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Mathematics of Deep Neural Networks
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The Mathematics of Deep Neural Networks

Definition:
Assume the following notions:

@ d € N: Dimension of input layer.

@ L: Number of layers.

@ N: Number of neurons.
e p:R — R: (Non-linear) function called activation function.
o T, :RNe-x 5 RNe, ¢ =1, ..., L: Affine linear maps.
Then & : RY — RNt given by
O(x) = Tep(Tio1p(. .. p(T1(x))), x € R,
is called (deep) neural network (DNN).
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Training of Deep Neural Networks

High-Level Set Up:
@ Samples (x;, f(x;))™, of a function

suchas f: M —{1,2,...,K}. %,‘

@ Select an architecture of a deep neural network,
i.e., a choice of d, L, (N;)E_;, and p.
Sometimes selected entries of the matrices (Ar)s_;,

i.e., weights, are set to zero at this point.
o Learn the affine-linear functions (T;)5k_;, = (Ar - +bg)E_; by

m

min . L(Pa,,by),(x7), F(xi)) + AR((Ae, br)e)

yielding the network ®(4, 1), : RY — RN,

D(agby), (%) = TLp(Tr—ap(. - p(Ta(x)))-
This is often done by stochastic gradient descent.
Goal: ®a, 1), = f -I.E
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Fundamental Questions concerning Deep Neural Networks

o Expressivity:
» How powerful is the network architecture?
» Can it indeed represent the correct functions?
~ Applied Harmonic Analysis, Approximation Theory, ...

o Learning:
» Why does the current learning algorithm produce anything reasonable?
» What are good starting values?
~ Differential Geometry, Optimal Control, Optimization, ...

@ Generalization:
» Why do deep neural networks perform that well on data sets, which do
not belong to the input-output pairs from a training set?
» What impact has the depth of the network?
~> Learning Theory, Optimization, Statistics, ...

o Interpretability:
» Why did a trained deep neural network reach a certain decision?

» Which components of the input do contribute most?
~» Information Theory, Uncertainty Quantification, ... ﬂs
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What is Interpretability?

Main Questions: Given a trained deep neural network...
@ Which input features contribute most to the decision?

@ How can the outcome be explained?

v
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What is Interpretability?

Main Questions: Given a trained deep neural network...
@ Which input features contribute most to the decision?

@ How can the outcome be explained?

Some Recent Work:

@ Sensitivity Analysis (Simonyan, Vedaldi, Zisserman; 2013)

@ Layer-wise Relevance Propagation (Bach, Miiller, Samek at al.; 2015)
@ Deep Taylor Decompositions (Montavon, Samek, Miiller; 2018)

@ Rate Distortion Explanation (Waeldchen, Macdonald, Hauch, K; 2019)

image SmoothGrad [24] LRP-a-3 (2] SHAP [12] RDE (diagonal)

e

Sensitivity [22]  Guided Backprop [25]  Deep Taylor [14] LIME (18] RDE (low-rank)
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Quality Measure of Interpretability

Classification of the Digit 6:

image SmoothGrad [24] LRP-a-f (2 SHAP [12] RDE (diagonal)
o S
i ¥ I :
Sensitivity [22] ~ Guided Backprop [25]  Deep Taylor [14] LIME [18] RDE (low-rank)
-

Quality Measure:
MNIST

= RDE (diagonal)

= LIME

= Sensitivity

0.6 ——— RDE (low-rank)

= LRP-:-3
SmoothGrad

= SHAP

= Deep Taylor

0.0 = Guided Backprop

distortion (squared distance)

0% 20% 40% 60% 80% 100%

rate (non-randomised components)
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Fundamental Questions concerning Deep Neural Networks

o Expressivity:
» How powerful is the network architecture?
» Can it indeed represent the correct functions?
~ Applied Harmonic Analysis, Approximation Theory, ...

o Learning:
» Why does the current learning algorithm produce anything reasonable?
» What are good starting values?
~ Differential Geometry, Optimal Control, Optimization, ...

@ Generalization:
» Why do deep neural networks perform that well on data sets, which do
not belong to the input-output pairs from a training set?
» What impact has the depth of the network?
~> Learning Theory, Optimization, Statistics, ...

o Interpretability:
» Why did a trained deep neural network reach a certain decision?

» Which components of the input do contribute most?
~» Information Theory, Uncertainty Quantification, ... ﬂs
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Impact of Deep Learning on Mathematics

Some Examples:

@ Inverse Problems
~ Image denoising (Burger, Schuler, Harmeling; 2012)
~ Superresolution (Klatzer, Soukup, Kobler,
Hammernik, Pock; 2017)
~» Limited-angle tomography (Bubba, K, Lassas,
Marz, Samek, Siltanen, Srinivan; 2018)
~ Edge detection (Andrade-Loarca, K, Oktem,
Petersen; 2019)
@ Numerical Analysis of Partial Differential Equations
~ Schrédinger equation (Rupp, Tkatchenko, Miiller,
von Lilienfeld; 2012 -)
~~ Black-Scholes PDEs (Grohs, Hornung,

Jentzen,von Wurstemberger; 2018) 'f?tf: e s
~~ Parametric PDEs (Schwab, Zech; 2018) g ate o
~» Parametric PDEs (K, Petersen, Raslan, Schneider; 2019) )
@ Modelling
~ Learning equations from data (Sahoo, Lampert, Martius; 2018) ﬂs
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Let’s Now Enter the World of Parametric PDEs
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Why Parametric PDEs?

Parameter dependent families of PDEs arise in basically any branch of
science and engineering.

Some Exemplary Problem Classes:

Complex design problems
Inverse problems
Optimization tasks

o
o
@ Uncertainty quantification
°

The number of parameters can be
o finite (physical properties such as domain geometry, ...)
e infinite (modeling of random stochastic diffusion field, ...)

Parametric Map:
Yoy — u, €M suchthat L(uy,y)=F,. ﬂ E
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Parametric Partial Differential Equations

Our Setting: We will consider parameter-dependent equations of the form
b, (uy,v) =f,(v), forallyel, veH,
where
(i) Y CRP (p large) is the compact parameter set,
(i) H is a Hilbert space,

(i) by: H x H — R is a symmetric, uniformally coercive, and uniformally
continuous bilinear form,

(iv) f, € H* is the uniformly bounded, parameter-dependent right-hand
side,

(v) uy, € H is the solution.
We also assume the solution manifold

50V)=A{u, 1y eV}
to be compact in H. ﬂﬁ
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Multi-Query Situation

Many applications require solving the parametric PDE multiple times for
different parameters:

RPFOY3Sy=01,---»)p) +— u €H

Examples:

Design optimization
Optimal control

Routine analysis

Uncertainty quantification

Inverse problems N
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Multi-Query Situation

Many applications require solving the parametric PDE multiple times for
different parameters:

RPFOY3Sy=01,---»)p) +— u €H

Examples:

Design optimization
Optimal control

Routine analysis

Uncertainty quantification

Inverse problems ~

Curse of Dimensionality:

Computational cost often much too high! ﬂs
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High-Fidelity Approximations
Galerkin Approach: Instead of by (uy,,v) = f,(v), we solve
by, (u}’,’, v) = f,(v) for all v e U",

where U" ¢ H with D := dim (Uh) < o0 is the high-fidelity discretization
and u}',’ € U" is the solution.

Cea's Lemma: u;’ is (up to a constant) a best approximation of u, by
elements in U".

v
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High-Fidelity Approximations
Galerkin Approach: Instead of by (uy,,v) = f,(v), we solve
by, (u}’,’, v) = f,(v) for all v e U",

where U" ¢ H with D := dim (Uh) < o0 is the high-fidelity discretization
and u}',’ € U" is the solution.

Cea's Lemma: u;’ is (up to a constant) a best approximation of u, by
elements in U".
Galerkin Solution: Let (go,) ~1 be a basis for U". Then u! satisfies

D

—1
uh=3"(uh)ipi  with  uhi= (Bg) f7 € RP,
i=1

where Bl == (b, (12, 01))P_y and £ := (£, (21))2;. v
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What about Deep Neural Networks?

Parametric Map:
Yoy — u}; € RP such that b, (u}',’, v> = f,(v) Vv € U".

Can a Neural Network Approximate the Parametric Map?

v
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What about Deep Neural Networks?

Parametric Map:

Yoy — ul eRP suchthat b, (uf,v)=F(v)Vve U
y Yy y y

Can a Neural Network Approximate the Parametric Map?

Advantages:
@ After training, extremely rapid computation of the map.

@ Flexible, universal approach.

Questions: Let € > 0.
(1) Does there exist a neural network @ such that

d—ul|[<e forallye)?
y

(2) How does the complexity of ® depend on p and D?
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Deep Learning Approaches to PDEs

Common Approach to Solve PDEs with Neural Networks:
Approximate the solution u of a PDE L(u) = f by a neural network ®, i.e.,
solve

L(P)=".

Key Idea: The size of the neural network does not depend exponentially on
the underlying dimension.

Incomplete List:
@ Lagaris, Likas, Fotiadis; 1998
E, Yu; 2017
Sirignano, Spiliopoulos; 2017
Han, Jentzen, E; 2017
Berner, Grohs, Jentzen; 2018
Eigel, Schneider, Trunschke, Wolf; 2018
Reisinger, Zhang; 2019

v
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Solving Parametric PDEs

List of Deep Learning Approaches:

o K. Lee, K. Carlberg; 2018:
Learn a parametrisation of S())) represented by neural networks.

@ J.S. Hesthaven, S. Ubbiali; 2018:
Find reduced basis and then train neural networks to predict coeffcients
of solution in that basis.

@ Schwab, Zech; 2018:
Assume that there is a reduced basis of polynomial chaos functions.
These and the coefficients can be efficiently represented by neural
networks.

v
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Expressivity of Deep Neural Networks

v

Gitta Kutyniok Deep Learning meets PDEs 2019 Woudschoten Conference 15 /36



Complexity of a Deep Neural Network
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Complexity of a Deep Neural Network

Recall:
o d € N: Dimension of input layer.
@ L: Number of layers.
@ N: Number of neurons.
e p:R — R: (Non-linear) function called activation function.
o Tp:RNe-x 5 RNe p =1, ... L: Affine linear maps x — Ayx + by.
Then ¢ : RY — RNt given by

®(x) = Tup(Ti-1p(- .. p(Ta(x))), x € RY,
is called (deep) neural network (DNN).
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Complexity of a Deep Neural Network

Recall:

o d € N: Dimension of input layer.

o
o
O‘........‘

@ L: Number of layers. o

O

@ N: Number of neurons.

e p:R — R: (Non-linear) function called activation function.

o Tp:RNe-x 5 RNe p =1, ... L: Affine linear maps x — Ayx + by.
Then ¢ : RY — RNt given by

®(x) = Tup(Ti-1p(- .. p(Ta(x))), x € RY,
is called (deep) neural network (DNN).

Measure for Complexity: The number of weights W (®) is defined by
L

W(®) =) ([[Acllo+ llbello) -
(=1
We write ® € NN,y (0).d,p- ﬂs
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One Size Fits All?

Universal Approximation Theorem (Cybenko, 1989)(Hornik, 1991):
Let d € N, K € R compact, f : K — R continuous, p: R — R
continuous and not a polynomial. Then, for each £ > 0, there exist
N €N, ag, be € R, wy € RY such that

N
1= arp((Wie, ) = Bi)loo < .
k=1
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One Size Fits All?

Universal Approximation Theorem (Cybenko, 1989)(Hornik, 1991):
Let d € N, K € R compact, f : K — R continuous, p: R — R
continuous and not a polynomial. Then, for each £ > 0, there exist
N €N, ag, be € R, wy € RY such that

N
1= arp((Wie, ) = Bi)loo < .
k=1

The complexity can be arbitrarily large!
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One Size Fits All?

Universal Approximation Theorem (Cybenko, 1989)(Hornik, 1991):
Let d € N, K € R compact, f : K — R continuous, p: R — R
continuous and not a polynomial. Then, for each £ > 0, there exist
N €N, ag, be € R, wy € RY such that

N
1= arp((Wie, ) = Bi)loo < .
k=1

The complexity can be arbitrarily large!

Theorem (Yarotsky; 2017): For all f € C = C5([0,1]9) and p the RelU
(Rectifiable Linear Unit p(x) = max{0, x} ), there exist neural networks
(Pn)nen with L(P,) ~ log(n) such that

Hf - q:)nHoo ,S W(d)n)_% —0 asn— oo.
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One Size Fits All?

Universal Approximation Theorem (Cybenko, 1989)(Hornik, 1991):
Let d € N, K € R compact, f : K — R continuous, p: R — R
continuous and not a polynomial. Then, for each £ > 0, there exist
N €N, ag, be € R, wy € RY such that

N
1= arp((Wie, ) = Bi)loo < .
k=1

The complexity can be arbitrarily large!

Theorem (Yarotsky; 2017): For all f € C = C5([0,1]9) and p the RelU
(Rectifiable Linear Unit p(x) = max{0, x} ), there exist neural networks
(Pn)nen with L(P,) ~ log(n) such that

Hf - q:)nHoo ,S W((Dn)_% —0 asn— oo.

This result is not optimal!
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One Size Fits All?

Universal Approximation Theorem (Cybenko, 1989)(Hornik, 1991):
Let d € N, K € R compact, f : K — R continuous, p: R — R
continuous and not a polynomial. Then, for each £ > 0, there exist
N €N, ag, be € R, wy € RY such that

N
1= arp((Wie, ) = Bi)loo < .
k=1

The complexity can be arbitrarily large!

Theorem (Yarotsky; 2017): For all f € C = C5([0,1]9) and p the RelU
(Rectifiable Linear Unit p(x) = max{0, x} ), there exist neural networks
(Pn)nen with L(P,) ~ log(n) such that

Hf - q:)nHoo ,S W(d)n)_% —0 asn— 0.
This result is not optimal!

Correct Function Spaces? (Gribonval, K, Nielsen, Voigtlaender; 2019) l'ﬁ
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A Fundamental Lower Bound

Key Ingredient from Information Theory:
Given C C L2(R9). With E : [2(RY) — {0,1}¢, D : {0,1} — L2(RY), set

L(e,C) == min{¢ € N: I(E, D) € €" x D° : sup || D(E(f)) — | 2(rey < €}
fec

Then the optimal exponent v*(C) is v*(C) := inf{y e R: L(e,C) = O(e~")}.

v
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A Fundamental Lower Bound

Key Ingredient from Information Theory:
Given C C L2(R9). With E : [2(RY) — {0,1}¢, D : {0,1} — L2(RY), set

L(e,C) == min{¢ € N: I(E, D) € €" x D° : sup || D(E(f)) — | 2(rey < €}
fec
Then the optimal exponent v*(C) is v*(C) := inf{y e R: L(e,C) = O(e~")}.

Theorem (Bodlcskei, Grohs, K, and Petersen; 2017):
Let d €N, p:R =R, and let C C L?(R?). Assume that
Learn : (0,1) X C = NN co.d,p
W(Learn(e, C))

satisfies that, foreach f e Cand 0 <e <1

sup ||f — Learn(e, )| 2(re) < €.
fec

Then, for all v < 4*(C), there is no C > 0 with

sup W(Learn(e,f)) < Ce™? foralle >0

fec ﬂs

Gitta Kutyniok Deep Learning meets PDEs 2019 Woudschoten Conference 18 /36



A Fundamental Lower Bound

Key Ingredient from Information Theory:
Given C C L2(R9). With E : [2(RY) — {0,1}¢, D : {0,1} — L2(RY), set

L(e,C) == min{¢ € N: I(E, D) € €" x D° : sup || D(E(f)) — | 2(rey < €}
fec
Then the optimal exponent v*(C) is v*(C) := inf{y e R: L(e,C) = O(e~")}.

Theorem (Bodlcskei, Grohs, K, and Petersen; 2017):
Let d €N, p:R =R, and let C C L?(R?). Assume that
Learn : (0,1) X C = NN co.d,p
W(Learn(e, C))

satisfies that, foreach f e Cand 0 <e <1

sup ||f — Learn(e, )| 2(re) < €.
fec

Then, for all v < 4*(C), there is no C > 0 with

sup W(Learn(e,f)) < Ce™? foralle >0

feC
What happens for v = v*(C)? "E
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DNNs and Representation Systems, |

Observation: Assume a system (i;)ic; C L?(RY) satisfies:

@ For each i € [, there exists a neural network ®; with at most C > 0
edges such that ¢; = P;.

Then we can construct a network ® with O(M) edges with

O => cpi, if[lul=M.

i€ly

v
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DNNs and Representation Systems, |l

Observation: Assume a system (i;)ic; C L?(RY) satisfies:

@ For each i € I, there exists a neural network ®; with at most C > 0
edges such that ¢; = P;.

@ There exists C > 0 such that, for all f € C C L?(R9), there exists
Ing C 1 with
IF =" cigill < EM/7E),
=y

Then every f € C can be approximated up to an error of € by a neural
network with only O(s=7"(€)) edges.

v
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DNNs and Representation Systems, |l

Observation: Assume a system (i;)ic; C L?(RY) satisfies:

@ For each i € I, there exists a neural network ®; with at most C > 0
edges such that ¢; = P;.

@ There exists C > 0 such that, for all f € C C L?(R9), there exists
Ing C 1 with
IF =" cigill < EM/7E),
=y

Then every f € C can be approximated up to an error of € by a neural
network with only O(s=7"(€)) edges.

Recall: Then, for all v < v*(C), there is no C > 0 with

sup W(Learn(e, f)) < Ce™” for all € > 0.
fec

v
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Road Map

General Approach:
(1) Determine a class of functions C C L?(R?).

(2) Determine an associated representation system with the following
properties:

» The elements of this system can be realized by a neural network with
controlled number of edges.

» This system provides optimally sparse approximations for C.

v
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General Approach:
(1) Determine a class of functions C C L?(R?).
~> Cartoon-like functions!
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controlled number of edges.
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Road Map

General Approach:
(1) Determine a class of functions C C L?(R?).
~+ Cartoon-like functions!
(2) Determine an associated representation system with the following
properties:
~» Shearlets!
» The elements of this system can be realized by a neural network with
controlled number of edges.

» This system provides optimally sparse approximations for C.
~> This has been proven!
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Road Map

General Approach:

(1) Determine a class of functions C C L?(R?).
~+ Cartoon-like functions!

(2) Determine an associated representation system with the following
properties:
~» Shearlets!
» The elements of this system can be realized by a neural network with
controlled number of edges.
~ Still to be analyzed!
» This system provides optimally sparse approximations for C.
~> This has been proven!
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Affine Transforms

Building Principle:

Many systems from applied harmonic analysis such as
@ wavelets,
o ridgelets,
@ shearlets,

constitute affine systems:
{|det A|72(A - —t): Ae G C GL(d), t € 29}, o e [2(RY).

v
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Affine Transforms

Building Principle:
Many systems from applied harmonic analysis such as
@ wavelets,
o ridgelets,
@ shearlets,
constitute affine systems:
{|det A|72(A - —t): Ae G C GL(d), t € 29}, o e [2(RY).

Realization by Neural Networks:
The following conditions are equivalent:

(i) |det A|%/24(A - —t) can be realized by a neural network ®.
(i) 1 can be realized by a neural network ®;.

Also, ®; and ®, have the same number of edges up to a constant factor.
v
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Construction of Generators

Wavelet generators (LeCun; 1987), (Shaham, Cloninger, Coifman; 2017):
@ Assume activation function p(x) = max{x,0} (ReLUs).

@ Define t
t(x) = p(x) —p(x =1) = p(x =2) + p(x = 3). 7\

~> t can be constructed with a 2 layer network.

@ Observe that ‘
Bxt. ) = plt(x1) + ) — 1) D
yields a 2D bump function. ‘ |

@ Summing up shifted versions of ¢ yields a function 1 with vanishing
moments.
~1) can be realized by a 3 layer neural network.

v
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Construction of Generators

Wavelet generators (LeCun; 1987), (Shaham, Cloninger, Coifman; 2017):
@ Assume activation function p(x) = max{x,0} (ReLUs).
@ Define ¢
t(x) = p(x) —p(x =1) = p(x =2) + p(x = 3). "\

~> t can be constructed with a 2 layer network.

@ Observe that
Bx1,72) = p(t(xa) + t(x2) — 1) D
yields a 2D bump function. - |

@ Summing up shifted versions of ¢ yields a function ¢ with vanishing
moments.
~1) can be realized by a 3 layer neural network.

This cannot yield differentiable functions 1! ﬂ
1)
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Construction of Generators

Wavelet generators (LeCun; 1987), (Shaham, Cloninger, Coifman; 2017):
@ Assume activation function p(x) = max{x,0} (ReLUs).
@ Define t

t(x) = p(x) —p(x =1) = p(x =2) + p(x =3). 7\

~ t can be constructed with a 2 layer network.

@ Observe that ’
Hx1, %) = p(t() + t(x0) — 1) D
yields a 2D bump function. » |

@ Summing up shifted versions of ¢ yields a function v with vanishing
moments.
~1) can be realized by a 3 layer neural network.

Our Construction: Use a smoothed version of a ReLU.
~> Leads to appropriate shearlet generators! ﬂﬁ
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Optimal Approximation

Theorem (Bolcskei, Grohs, K, and Petersen; 2017): Let p be an admissible
smooth rectifier, and let € > 0. Then there exist C; > 0 such that, for all
cartoon-like functions f and N € N, we can construct a neural network

® € NN3.0(n),2, satisfying

“f - CDHL2(R2) S CngleE.

Function classes which are optimal representable by affine systems
are also optimally approximated by sparsely connected neural networks!

v
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Numerical Experiments (with ReLUs & Backpropagation)

- 5
50 100 150 200 250 100 120 140 160 180

2
Linear Singularity # of edges

Subnetworks: Ridgelets!
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Numerical Experiments (with ReLUs & Backpropagation)
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Deep Learning for Parametric PDEs
or

How to Beat the Curse of Dimensionality

v
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Parametric Partial Differential Equations

Our Setting: We will consider parameter-dependent equations of the form
b, (uy,v) =f,(v), forallyel, veH,
where
(i) Y CRP (p large) is the compact parameter set,
(i) H is a Hilbert space,

(i) by: H x H — R is a symmetric, uniformally coercive, and uniformally
continuous bilinear form,

(iv) f, € H* is the uniformly bounded, parameter-dependent right-hand
side,

(v) uy, € H is the solution.
We also assume the solution manifold

50V)=A{u, 1y eV}
to be compact in H. ﬂﬁ
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Reduced Basis Method: Key |dea

High-Fidelity Discretization:

Key Idea:

Offline (slow): Online (fast):
Compute snap shots Compute solutions for new parameters ﬂs
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Reduced Basis Method: Details

Assumption: For all € > g, there exists U™ c H, d(e) = dim (Urb) < D
such that

sup inf ||u, —wl|, <e.
sup i1y —wl <

~» Optimality through Kolmogorov N-width!
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Reduced Basis Method: Details

Assumption: For all € > g, there exists U™ c H, d(e) = dim (Urb) < D
such that

sup inf ||u, —wl|, <e.
sup i1y —wl <

~» Optimality through Kolmogorov N-width!

Transfer to Reduced Basis:

) d(e)
o Let U™ :=span (w,-):-j:(‘gl) with (w,-):-j:(‘gl) = (ZjDzl Vj,,-goj)

=
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Reduced Basis Method: Details

Assumption: For all € > g, there exists U™ c H, d(e) = dim (Urb) < D
such that

sup inf |lu, —wl, <e.
sup i1y — wly,

~» Optimality through Kolmogorov N-width!

Transfer to Reduced Basis:
o Let U™ :=span (w,-):-j(al) with (w,-):-j_(al) = (ZjD:1 V; ,-goj) :I_(al).
o Set Bl := (b (wj,zp,))d(‘f)1 = VTBhV € RY(E)xd(),
o Set I := (¥, (1,))2) = VTl e R,
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Reduced Basis Method: Details

Assumption: For all € > g, there exists U™ c H, d(e) = dim (Urb) < D
such that

sup inf ||u, —wl|, <e.
sup inf oy~ wly

~» Optimality through Kolmogorov N-width!

Transfer to Reduced Basis:
o Let U™ :=span (w,-)fl(el) with (w,-):-j_(al) = (ZjD:1 V; ,-goj) :I_(al).
o Set Bl := (b (wj,zp,))d(‘f)1 = VTBhV € RY(E)xd(),
o Set I := (¥, (1,))2) = VTl e R,

Galerkin Solution:  (supycy [|uy, — u}r,bHH < Ce)
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Reduced Basis Method: Details

Assumption: For all € > g, there exists U™ c H, d(e) = dim (Urb) < D
such that

sup inf |lu, —wl, <e.
sup i1y — wly,

~» Optimality through Kolmogorov N-width!

Transfer to Reduced Basis:
o Let U™ i=span (1)) with (u){) = (S2, Vi) d_(al)
o Set Brb = (b (¢J,¢:))d(€)1 _ VTBhV c R(E)xd(e).
o Set I := (¥, (1,))2) = VTl e R,

Galerkin Solution:  (sup,cy [lu, — u}P|l < Ce)

d(e)

i = 3 () i =
i—1< )' ﬂﬁ
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Reduced Basis Method: Details

Assumption: For all € > g, there exists U™ c H, d(e) = dim (Urb) < D
such that

sup inf |lu, —wl, <e.
sup i1y — wly,

~» Optimality through Kolmogorov N-width!

Transfer to Reduced Basis:
o Let U™ i=span (1)) with (u){) = (S2, Vi) d_(al)
o Set Brb = (b (¢J,¢:))d(€)1 _ VTBhV c R(E)xd(e).
o Set I := (¥, (1,))2) = VTl e R,

Galerkin Solution:  (sup,cy [lu, — u}P|l < Ce)

d(e) D
4= 2 () v = 2 (V) = -

Gitta Kutyniok Deep Learning meets PDEs 2019 Woudschoten Conference 28 /36



Reduced Basis Method: Details

Assumption: For all € > g, there exists U™ c H, d(e) = dim (Urb) < D
such that

sup inf |lu, —wl, <e.
sup i1y — wly,

~ Optimality through Kolmogorov N-width!

Transfer to Reduced Basis:
o Let U™ i=span (1)) with (u){) = (S2, Vi) d_(al)
o Set Brb = (b (wﬂwl))d(e)l _ VTBhV c R(E)xd(e).
o Set I := (¥, (1,))2) = VTl e R,

Galerkin Solution:  (sup,cy [lu, — u}P|l < Ce)

d(e) D D
= (0) 0 () = B Ve V)
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Our Analysis

v

Gitta Kutyniok Deep Learning meets PDEs 2019 Woudschoten Conference 28 /36



Statistical Learning Problem = Parametric Problem?
Comparison/Similarities:

Statistical Learning Problem Parametric Problem

Learn f: X = Y
Distribution on X x Y
Loss function £: Y x Y — R*
Training data (x;,y;)V;
Training phase ZlNzl L(f(x),yi)
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Training data (x;,y;)V;
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Statistical Learning Problem = Parametric Problem?

Comparison/Similarities:

Statistical Learning Problem Parametric Problem
Learn f: X = Y Learn Y >y = u, €H
Distribution on X x Y PDE

Loss function £: Y x Y — Rt
Training data (x;,y;)V;
Training phase Z,N:l L(f(xi),yi)
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Statistical Learning Problem = Parametric Problem?

Comparison/Similarities:

Statistical Learning Problem Parametric Problem
Learn f: X = Y Learn Y >y = u, €H
Distribution on X x Y PDE
Loss function £: Y x Y — R™ Metric on state space

Training data (x;,y;)V;
Training phase Z,Nzl L(f(xi),yi)
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Statistical Learning Problem = Parametric Problem?

Comparison/Similarities:

Statistical Learning Problem Parametric Problem
Learn f: X = Y Learn Y >y = u, €H
Distribution on X x Y PDE
Loss function £: Y x Y — R™ Metric on state space
Training data (x;,y;)V; Snapshots

Training phase Z,Nzl L(f(xi),yi)

o
'0", % N
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Statistical Learning Problem = Parametric Problem?

Comparison/Similarities:

Statistical Learning Problem Parametric Problem
Learn f: X = Y Learn Y >y = u, €H
Distribution on X x Y PDE
Loss function £: Y x Y — R™ Metric on state space
Training data (x;,y;)V; Snapshots
Training phase ZINZI L(f(x),yi) Offline phase
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Our Results: Discrete Version

Theorem (K, Petersen, Raslan, Schneider; 2019):
We assume the following:

@ For all € > 0, there exists d(¢) < D, V € RDP*d(€) such that for all
y € Y there exists BI> € R¥)*d() with

IV(B)") VT —ul| <e.

@ There exist ReLU neural networks ®8 and ®f of size
O(poly(p)d(e)?polylog(c)) such that, for all y € I,

[¢B —BlP|<e and [&f — VTf}||<e.
Then there exists a ReLU neural network ® of size O(d(=)>polylog(c)+
D + poly(p)d(e)?polylog(e)) such that
|®—upl|<e forallye).

v
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Our Results: Discrete Version

Theorem (K, Petersen, Raslan, Schneider; 2019):
We assume the following:

@ For all € > 0, there exists d(¢) < D, V € RDP*d(€) such that for all
y € Y there exists BI> € R¥)*d() with

IV(B)") VT —ul| <e.
@ There exist ReLU neural networks & and & of size
O(poly(p)d(e)?polylog(c)) such that, for all y € I,
[¢B —BlP|<e and [&f — VTf}||<e.
Then there exists a ReLU neural network ® of size O(d(=)>polylog(c)+
D + poly(p)d(e)?polylog(e)) such that
|®—upl|<e forallye).
Extremely fast computation of the parametric map,
v

while beating the curse of dimensionality!
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Our Results: Continuous Version

Theorem (K, Petersen, Raslan, Schneider; 2019):
Let (¢,-)fi:(61) denote the reduced basis. We assume in addition the following:

@ There exist ReLU neural networks (d>,-)7:(€1) of size O(polylog())
such that ||®; — ¢i|ly < e foralli=1,...,d(e).

Then there exists a ReLU neural network ® of size O(d(=)>polylog(c)+
poly(p)d(e)?polylog(e)) such that

||cb—uy||H§5 forall y € ).

v
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Our Results: Continuous Version

Theorem (K, Petersen, Raslan, Schneider; 2019):
Let (¢,-)'7:(51) denote the reduced basis. We assume in addition the following:

@ There exist ReLU neural networks (d>,-)7:(€1) of size O(polylog())
such that ||®; — ¢i|ly < e foralli=1,...,d(e).

Then there exists a ReLU neural network ® of size O(d(=)>polylog(c)+
poly(p)d(e)?polylog(e)) such that

||cb—uy||H§s forall y € ).

Remark: The hypotheses are fulfilled, for example, by
o Diffusion equations,

@ Linear elasticity equations.
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Key Idea of the Proof

Main Task: Approximate V(B;”,b)_lv-’—f;1 by a ReLU neural network and
control its size!
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Key ldea of the Proof

Main Task: Approximate V(B;”,'D)_lv-’—f;1 by a ReLU neural network and
control its size!

Step 1 (Scalar Multiplication from Yarotsky; 2017):
For g(x) := min{2x,2 — 2x} and g := go...o g (s times), we have

n
x? = lim x — gs(x)

n—00 22s
s=1

for all x € [0,1].
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Key ldea of the Proof

Main Task: Approximate V(Bf,'[’)_lv-’—f}v1 by a ReLU neural network and
control its size!

Step 1 (Scalar Multiplication from Yarotsky; 2017):
For g(x) := min{2x,2 — 2x} and g := go...o g (s times), we have

n
x? = lim x — gs(x)

n—00 22s
s=1

for all x € [0,1].
Also, g can be represented by a neural network due to

g(x) =2p(x) — 4p(x — %) +2p(x —2) forall x €[0,1].
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Key Idea of the Proof

Main Task: Approximate V(B;”,b)_lv-’—f;1 by a ReLU neural network and

control its sizel!

Step 1 (Scalar Multiplication from Yarotsky; 2017):
For g(x) := min{2x,2 — 2x} and g := go...o g (s times), we have

n
x? = lim x — gs(x)

n—00 22s
s=1

for all x € [0,1].
Also, g can be represented by a neural network due to

g(x) =2p(x) — 4p(x — %) +2p(x —2) forall x €[0,1].

Moreover,

xz=1/4((x+z)? — (x —z)?) forall x,z € R.

== Scalar multiplication on [—1,1]? can be e-approximated by a
neural network of size O(log,(1/¢)).
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Key Idea of the Proof

Step 2 (Multiplication):

A matrix multiplication of two matrices of size d x d can be performed by
d3 scalar multiplications.

=> Matrix multiplication can be e-approximated by a neural network of size
O(d(e)? logy(1/¢)).

v
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Key Idea of the Proof

Step 2 (Multiplication):

A matrix multiplication of two matrices of size d x d can be performed by
d3 scalar multiplications.

=> Matrix multiplication can be e-approximated by a neural network of size
O(d(¢)* log,(1/¢)).
Step 3 (Inversion):
@ Neural networks can approximate matrix polynomials.

o Neural networks can the inversion operator A — A~! using
m
ZAS — (Idga — A)™' as m — oo.
s=0

= Matrix inversion can be e-approximated by a neural network of size
O(d(g)3logd(1/e)) for a constant q > 0.
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Key Idea of the Proof

Step 4 (Discrete Parametric Map w.r.t Reduced Basis):
@ Now use the assumptions on B;b and f}r,b.

= The map y — (B;b)*lf;b can be e-approximated by a neural
network ®™ of size O(d ()3 logd(1/2) + poly(p)d(g)?logd(1/e)).
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Key Idea of the Proof

Step 4 (Discrete Parametric Map w.r.t Reduced Basis):
@ Now use the assumptions on B;b and f;b.
= The map y — (B;b)*lf;b can be e-approximated by a neural
network ®™ of size O(d ()3 logd(1/2) + poly(p)d(g)?logd(1/e)).
For Theorem 1:
@ Now use the assumption that every element from the reduced basis can

be approximately represented in the high-fidelity basis.
o Consider then V o ™.

= The discrete parametric map can be s-approximated by a neural
network of size O(d(g)3logd(1/e) + d(g)D + poly(p)d()? logd(1/¢)).
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Key Idea of the Proof

Step 4 (Discrete Parametric Map w.r.t Reduced Basis):
@ Now use the assumptions on B;b and f}r,b.
= The map y — (Bi,b)*lf)r,b can be e-approximated by a neural
network ®™ of size O(d ()3 logd(1/2) + poly(p)d(g)?logd(1/e)).
For Theorem 1:
@ Now use the assumption that every element from the reduced basis can

be approximately represented in the high-fidelity basis.
o Consider then V o ™.

= The discrete parametric map can be s-approximated by a neural
network of size O(d(g)3logd(1/e) + d(g)D + poly(p)d()? logd(1/¢)).
For Theorem 2:

@ Now use the assumption that neural networks can approximate each
element of the reduced basis.
= The continuous parametric map can be e-approximated by a neural
network of size O(d(g)3logd(1/e) + poly(p)d(e)? logd(1/€)). ﬂs
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Conclusions
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What to take Home...?

Deep Learning:

@ Impressive performance in combination with classical model-based methods
(Inverse Problems, PDEs, ...) ~» Limited-Angle CT.

@ Theoretical foundation of neural networks almost entirely missing:
Expressivity, Learning, Generalization, and Explainability.

Expressivity of Deep Neural Networks:

@ We derive a fundamental lower bound on the complexity, which each learning
algorithm has to obey.

@ Neural networks are as powerful approximators as classical affine systems such
as wavelets, shearlets, ...

Deep Neural Networks for Parametric PDEs:

@ We theoretically show that in this setting neural networks beat the curse of
dimensionality by explicably constructing such networks.

@ Once the network is trained, the parametric map can be computed ﬂs
extremely fast. I
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