PDE multiple times for different parameters:

$$\mathbb{R}^{p} \supset \mathcal{Y} \ni y = (y_{1}, \ldots, y_{p}) \quad \mapsto \quad u_{y} \in \mathcal{H}$$

Examples:

- Design optimization
- Optimal control
- Routine analysis
- Uncertainty quantification
- Inverse problems

Curse of Dimensionality:

Computational cost often much too high!

Deep Learning meets PDEs

High-Fidelity Approximations

Galerkin Approach: Instead of $b_y(u_y, v) = f_y(v)$, we solve

$$b_y\left(u_y^h,v
ight)=f_y(v)$$
 for all $v\in U^h,$

where $U^h \subset \mathcal{H}$ with $D := \dim (U^h) < \infty$ is the high-fidelity discretization and $u_v^h \in U^h$ is the solution.

Cea's Lemma: u_y^h is (up to a constant) a best approximation of u_y by elements in U^h .

High-Fidelity Approximations

Galerkin Approach: Instead of $b_y(u_y, v) = f_y(v)$, we solve

$$b_y\left(u_y^h,v
ight)=f_y(v)$$
 for all $v\in U^h,$

where $U^h \subset \mathcal{H}$ with $D := \dim (U^h) < \infty$ is the high-fidelity discretization and $u_v^h \in U^h$ is the solution.

Cea's Lemma: u_y^h is (up to a constant) a best approximation of u_y by elements in U^h .

Galerkin Solution: Let $(\varphi_i)_{i=1}^D$ be a basis for U^h . Then u_y^h satisfies

$$u_y^h = \sum_{i=1}^D (\mathbf{u}_y^h)_i \varphi_i$$
 with $\mathbf{u}_y^h \coloneqq (\mathbf{B}_y^h)^{-1} \mathbf{f}_y^h \in \mathbb{R}^D$,

where $\mathbf{B}_{y}^{h} \coloneqq (b_{y}(\varphi_{j},\varphi_{i}))_{i,j=1}^{D}$ and $\mathbf{f}_{y}^{h} \coloneqq (f_{y}(\varphi_{i}))_{i=1}^{D}$.

What about Deep Neural Networks?

Parametric Map:

$$\mathcal{Y}
i y \ \mapsto \ \mathbf{u}_y^{ ext{h}} \in \mathbb{R}^D \quad ext{such that} \quad b_y\left(u_y^h, v
ight) = f_y(v) \ orall v \in U^h.$$

Can a Neural Network Approximate the Parametric Map?

What about Deep Neural Networks?

Parametric Map:

$$\mathcal{Y}
i y \mapsto \mathbf{u}_y^{\mathrm{h}} \in \mathbb{R}^D$$
 such that $b_y\left(u_y^h, v
ight) = f_y(v) \ orall v \in U^h.$

Can a Neural Network Approximate the Parametric Map?

Advantages:

- After training, extremely rapid computation of the map.
- Flexible, universal approach.

Questions: Let $\varepsilon > 0$.

(1) Does there exist a neural network Φ such that

$$\|\Phi - \mathbf{u}_{y}^{\mathrm{h}}\| \leq \varepsilon$$
 for all $y \in \mathcal{Y}$?

(2) How does the complexity of Φ depend on p and D?

Deep Learning Approaches to PDEs

Common Approach to Solve PDEs with Neural Networks: Approximate the solution u of a PDE $\mathcal{L}(u) = f$ by a neural network Φ , i.e., solve

$$\mathcal{L}(\Phi) = f.$$

Key Idea: The size of the neural network does not depend exponentially on the underlying dimension.

Incomplete List:

- Lagaris, Likas, Fotiadis; 1998
- E, Yu; 2017
- Sirignano, Spiliopoulos; 2017
- Han, Jentzen, E; 2017
- Berner, Grohs, Jentzen; 2018
- Eigel, Schneider, Trunschke, Wolf; 2018
- Reisinger, Zhang; 2019

Ο.

Solving Parametric PDEs

List of Deep Learning Approaches:

• K. Lee, K. Carlberg; 2018:

Learn a parametrisation of $S(\mathcal{Y})$ represented by neural networks.

• J.S. Hesthaven, S. Ubbiali; 2018: Find reduced basis and then train neural networks to predict coeffcients of solution in that basis.

• Schwab, Zech; 2018:

Assume that there is a reduced basis of polynomial chaos functions. These and the coefficients can be efficiently represented by neural networks.

Expressivity of Deep Neural Networks

Complexity of a Deep Neural Network

Complexity of a Deep Neural Network

Recall:

- $d \in \mathbb{N}$: Dimension of input layer.
- L: Number of layers.
- N: Number of neurons.

• $\rho : \mathbb{R} \to \mathbb{R}$: (Non-linear) function called *activation function*.

• $T_{\ell} : \mathbb{R}^{N_{\ell-1}} \to \mathbb{R}^{N_{\ell}}, \ \ell = 1, \dots, L$: Affine linear maps $x \mapsto A_{\ell}x + b_{\ell}$. Then $\Phi : \mathbb{R}^d \to \mathbb{R}^{N_L}$ given by

$$\Phi(x) = T_L \rho(T_{L-1}\rho(\ldots\rho(T_1(x)))), \quad x \in \mathbb{R}^d,$$

is called (deep) neural network (DNN).

Complexity of a Deep Neural Network

Recall:

- $d \in \mathbb{N}$: Dimension of input layer.
- L: Number of layers.
- N: Number of neurons.

• $\rho : \mathbb{R} \to \mathbb{R}$: (Non-linear) function called *activation function*.

• $T_{\ell}: \mathbb{R}^{N_{\ell-1}} \to \mathbb{R}^{N_{\ell}}, \ \ell = 1, \dots, L$: Affine linear maps $x \mapsto A_{\ell}x + b_{\ell}$. Then $\Phi: \mathbb{R}^d \to \mathbb{R}^{N_L}$ given by

$$\Phi(x) = T_L \rho(T_{L-1}\rho(\ldots\rho(T_1(x)))), \quad x \in \mathbb{R}^d,$$

is called (deep) neural network (DNN).

Measure for Complexity: The number of weights $W(\Phi)$ is defined by

$$W(\Phi) := \sum_{\ell=1}^{L} (\|A_{\ell}\|_{0} + \|b_{\ell}\|_{0}).$$

We write $\Phi \in \mathcal{NN}_{L,W(\Phi),d,\rho}$.

Universal Approximation Theorem (Cybenko, 1989)(Hornik, 1991): Let $d \in \mathbb{N}$, $K \subset \mathbb{R}^d$ compact, $f : K \to \mathbb{R}$ continuous, $\rho : \mathbb{R} \to \mathbb{R}$ continuous and not a polynomial. Then, for each $\varepsilon > 0$, there exist $N \in \mathbb{N}$, $a_k, b_k \in \mathbb{R}$, $w_k \in \mathbb{R}^d$ such that

$$\|f-\sum_{k=1}^N a_k \rho(\langle w_k,\cdot\rangle-b_k)\|_\infty \leq \varepsilon.$$

Universal Approximation Theorem (Cybenko, 1989)(Hornik, 1991): Let $d \in \mathbb{N}$, $K \subset \mathbb{R}^d$ compact, $f : K \to \mathbb{R}$ continuous, $\rho : \mathbb{R} \to \mathbb{R}$ continuous and not a polynomial. Then, for each $\varepsilon > 0$, there exist $N \in \mathbb{N}$, $a_k, b_k \in \mathbb{R}$, $w_k \in \mathbb{R}^d$ such that

$$\|f-\sum_{k=1}^{N}a_{k}\rho(\langle w_{k},\cdot\rangle-b_{k})\|_{\infty}\leq\varepsilon.$$

The complexity can be arbitrarily large!

Universal Approximation Theorem (Cybenko, 1989)(Hornik, 1991): Let $d \in \mathbb{N}$, $K \subset \mathbb{R}^d$ compact, $f : K \to \mathbb{R}$ continuous, $\rho : \mathbb{R} \to \mathbb{R}$ continuous and not a polynomial. Then, for each $\varepsilon > 0$, there exist $N \in \mathbb{N}$, $a_k, b_k \in \mathbb{R}$, $w_k \in \mathbb{R}^d$ such that

$$\|f-\sum_{k=1}^{N}a_{k}\rho(\langle w_{k},\cdot\rangle-b_{k})\|_{\infty}\leq\varepsilon$$

The complexity can be arbitrarily large!

Theorem (Yarotsky; 2017): For all $f \in C = C^s([0,1]^d)$ and ρ the *ReLU* (*Rectifiable Linear Unit* $\rho(x) = \max\{0,x\}$), there exist neural networks $(\Phi_n)_{n\in\mathbb{N}}$ with $L(\Phi_n) \approx \log(n)$ such that

$$\|f-\Phi_n\|_\infty \lesssim W(\Phi_n)^{-rac{s}{d}} o 0$$
 as $n o \infty.$

Universal Approximation Theorem (Cybenko, 1989)(Hornik, 1991): Let $d \in \mathbb{N}$, $K \subset \mathbb{R}^d$ compact, $f : K \to \mathbb{R}$ continuous, $\rho : \mathbb{R} \to \mathbb{R}$ continuous and not a polynomial. Then, for each $\varepsilon > 0$, there exist $N \in \mathbb{N}$, $a_k, b_k \in \mathbb{R}$, $w_k \in \mathbb{R}^d$ such that

$$\|f - \sum_{k=1}^{N} a_k \rho(\langle w_k, \cdot \rangle - b_k)\|_{\infty} \leq \varepsilon$$

The complexity can be arbitrarily large!

Theorem (Yarotsky; 2017): For all $f \in C = C^s([0,1]^d)$ and ρ the *ReLU* (*Rectifiable Linear Unit* $\rho(x) = \max\{0,x\}$), there exist neural networks $(\Phi_n)_{n\in\mathbb{N}}$ with $L(\Phi_n) \approx \log(n)$ such that

$$\|f-\Phi_n\|_\infty \lesssim W(\Phi_n)^{-rac{s}{d}} o 0 \quad ext{as } n o \infty.$$

This result is not optimal!

Universal Approximation Theorem (Cybenko, 1989)(Hornik, 1991): Let $d \in \mathbb{N}$, $K \subset \mathbb{R}^d$ compact, $f : K \to \mathbb{R}$ continuous, $\rho : \mathbb{R} \to \mathbb{R}$ continuous and not a polynomial. Then, for each $\varepsilon > 0$, there exist $N \in \mathbb{N}$, $a_k, b_k \in \mathbb{R}$, $w_k \in \mathbb{R}^d$ such that

$$\|f - \sum_{k=1}^{N} a_k \rho(\langle w_k, \cdot \rangle - b_k)\|_{\infty} \leq \varepsilon$$

The complexity can be arbitrarily large!

Theorem (Yarotsky; 2017): For all $f \in C = C^s([0,1]^d)$ and ρ the *ReLU* (*Rectifiable Linear Unit* $\rho(x) = \max\{0,x\}$), there exist neural networks $(\Phi_n)_{n\in\mathbb{N}}$ with $L(\Phi_n) \approx \log(n)$ such that

$$\|f-\Phi_n\|_\infty \lesssim W(\Phi_n)^{-rac{s}{d}} o 0$$
 as $n o \infty.$

This result is not optimal!

Correct Function Spaces? (Gribonval, K, Nielsen, Voigtlaender; 2019)

A Fundamental Lower Bound

Key Ingredient from Information Theory: Given $C \subseteq L^2(\mathbb{R}^d)$. With $E : L^2(\mathbb{R}^d) \to \{0,1\}^\ell$, $D : \{0,1\}^\ell \to L^2(\mathbb{R}^d)$, set $L(\varepsilon, C) := \min\{\ell \in \mathbb{N} : \exists (E, D) \in \mathfrak{E}^\ell \times \mathfrak{D}^\ell : \sup_{f \in C} \|D(E(f)) - f\|_{L^2(\mathbb{R}^d)} \le \varepsilon\}.$ Then the optimal exponent $\gamma^*(C)$ is $\gamma^*(C) := \inf\{\gamma \in \mathbb{R} : L(\varepsilon, C) = O(\varepsilon^{-\gamma})\}.$

A Fundamental Lower Bound

Key Ingredient from Information Theory: Given $C \subseteq L^2(\mathbb{R}^d)$. With $E : L^2(\mathbb{R}^d) \to \{0,1\}^\ell$, $D : \{0,1\}^\ell \to L^2(\mathbb{R}^d)$, set $L(\varepsilon, C) := \min\{\ell \in \mathbb{N} : \exists (E, D) \in \mathfrak{E}^\ell \times \mathfrak{D}^\ell : \sup_{f \in C} \|D(E(f)) - f\|_{L^2(\mathbb{R}^d)} \le \varepsilon\}.$ Then the optimal exponent $\gamma^*(C)$ is $\gamma^*(C) := \inf\{\gamma \in \mathbb{R} : L(\varepsilon, C) = O(\varepsilon^{-\gamma})\}.$

Theorem (Bölcskei, Grohs, K, and Petersen; 2017): Let $d \in \mathbb{N}$, $\rho : \mathbb{R} \to \mathbb{R}$, and let $\mathcal{C} \subset L^2(\mathbb{R}^d)$. Assume that

Learn : $(0,1) \times C \rightarrow \mathcal{NN}_{\infty,\infty,d,\rho}$

satisfies that, for each $f \in \mathcal{C}$ and $0 < \varepsilon < 1$

$$\sup_{f\in\mathcal{C}}\|f-\operatorname{Learn}(\varepsilon,f)\|_{L^2(\mathbb{R}^d)}\leq\varepsilon.$$

Then, for all $\gamma < \gamma^*(\mathcal{C})$, there is no $\mathcal{C} > 0$ with

$$\sup_{f \in \mathcal{C}} W(\operatorname{Learn}(\varepsilon, f)) \le C\varepsilon^{-\gamma} \quad \text{ for all } \varepsilon > 0$$

A Fundamental Lower Bound

Key Ingredient from Information Theory: Given $C \subseteq L^2(\mathbb{R}^d)$. With $E : L^2(\mathbb{R}^d) \to \{0,1\}^\ell$, $D : \{0,1\}^\ell \to L^2(\mathbb{R}^d)$, set $L(\varepsilon, C) := \min\{\ell \in \mathbb{N} : \exists (E, D) \in \mathfrak{E}^\ell \times \mathfrak{D}^\ell : \sup_{f \in C} \|D(E(f)) - f\|_{L^2(\mathbb{R}^d)} \le \varepsilon\}.$ Then the optimal exponent $\gamma^*(C)$ is $\gamma^*(C) := \inf\{\gamma \in \mathbb{R} : L(\varepsilon, C) = O(\varepsilon^{-\gamma})\}.$ Theorem (Bölcskei, Grohs, K, and Petersen; 2017): Let $d \in \mathbb{N}$, $\rho : \mathbb{R} \to \mathbb{R}$, and let $C \subset L^2(\mathbb{R}^d)$. Assume that Learn : $(0, 1) \times C \to \mathcal{NN}_{\infty, \infty, d, \rho}$ $W(\text{Learm}(\varepsilon, C))$

satisfies that, for each $f \in \mathcal{C}$ and $0 < \varepsilon < 1$

$$\sup_{f\in\mathcal{C}}\|f-\operatorname{Learn}(\varepsilon,f)\|_{L^2(\mathbb{R}^d)}\leq\varepsilon.$$

Then, for all $\gamma < \gamma^*(\mathcal{C})$, there is no $\mathcal{C} > 0$ with

$$\sup_{f \in \mathcal{C}} W(\text{Learn}(\varepsilon, f)) \le C\varepsilon^{-\gamma} \quad \text{ for all } \varepsilon > 0$$

What happens for $\gamma = \gamma^*(\mathcal{C})$?

DNNs and Representation Systems, I

Observation: Assume a system $(\varphi_i)_{i \in I} \subset L^2(\mathbb{R}^d)$ satisfies:

 For each i ∈ I, there exists a neural network Φ_i with at most C > 0 edges such that φ_i = Φ_i.

Then we can construct a network Φ with O(M) edges with

$$\Phi = \sum_{i \in I_M} c_i \varphi_i, \quad \text{if } |I_M| = M.$$

DNNs and Representation Systems, II

Observation: Assume a system $(\varphi_i)_{i \in I} \subset L^2(\mathbb{R}^d)$ satisfies:

- For each *i* ∈ *I*, there exists a neural network Φ_i with at most *C* > 0 edges such that φ_i = Φ_i.
- There exists $\tilde{C} > 0$ such that, for all $f \in C \subset L^2(\mathbb{R}^d)$, there exists $I_M \subset I$ with

$$\|f-\sum_{i\in I_M}c_i\varphi_i\|\leq \tilde{C}M^{-1/\gamma^*(\mathcal{C})}.$$

Then every $f \in C$ can be approximated up to an error of ε by a neural network with only $O(\varepsilon^{-\gamma^*(C)})$ edges.

DNNs and Representation Systems, II

Observation: Assume a system $(\varphi_i)_{i \in I} \subset L^2(\mathbb{R}^d)$ satisfies:

- For each i ∈ I, there exists a neural network Φ_i with at most C > 0 edges such that φ_i = Φ_i.
- There exists $\tilde{C} > 0$ such that, for all $f \in C \subset L^2(\mathbb{R}^d)$, there exists $I_M \subset I$ with

$$\|f-\sum_{i\in I_M}c_i\varphi_i\|\leq \tilde{C}M^{-1/\gamma^*(\mathcal{C})}.$$

Then every $f \in C$ can be approximated up to an error of ε by a neural network with only $O(\varepsilon^{-\gamma^*(C)})$ edges.

Recall: Then, for all $\gamma < \gamma^*(\mathcal{C})$, there is no $\mathcal{C} > 0$ with

$$\sup_{f \in \mathcal{C}} W(\operatorname{Learn}(\varepsilon, f)) \leq C \varepsilon^{-\gamma} \qquad \text{for all } \varepsilon > 0.$$

General Approach:

- (1) Determine a class of functions $C \subseteq L^2(\mathbb{R}^2)$.
- (2) Determine an associated representation system with the following properties:
 - ► The elements of this system can be realized by a neural network with controlled number of edges.
 - ► This system provides optimally sparse approximations for C.

General Approach:

(1) Determine a class of functions C ⊆ L²(ℝ²). → Cartoon-like functions!

- (2) Determine an associated representation system with the following properties:
 - ► The elements of this system can be realized by a neural network with controlled number of edges.
 - ► This system provides optimally sparse approximations for C.

General Approach:

(1) Determine a class of functions C ⊆ L²(ℝ²). → Cartoon-like functions!

- (2) Determine an associated representation system with the following properties:
 - ~ Shearlets!
 - The elements of this system can be realized by a neural network with controlled number of edges.
 - ► This system provides optimally sparse approximations for C.

General Approach:

(1) Determine a class of functions C ⊆ L²(ℝ²). → Cartoon-like functions!

(2) Determine an associated representation system with the following properties:

~ Shearlets!

- ► The elements of this system can be realized by a neural network with controlled number of edges.
- ► This system provides optimally sparse approximations for C.
 ~→ This has been proven!

General Approach:

(1) Determine a class of functions C ⊆ L²(ℝ²). ~→ Cartoon-like functions!

(2) Determine an associated representation system with the following properties:

~ Shearlets!

- The elements of this system can be realized by a neural network with controlled number of edges.
 - → Still to be analyzed!
- ► This system provides optimally sparse approximations for C.
 ~→ This has been proven!

Affine Transforms

Building Principle:

Many systems from applied harmonic analysis such as

- wavelets,
- ridgelets,
- shearlets,

constitute affine systems:

$$\{|\det A|^{d/2}\psi(A\cdot -t):A\in G\subseteq GL(d),\ t\in \mathbb{Z}^d\}, \ \psi\in L^2(\mathbb{R}^d).$$

22/36

Affine Transforms

Building Principle:

Many systems from applied harmonic analysis such as

- wavelets,
- ridgelets,
- shearlets,

constitute affine systems:

$$\{|\det A|^{d/2}\psi(A\,\cdot\,-t):A\in G\subseteq GL(d),\ t\in\mathbb{Z}^d\},\quad\psi\in L^2(\mathbb{R}^d).$$

Realization by Neural Networks:

The following conditions are equivalent:

(i) $|\det A|^{d/2}\psi(A \cdot -t)$ can be realized by a neural network Φ_1 .

(ii) ψ can be realized by a neural network Φ_2 .

Also, Φ_1 and Φ_2 have the same number of edges up to a constant factor.

Construction of Generators

Wavelet generators (LeCun; 1987), (Shaham, Cloninger, Coifman; 2017):

- Assume activation function $\rho(x) = \max\{x, 0\}$ (ReLUs).
- Define $t(x) := \rho(x) - \rho(x-1) - \rho(x-2) + \rho(x-3).$

 \rightsquigarrow t can be constructed with a 2 layer network.

Observe that

$$\phi(x_1, x_2) := \rho(t(x_1) + t(x_2) - 1)$$

yields a 2D bump function.

• Summing up shifted versions of ϕ yields a function ψ with vanishing moments.

 $\rightsquigarrow \psi$ can be realized by a 3 layer neural network.

Construction of Generators

Wavelet generators (LeCun; 1987), (Shaham, Cloninger, Coifman; 2017):

- Assume activation function $\rho(x) = \max\{x, 0\}$ (ReLUs).
- Define $t(x) := \rho(x) - \rho(x-1) - \rho(x-2) + \rho(x-3).$

 \rightsquigarrow t can be constructed with a 2 layer network.

Observe that

$$\phi(x_1, x_2) := \rho(t(x_1) + t(x_2) - 1)$$

yields a 2D bump function.

• Summing up shifted versions of ϕ yields a function ψ with vanishing moments.

 $\rightsquigarrow \psi$ can be realized by a 3 layer neural network.

This cannot yield differentiable functions ψ !

Construction of Generators

Wavelet generators (LeCun; 1987), (Shaham, Cloninger, Coifman; 2017):

- Assume activation function $\rho(x) = \max\{x, 0\}$ (ReLUs).
- Define $t(x) := \rho(x) \rho(x-1) \rho(x-2) + \rho(x-3).$

 \rightsquigarrow t can be constructed with a 2 layer network.

Observe that

$$\phi(x_1, x_2) := \rho(t(x_1) + t(x_2) - 1)$$

yields a 2D bump function.

• Summing up shifted versions of ϕ yields a function ψ with vanishing moments.

 $\rightsquigarrow \psi$ can be realized by a 3 layer neural network.

Our Construction: Use a smoothed version of a ReLU. ~ Leads to appropriate shearlet generators!

Theorem (Bölcskei, Grohs, K, and Petersen; 2017): Let ρ be an admissible smooth rectifier, and let $\varepsilon > 0$. Then there exist $C_{\varepsilon} > 0$ such that, for all cartoon-like functions f and $N \in \mathbb{N}$, we can construct a neural network $\Phi \in \mathcal{NN}_{3,O(N),2,\rho}$ satisfying

$$\|f-\Phi\|_{L^2(\mathbb{R}^2)} \leq C_{\varepsilon} N^{-1+\varepsilon}.$$

Function classes which are optimal representable by affine systems are also optimally approximated by sparsely connected neural networks!

Numerical Experiments (with ReLUs & Backpropagation)

Numerical Experiments (with ReLUs & Backpropagation)

Gitta Kutyniok

Deep Learning meets PDEs

2019 Woudschoten Conference 25 / 36

Deep Learning for Parametric PDEs

or

How to Beat the Curse of Dimensionality

Parametric Partial Differential Equations

Our Setting: We will consider parameter-dependent equations of the form

$$b_y\left(u_y, v
ight) = f_y(v), \quad ext{ for all } y \in \mathcal{Y}, \,\, v \in \mathcal{H},$$

where

- (i) $\mathcal{Y} \subseteq \mathbb{R}^p$ (p large) is the compact parameter set,
- (ii) \mathcal{H} is a Hilbert space,
- (ii) $b_y \colon \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ is a symmetric, uniformally coercive, and uniformally continuous bilinear form,
- (iv) $f_y \in \mathcal{H}^*$ is the uniformly bounded, parameter-dependent right-hand side,
- (v) $u_y \in \mathcal{H}$ is the solution.

We also assume the solution manifold

$$S(\mathcal{Y}) := \{u_y : y \in \mathcal{Y}\}$$

to be compact in \mathcal{H} .

Reduced Basis Method: Key Idea

Gitta Kutyniok

Deep Learning meets PDEs

Assumption: For all $\varepsilon > \varepsilon_0$, there exists $U^{\rm rb} \subset \mathcal{H}$, $d(\varepsilon) \coloneqq \dim (U^{\rm rb}) \ll D$ such that

$$\sup_{v\in\mathcal{Y}}\inf_{w\in U^{\mathrm{rb}}}\|u_{y}-w\|_{\mathcal{H}}\leq\varepsilon.$$

~ Optimality through Kolmogorov N-width!

Assumption: For all $\varepsilon > \varepsilon_0$, there exists $U^{\rm rb} \subset \mathcal{H}$, $d(\varepsilon) \coloneqq \dim (U^{\rm rb}) \ll D$ such that

$$\sup_{\mathbf{v}\in\mathcal{Y}}\inf_{\mathbf{w}\in\mathcal{U}^{\mathrm{rb}}}\left\|u_{\mathbf{y}}-\mathbf{w}\right\|_{\mathcal{H}}\leq\varepsilon.$$

 \rightsquigarrow Optimality through Kolmogorov N-width!

Transfer to Reduced Basis:

• Let
$$U^{\mathrm{rb}} := \mathrm{span}(\psi_i)_{i=1}^{d(\varepsilon)}$$
 with $(\psi_i)_{i=1}^{d(\varepsilon)} = \left(\sum_{j=1}^{D} \mathbf{V}_{j,i}\varphi_j\right)_{i=1}^{d(\varepsilon)}$

28 / 36

Assumption: For all $\varepsilon > \varepsilon_0$, there exists $U^{\rm rb} \subset \mathcal{H}$, $d(\varepsilon) \coloneqq \dim (U^{\rm rb}) \ll D$ such that

$$\sup_{\mathbf{v}\in\mathcal{Y}}\inf_{\mathbf{w}\in\mathcal{U}^{\mathrm{rb}}}\left\|u_{\mathbf{y}}-\mathbf{w}\right\|_{\mathcal{H}}\leq\varepsilon.$$

~ Optimality through Kolmogorov N-width!

Transfer to Reduced Basis:

• Let
$$U^{\mathrm{rb}} := \mathrm{span}(\psi_i)_{i=1}^{d(\varepsilon)}$$
 with $(\psi_i)_{i=1}^{d(\varepsilon)} = \left(\sum_{j=1}^{D} \mathbf{V}_{j,i}\varphi_j\right)_{i=1}^{d(\varepsilon)}$
• Set $\mathbf{B}_y^{\mathrm{rb}} := (b_y(\psi_j,\psi_i))_{i,j=1}^{d(\varepsilon)} = \mathbf{V}^T \mathbf{B}_y^{\mathrm{h}} \mathbf{V} \in \mathbb{R}^{d(\varepsilon) \times d(\varepsilon)}$.
• Set $\mathbf{f}_y^{\mathrm{rb}} := (f_y(\psi_i))_{i=1}^{d(\varepsilon)} = \mathbf{V}^T \mathbf{f}_y^{\mathrm{h}} \in \mathbb{R}^{d(\varepsilon)}$.

28 / 36

Assumption: For all $\varepsilon > \varepsilon_0$, there exists $U^{\rm rb} \subset \mathcal{H}$, $d(\varepsilon) \coloneqq \dim (U^{\rm rb}) \ll D$ such that

$$\sup_{\mathbf{y}\in\mathcal{Y}}\inf_{\mathbf{w}\in\mathcal{U}^{\mathrm{rb}}}\left\|u_{\mathbf{y}}-\mathbf{w}\right\|_{\mathcal{H}}\leq\varepsilon.$$

~ Optimality through Kolmogorov N-width!

Transfer to Reduced Basis:

• Let
$$U^{\mathrm{rb}} := \mathrm{span}(\psi_i)_{i=1}^{d(\varepsilon)}$$
 with $(\psi_i)_{i=1}^{d(\varepsilon)} = \left(\sum_{j=1}^{D} \mathbf{V}_{j,i}\varphi_j\right)_{i=1}^{d(\varepsilon)}$
• Set $\mathbf{B}_y^{\mathrm{rb}} := (b_y(\psi_j,\psi_i))_{i,j=1}^{d(\varepsilon)} = \mathbf{V}^T \mathbf{B}_y^{\mathrm{h}} \mathbf{V} \in \mathbb{R}^{d(\varepsilon) \times d(\varepsilon)}$.
• Set $\mathbf{f}_y^{\mathrm{rb}} := (f_y(\psi_i))_{i=1}^{d(\varepsilon)} = \mathbf{V}^T \mathbf{f}_y^{\mathrm{h}} \in \mathbb{R}^{d(\varepsilon)}$.

Galerkin Solution: $(\sup_{y \in \mathcal{Y}} \|u_y - u_y^{rb}\|_{\mathcal{H}} \le C\varepsilon)$

 $u_y^{\rm rb} =$

Assumption: For all $\varepsilon > \varepsilon_0$, there exists $U^{\rm rb} \subset \mathcal{H}$, $d(\varepsilon) \coloneqq \dim (U^{\rm rb}) \ll D$ such that

$$\sup_{\mathbf{y}\in\mathcal{Y}}\inf_{\mathbf{w}\in\mathcal{U}^{\mathrm{rb}}}\left\|u_{\mathbf{y}}-\mathbf{w}\right\|_{\mathcal{H}}\leq\varepsilon.$$

~ Optimality through Kolmogorov N-width!

Transfer to Reduced Basis:

• Let
$$U^{\mathrm{rb}} := \mathrm{span}(\psi_i)_{i=1}^{d(\varepsilon)}$$
 with $(\psi_i)_{i=1}^{d(\varepsilon)} = \left(\sum_{j=1}^{D} \mathbf{V}_{j,i}\varphi_j\right)_{i=1}^{d(\varepsilon)}$
• Set $\mathbf{B}_y^{\mathrm{rb}} := (b_y(\psi_j,\psi_i))_{i,j=1}^{d(\varepsilon)} = \mathbf{V}^T \mathbf{B}_y^{\mathrm{h}} \mathbf{V} \in \mathbb{R}^{d(\varepsilon) \times d(\varepsilon)}$.
• Set $\mathbf{f}_y^{\mathrm{rb}} := (f_y(\psi_i))_{i=1}^{d(\varepsilon)} = \mathbf{V}^T \mathbf{f}_y^{\mathrm{h}} \in \mathbb{R}^{d(\varepsilon)}$.

 $\text{Galerkin Solution:} \quad (\sup_{y\in\mathcal{Y}}\|u_y-u_y^{\mathrm{rb}}\|_{\mathcal{H}}\leq C\varepsilon)$

$$u_y^{\mathrm{rb}} = \sum_{i=1}^{d(\varepsilon)} \left(\mathbf{u}_y^{\mathrm{rb}} \right)_i \psi_i =$$

Assumption: For all $\varepsilon > \varepsilon_0$, there exists $U^{\rm rb} \subset \mathcal{H}$, $d(\varepsilon) \coloneqq \dim (U^{\rm rb}) \ll D$ such that

$$\sup_{\mathbf{y}\in\mathcal{Y}}\inf_{\mathbf{w}\in\mathcal{U}^{\mathrm{rb}}}\left\|u_{\mathbf{y}}-\mathbf{w}\right\|_{\mathcal{H}}\leq\varepsilon.$$

~ Optimality through Kolmogorov N-width!

Transfer to Reduced Basis:

• Let
$$U^{\mathrm{rb}} := \mathrm{span} (\psi_i)_{i=1}^{d(\varepsilon)}$$
 with $(\psi_i)_{i=1}^{d(\varepsilon)} = \left(\sum_{j=1}^{D} \mathbf{V}_{j,i}\varphi_j\right)_{i=1}^{d(\varepsilon)}$.
• Set $\mathbf{B}_y^{\mathrm{rb}} := (b_y(\psi_j,\psi_i))_{i,j=1}^{d(\varepsilon)} = \mathbf{V}^T \mathbf{B}_y^{\mathrm{h}} \mathbf{V} \in \mathbb{R}^{d(\varepsilon) \times d(\varepsilon)}$.
• Set $\mathbf{f}_y^{\mathrm{rb}} := (f_y(\psi_i))_{i=1}^{d(\varepsilon)} = \mathbf{V}^T \mathbf{f}_y^{\mathrm{h}} \in \mathbb{R}^{d(\varepsilon)}$.

 $\text{Galerkin Solution:} \quad (\sup_{y\in\mathcal{Y}}\|u_y-u_y^{\mathrm{rb}}\|_{\mathcal{H}}\leq C\varepsilon)$

$$u_{y}^{\mathrm{rb}} = \sum_{i=1}^{d(\varepsilon)} \left(\mathbf{u}_{y}^{\mathrm{rb}} \right)_{i} \psi_{i} = \sum_{j=1}^{D} \left(\mathbf{V} \mathbf{u}_{y}^{\mathrm{rb}} \right)_{j} \varphi_{j} =$$

Assumption: For all $\varepsilon > \varepsilon_0$, there exists $U^{\rm rb} \subset \mathcal{H}$, $d(\varepsilon) \coloneqq \dim (U^{\rm rb}) \ll D$ such that

$$\sup_{\mathbf{y}\in\mathcal{Y}}\inf_{\mathbf{w}\in\mathcal{U}^{\mathrm{rb}}}\left\|u_{\mathbf{y}}-\mathbf{w}\right\|_{\mathcal{H}}\leq\varepsilon.$$

~ Optimality through Kolmogorov N-width!

Transfer to Reduced Basis:

• Let
$$U^{\mathrm{rb}} := \mathrm{span}(\psi_i)_{i=1}^{d(\varepsilon)}$$
 with $(\psi_i)_{i=1}^{d(\varepsilon)} = \left(\sum_{j=1}^{D} \mathbf{V}_{j,i}\varphi_j\right)_{i=1}^{d(\varepsilon)}$
• Set $\mathbf{B}_y^{\mathrm{rb}} := (b_y(\psi_j,\psi_i))_{i,j=1}^{d(\varepsilon)} = \mathbf{V}^T \mathbf{B}_y^{\mathrm{h}} \mathbf{V} \in \mathbb{R}^{d(\varepsilon) \times d(\varepsilon)}$.
• Set $\mathbf{f}_y^{\mathrm{rb}} := (f_y(\psi_i))_{i=1}^{d(\varepsilon)} = \mathbf{V}^T \mathbf{f}_y^{\mathrm{h}} \in \mathbb{R}^{d(\varepsilon)}$.

Galerkin Solution: $(\sup_{y \in \mathcal{Y}} \|u_y - u_y^{rb}\|_{\mathcal{H}} \le C\varepsilon)$

$$u_{y}^{\mathrm{rb}} = \sum_{i=1}^{d(\varepsilon)} \left(\mathbf{u}_{y}^{\mathrm{rb}} \right)_{i} \psi_{i} = \sum_{j=1}^{D} \left(\mathbf{V} \mathbf{u}_{y}^{\mathrm{rb}} \right)_{j} \varphi_{j} = \sum_{j=1}^{D} \left(\mathbf{V} (\mathbf{B}_{y}^{\mathrm{rb}})^{-1} \mathbf{V}^{\mathsf{T}} \mathbf{f}_{y}^{\mathrm{h}} \right)_{j} \varphi_{j}.$$

Our Analysis

Comparison/Similarities:

Statistical Learning Problem Parametric Problem Learn $f: X \to Y$ Distribution on $X \times Y$ Loss function $\mathcal{L} \colon Y \times Y \to \mathbb{R}^+$ Training data $(\mathbf{x}_i, \mathbf{y}_i)_{i=1}^N$ Training phase $\sum_{i=1}^{N} \mathcal{L}(f(\mathbf{x}_i), \mathbf{y}_i)$

Comparison/Similarities:

Statistical Learning Problem Parametric Problem Learn $f: X \to Y$ Learn $\mathcal{Y} \ni y \mapsto u_y \in \mathcal{H}$ Distribution on $X \times Y$ Loss function $\mathcal{L} \colon Y \times Y \to \mathbb{R}^+$ Training data $(\mathbf{x}_i, \mathbf{y}_i)_{i=1}^N$ Training phase $\sum_{i=1}^{N} \mathcal{L}(f(\mathbf{x}_i), \mathbf{y}_i)$

Comparison/Similarities:

Statistical Learning ProblemParametric ProblemLearn $f: X \to Y$ Learn $\mathcal{Y} \ni y \mapsto u_y \in \mathcal{H}$ Distribution on $X \times Y$ PDELoss function $\mathcal{L}: Y \times Y \to \mathbb{R}^+$ Training data $(\mathbf{x}_i, \mathbf{y}_i)_{i=1}^N$ Training phase $\sum_{i=1}^N \mathcal{L}(f(\mathbf{x}_i), \mathbf{y}_i)$

Comparison/Similarities:

Statistical Learning ProblemParametric ProblemLearn $f: X \to Y$ Learn $\mathcal{Y} \ni y \mapsto u_y \in \mathcal{H}$ Distribution on $X \times Y$ PDELoss function $\mathcal{L}: Y \times Y \to \mathbb{R}^+$ Metric on state spaceTraining data $(\mathbf{x}_i, \mathbf{y}_i)_{i=1}^N$ Training phase $\sum_{i=1}^N \mathcal{L}(f(\mathbf{x}_i), \mathbf{y}_i)$

Comparison/Similarities:

Statistical Learning ProblemParametric ProblemLearn $f: X \to Y$ Learn $\mathcal{Y} \ni y \mapsto u_y \in \mathcal{H}$ Distribution on $X \times Y$ PDELoss function $\mathcal{L}: Y \times Y \to \mathbb{R}^+$ Metric on state spaceTraining data $(\mathbf{x}_i, \mathbf{y}_i)_{i=1}^N$ SnapshotsTraining phase $\sum_{i=1}^N \mathcal{L}(f(\mathbf{x}_i), \mathbf{y}_i)$ Snapshots

Comparison/Similarities:

Statistical Learning ProblemParametric ProblemLearn $f: X \to Y$ Learn $\mathcal{Y} \ni y \mapsto u_y \in \mathcal{H}$ Distribution on $X \times Y$ PDELoss function $\mathcal{L}: Y \times Y \to \mathbb{R}^+$ Metric on state spaceTraining data $(\mathbf{x}_i, \mathbf{y}_i)_{i=1}^N$ SnapshotsTraining phase $\sum_{i=1}^N \mathcal{L}(f(\mathbf{x}_i), \mathbf{y}_i)$ Offline phase

Our Results: Discrete Version

Theorem (K, Petersen, Raslan, Schneider; 2019): We assume the following:

• For all $\varepsilon > 0$, there exists $d(\varepsilon) \ll D$, $\mathbf{V} \in \mathbb{R}^{D \times d(\varepsilon)}$, such that for all $y \in \mathcal{Y}$ there exists $\mathbf{B}_{y}^{\mathrm{rb}} \in \mathbb{R}^{d(\varepsilon) \times d(\varepsilon)}$ with

$$\|\mathbf{V}(\mathbf{B}_{y}^{\mathrm{rb}})^{-1}V^{T}\mathbf{f}_{y}^{\mathrm{h}}-\mathbf{u}_{y}^{\mathrm{h}}\|\leq\varepsilon.$$

• There exist ReLU neural networks Φ^B and Φ^f of size $O(\text{poly}(p)d(\varepsilon)^2\text{polylog}(\varepsilon))$ such that, for all $y \in \mathcal{Y}$, $\|\Phi^B - \mathbf{B}_y^{\text{rb}}\| \le \varepsilon$ and $\|\Phi^f - V^T \mathbf{f}_y^{\text{h}}\| \le \varepsilon$.

Then there exists a ReLU neural network Φ of size $O(d(\varepsilon)^3 \operatorname{polylog}(\varepsilon) + D + \operatorname{poly}(p)d(\varepsilon)^2 \operatorname{polylog}(\varepsilon))$ such that

$$\| \mathbf{\Phi} - \mathbf{u}_y^{ ext{h}} \| \leq arepsilon \qquad ext{for all } y \in \mathcal{Y}.$$

Our Results: Discrete Version

Theorem (K, Petersen, Raslan, Schneider; 2019): We assume the following:

• For all $\varepsilon > 0$, there exists $d(\varepsilon) \ll D$, $\mathbf{V} \in \mathbb{R}^{D \times d(\varepsilon)}$, such that for all $y \in \mathcal{Y}$ there exists $\mathbf{B}_{y}^{\mathrm{rb}} \in \mathbb{R}^{d(\varepsilon) \times d(\varepsilon)}$ with

$$\|\mathbf{V}(\mathbf{B}_{y}^{\mathrm{rb}})^{-1}V^{T}\mathbf{f}_{y}^{\mathrm{h}}-\mathbf{u}_{y}^{\mathrm{h}}\|\leq\varepsilon.$$

• There exist ReLU neural networks Φ^B and Φ^f of size $O(\text{poly}(p)d(\varepsilon)^2\text{polylog}(\varepsilon))$ such that, for all $y \in \mathcal{Y}$, $\|\Phi^B - \mathbf{B}_y^{\text{rb}}\| \le \varepsilon$ and $\|\Phi^f - V^T \mathbf{f}_y^{\text{h}}\| \le \varepsilon$.

Then there exists a ReLU neural network Φ of size $O(d(\varepsilon)^3 \operatorname{polylog}(\varepsilon) + D + \operatorname{poly}(p)d(\varepsilon)^2 \operatorname{polylog}(\varepsilon))$ such that

$$\| \Phi - \mathbf{u}_y^{ ext{h}} \| \leq arepsilon \qquad ext{for all } y \in \mathcal{Y}.$$

Extremely fast computation of the parametric map, while beating the curse of dimensionality!

Gitta Kutyniok

Deep Learning meets PDEs

Our Results: Continuous Version

Theorem (K, Petersen, Raslan, Schneider; 2019): Let $(\psi_i)_{i=1}^{d(\varepsilon)}$ denote the reduced basis. We assume in addition the following:

• There exist ReLU neural networks $(\Phi_i)_{i=1}^{d(\varepsilon)}$ of size $O(\text{polylog}(\varepsilon))$ such that $\|\Phi_i - \psi_i\|_{\mathcal{H}} \leq \varepsilon$ for all $i = 1, \ldots, d(\varepsilon)$.

Then there exists a ReLU neural network Φ of size $O(d(\varepsilon)^3 \operatorname{polylog}(\varepsilon) + \operatorname{poly}(p)d(\varepsilon)^2 \operatorname{polylog}(\varepsilon))$ such that

$$\|\Phi - u_y\|_{\mathcal{H}} \le \varepsilon$$
 for all $y \in \mathcal{Y}$.

Our Results: Continuous Version

Theorem (K, Petersen, Raslan, Schneider; 2019): Let $(\psi_i)_{i=1}^{d(\varepsilon)}$ denote the reduced basis. We assume in addition the following:

• There exist ReLU neural networks $(\Phi_i)_{i=1}^{d(\varepsilon)}$ of size $O(\text{polylog}(\varepsilon))$ such that $\|\Phi_i - \psi_i\|_{\mathcal{H}} \leq \varepsilon$ for all $i = 1, \ldots, d(\varepsilon)$.

Then there exists a ReLU neural network Φ of size $O(d(\varepsilon)^3 \operatorname{polylog}(\varepsilon) + \operatorname{poly}(p)d(\varepsilon)^2 \operatorname{polylog}(\varepsilon))$ such that

$$\|\Phi - u_y\|_{\mathcal{H}} \le \varepsilon$$
 for all $y \in \mathcal{Y}$.

Remark: The hypotheses are fulfilled, for example, by

- Diffusion equations,
- Linear elasticity equations.

Key Idea of the Proof

Main Task: Approximate $\mathbf{V}(\mathbf{B}_{y}^{rb})^{-1}\mathbf{V}^{T}\mathbf{f}_{y}^{h}$ by a ReLU neural network and control its size!

Key Idea of the Proof

Main Task: Approximate $\mathbf{V}(\mathbf{B}_{y}^{rb})^{-1}\mathbf{V}^{T}\mathbf{f}_{y}^{h}$ by a ReLU neural network and control its size!

Step 1 (Scalar Multiplication from Yarotsky; 2017): For $g(x) := \min\{2x, 2-2x\}$ and $g_s := g \circ \ldots \circ g$ (s times), we have

$$x^2 = \lim_{n \to \infty} x - \sum_{s=1}^n \frac{g_s(x)}{2^{2s}} \quad \text{for all } x \in [0,1].$$

Main Task: Approximate $\mathbf{V}(\mathbf{B}_{y}^{rb})^{-1}\mathbf{V}^{T}\mathbf{f}_{y}^{h}$ by a ReLU neural network and control its size!

Step 1 (Scalar Multiplication from Yarotsky; 2017): For $g(x) := \min\{2x, 2-2x\}$ and $g_s := g \circ \ldots \circ g$ (s times), we have

$$x^2 = \lim_{n o \infty} x - \sum_{s=1}^n rac{g_s(x)}{2^{2s}}$$
 for all $x \in [0,1]$.

Also, g can be represented by a neural network due to

$$g(x) = 2
ho(x) - 4
ho(x - \frac{1}{2}) + 2
ho(x - 2)$$
 for all $x \in [0, 1]$.

Main Task: Approximate $\mathbf{V}(\mathbf{B}_{y}^{rb})^{-1}\mathbf{V}^{T}\mathbf{f}_{y}^{h}$ by a ReLU neural network and control its size!

Step 1 (Scalar Multiplication from Yarotsky; 2017): For $g(x) := \min\{2x, 2-2x\}$ and $g_s := g \circ \ldots \circ g$ (s times), we have

$$x^2 = \lim_{n o \infty} x - \sum_{s=1}^n rac{g_s(x)}{2^{2s}}$$
 for all $x \in [0,1]$.

Also, g can be represented by a neural network due to

$$g(x) = 2
ho(x) - 4
ho(x - rac{1}{2}) + 2
ho(x - 2)$$
 for all $x \in [0, 1]$.

Moreover,

$$xz=1/4((x+z)^2-(x-z)^2) \quad \text{ for all } x,z\in\mathbb{R}.$$

⇒ Scalar multiplication on $[-1,1]^2$ can be ε -approximated by a neural network of size $\mathcal{O}(\log_2(1/\varepsilon))$.

Step 2 (Multiplication):

A matrix multiplication of two matrices of size $d \times d$ can be performed by d^3 scalar multiplications.

 $\implies Matrix multiplication can be \varepsilon-approximated by a neural network of size <math>\mathcal{O}(d(\varepsilon)^3 \log_2(1/\varepsilon)).$

Step 2 (Multiplication):

A matrix multiplication of two matrices of size $d \times d$ can be performed by d^3 scalar multiplications.

 $\implies Matrix multiplication can be \varepsilon-approximated by a neural network of size <math>\mathcal{O}(d(\varepsilon)^3 \log_2(1/\varepsilon)).$

Step 3 (Inversion):

- Neural networks can approximate matrix polynomials.
- Neural networks can the inversion operator $\mathbf{A}\mapsto\mathbf{A}^{-1}$ using

$$\sum_{s=0}^m \mathbf{A}^s \; \longrightarrow \; (\mathbf{Id}_{\mathbb{R}^d} - \mathbf{A})^{-1} \quad \text{as } m \to \infty.$$

 $\implies Matrix inversion can be \varepsilon$ -approximated by a neural network of size $\mathcal{O}(d(\varepsilon)^3 \log_2^q(1/\varepsilon))$ for a constant q > 0.

Step 4 (Discrete Parametric Map w.r.t Reduced Basis):

- Now use the assumptions on $\mathbf{B}_{\gamma}^{\mathrm{rb}}$ and $\mathbf{f}_{\gamma}^{\mathrm{rb}}$.
- $\implies The map \ y \mapsto (\mathbf{B}_{y}^{rb})^{-1}\mathbf{f}_{y}^{rb} \ can \ be \ \varepsilon\text{-approximated by a neural} \\ network \ \Phi^{rb} \ of \ size \ \mathcal{O}(d(\varepsilon)^{3}\log_{2}^{q}(1/\varepsilon) + poly(p)d(\varepsilon)^{2}\log_{2}^{q}(1/\varepsilon)).$

Step 4 (Discrete Parametric Map w.r.t Reduced Basis):

- Now use the assumptions on $\mathbf{B}_{\gamma}^{\mathrm{rb}}$ and $\mathbf{f}_{\gamma}^{\mathrm{rb}}$.
- $\implies The map \ y \mapsto (\mathbf{B}_{y}^{rb})^{-1}\mathbf{f}_{y}^{rb} \ can \ be \ \varepsilon\text{-approximated by a neural} \\ network \ \Phi^{rb} \ of \ size \ \mathcal{O}(d(\varepsilon)^{3}\log_{2}^{q}(1/\varepsilon) + poly(p)d(\varepsilon)^{2}\log_{2}^{q}(1/\varepsilon)).$
- For Theorem 1:
 - Now use the assumption that every element from the reduced basis can be approximately represented in the high-fidelity basis.
 - Consider then $\mathbf{V} \circ \Phi^{rb}$.
- $\implies The discrete parametric map can be \varepsilon-approximated by a neural network of size <math>\mathcal{O}(d(\varepsilon)^3 \log_2^q(1/\varepsilon) + d(\varepsilon)D + poly(p)d(\varepsilon)^2 \log_2^q(1/\varepsilon)).$

Step 4 (Discrete Parametric Map w.r.t Reduced Basis):

- Now use the assumptions on $\mathbf{B}_{y}^{\mathrm{rb}}$ and $\mathbf{f}_{y}^{\mathrm{rb}}$.
- $\implies The map \ y \mapsto (\mathbf{B}_{y}^{rb})^{-1}\mathbf{f}_{y}^{rb} \ can \ be \ \varepsilon\text{-approximated by a neural} \\ network \ \Phi^{rb} \ of \ size \ \mathcal{O}(d(\varepsilon)^{3}\log_{2}^{q}(1/\varepsilon) + poly(p)d(\varepsilon)^{2}\log_{2}^{q}(1/\varepsilon)).$
- For Theorem 1:
 - Now use the assumption that every element from the reduced basis can be approximately represented in the high-fidelity basis.
 - Consider then $\boldsymbol{V}\circ\boldsymbol{\Phi}^{rb}.$
- $\implies The discrete parametric map can be \varepsilon-approximated by a neural network of size <math>\mathcal{O}(d(\varepsilon)^3 \log_2^q(1/\varepsilon) + d(\varepsilon)D + poly(p)d(\varepsilon)^2 \log_2^q(1/\varepsilon)).$

For Theorem 2:

• Now use the assumption that neural networks can approximate each element of the reduced basis.

 $\implies The continuous parametric map can be \varepsilon-approximated by a neural network of size <math>\mathcal{O}(d(\varepsilon)^3 \log_2^q(1/\varepsilon) + poly(p)d(\varepsilon)^2 \log_2^q(1/\varepsilon)).$

Conclusions

What to take Home ...?

Deep Learning:

- Impressive performance in combination with classical model-based methods (Inverse Problems, PDEs, ...) ↔ Limited-Angle CT.
- Theoretical foundation of neural networks almost entirely missing: Expressivity, Learning, Generalization, and Explainability.

Expressivity of Deep Neural Networks:

- We derive a fundamental lower bound on the complexity, which each learning algorithm has to obey.
- Neural networks are as powerful approximators as classical affine systems such as wavelets, shearlets, ...

Deep Neural Networks for Parametric PDEs:

- We theoretically show that in this setting neural networks beat the curse of dimensionality by explicably constructing such networks.
- Once the network is trained, the parametric map can be computed extremely fast.

THANK YOU!

References available at:

www.math.tu-berlin.de/~kutyniok

Code available at:

www.ShearLab.org

Related Books:

- Y. Eldar and G. Kutyniok Compressed Sensing: Theory and Applications Cambridge University Press, 2012.
- G. Kutyniok and D. Labate Shearlets: Multiscale Analysis for Multivariate Data Birkhäuser-Springer, 2012.
- P. Grohs and G. Kutyniok Theory of Deep Learning Cambridge University Press (in preparation)

36 / 36