Solving Mathematical Problems by Deep Learning: Partial Differential Equations

Gitta Kutyniok

(Technische Universität Berlin and University of Troms \varnothing)

2019 Woudschoten Conference
Zeist, The Netherlands, October 9-11, 2019

Mathematics of Deep Neural Networks

The Mathematics of Deep Neural Networks

Definition:

Assume the following notions:

- $d \in \mathbb{N}$: Dimension of input layer.
- L: Number of layers.
- N : Number of neurons.

- $\rho: \mathbb{R} \rightarrow \mathbb{R}:($ Non-linear) function called activation function.
- $T_{\ell}: \mathbb{R}^{N_{\ell-1}} \rightarrow \mathbb{R}^{N_{\ell}}, \ell=1, \ldots, L$: Affine linear maps.

Then $\Phi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{N_{L}}$ given by

$$
\Phi(x)=T_{L} \rho\left(T_{L-1} \rho\left(\ldots \rho\left(T_{1}(x)\right)\right), \quad x \in \mathbb{R}^{d}\right.
$$

is called (deep) neural network (DNN).

Training of Deep Neural Networks

High-Level Set Up:

- Samples $\left(x_{i}, f\left(x_{i}\right)\right)_{i=1}^{m}$ of a function such as $f: \mathcal{M} \rightarrow\{1,2, \ldots, K\}$.

- Select an architecture of a deep neural network, i.e., a choice of $d, L,\left(N_{\ell}\right)_{\ell=1}^{L}$, and ρ.

Sometimes selected entries of the matrices $\left(A_{\ell}\right)_{\ell=1}^{\perp}$,

i.e., weights, are set to zero at this point.

- Learn the affine-linear functions $\left(T_{\ell}\right)_{\ell=1}^{L}=\left(A_{\ell} \cdot+b_{\ell}\right)_{\ell=1}^{L}$ by

$$
\min _{\left(A_{\ell}, b_{\ell}\right)_{\ell}} \sum_{i=1}^{m} \mathcal{L}\left(\Phi_{\left(A_{\ell}, b_{\ell}\right)_{\ell}}\left(x_{i}\right), f\left(x_{i}\right)\right)+\lambda \mathcal{R}\left(\left(A_{\ell}, b_{\ell}\right)_{\ell}\right)
$$

yielding the network $\Phi_{\left(A_{\ell}, b_{\ell}\right)_{\ell}}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{N_{L}}$,

$$
\Phi_{\left(A_{\ell}, b_{\ell}\right)_{\ell}}(x)=T_{L} \rho\left(T_{L-1} \rho\left(\ldots \rho\left(T_{1}(x)\right)\right)\right.
$$

This is often done by stochastic gradient descent.

$$
\text { Goal: } \Phi_{\left(A_{\ell}, b_{\ell}\right)_{\ell}} \approx f
$$

Fundamental Questions concerning Deep Neural Networks

- Expressivity:
- How powerful is the network architecture?
- Can it indeed represent the correct functions?
\rightsquigarrow Applied Harmonic Analysis, Approximation Theory, ...
- Learning:
- Why does the current learning algorithm produce anything reasonable?
- What are good starting values?
\rightsquigarrow Differential Geometry, Optimal Control, Optimization, ...
- Generalization:
- Why do deep neural networks perform that well on data sets, which do not belong to the input-output pairs from a training set?
- What impact has the depth of the network?
\rightsquigarrow Learning Theory, Optimization, Statistics, ...
- Interpretability:
- Why did a trained deep neural network reach a certain decision?
- Which components of the input do contribute most?
\rightsquigarrow Information Theory, Uncertainty Quantification, ...

What is Interpretability?

Main Questions: Given a trained deep neural network...

- Which input features contribute most to the decision?
- How can the outcome be explained?

What is Interpretability?

Main Questions: Given a trained deep neural network...

- Which input features contribute most to the decision?
- How can the outcome be explained?

Some Recent Work:

- Sensitivity Analysis (Simonyan, Vedaldi, Zisserman; 2013)
- Layer-wise Relevance Propagation (Bach, Müller, Samek at al.; 2015)
- Deep Taylor Decompositions (Montavon, Samek, Müller; 2018)
- Rate Distortion Explanation (Waeldchen, Macdonald, Hauch, K; 2019)

Quality Measure of Interpretability

Classification of the Digit 6:

RDE (diagonal)

Guided Backprop [25]
Deep Taylor [14]
LIME [18]
RDE (low-rank)

Quality Measure:

Fundamental Questions concerning Deep Neural Networks

- Expressivity:
- How powerful is the network architecture?
- Can it indeed represent the correct functions?
\rightsquigarrow Applied Harmonic Analysis, Approximation Theory, ...
- Learning:
- Why does the current learning algorithm produce anything reasonable?
- What are good starting values?
\rightsquigarrow Differential Geometry, Optimal Control, Optimization, ...
- Generalization:
- Why do deep neural networks perform that well on data sets, which do not belong to the input-output pairs from a training set?
- What impact has the depth of the network?
\rightsquigarrow Learning Theory, Optimization, Statistics, ...
- Interpretability:
- Why did a trained deep neural network reach a certain decision?
- Which components of the input do contribute most?
\rightsquigarrow Information Theory, Uncertainty Quantification, ...

Impact of Deep Learning on Mathematics

Some Examples:

- Inverse Problems
\rightsquigarrow Image denoising (Burger, Schuler, Harmeling; 2012)
\rightsquigarrow Superresolution (Klatzer, Soukup, Kobler, Hammernik, Pock; 2017)
\leadsto Limited-angle tomography (Bubba, K, Lassas, März, Samek, Siltanen, Srinivan; 2018)
\rightsquigarrow Edge detection (Andrade-Loarca, K, Öktem, Petersen; 2019)
- Numerical Analysis of Partial Differential Equations
\rightsquigarrow Schrödinger equation (Rupp, Tkatchenko, Müller, von Lilienfeld; 2012 -)
\rightsquigarrow Black-Scholes PDEs (Grohs, Hornung, Jentzen,von Wurstemberger; 2018)
\rightsquigarrow Parametric PDEs (Schwab, Zech; 2018)
\rightsquigarrow Parametric PDEs (K, Petersen, Raslan, Schneider; 2019)
- Modelling
\rightsquigarrow Learning equations from data (Sahoo, Lampert, Martius; 2018)

Let's Now Enter the World of Parametric PDEs

Why Parametric PDEs?

Parameter dependent families of PDEs arise in basically any branch of science and engineering.

Some Exemplary Problem Classes:

- Complex design problems
- Inverse problems
- Optimization tasks
- Uncertainty quantification
- ...

The number of parameters can be

- finite (physical properties such as domain geometry, ...)
- infinite (modeling of random stochastic diffusion field, ...)

Parametric Map:

$$
\mathcal{Y} \ni y \mapsto u_{y} \in \mathcal{H} \quad \text { such that } \quad \mathcal{L}\left(u_{y}, y\right)=f_{y}
$$

Parametric Partial Differential Equations

Our Setting: We will consider parameter-dependent equations of the form

$$
b_{y}\left(u_{y}, v\right)=f_{y}(v), \quad \text { for all } y \in \mathcal{Y}, v \in \mathcal{H}
$$

where
(i) $\mathcal{Y} \subseteq \mathbb{R}^{p}$ (p large) is the compact parameter set,
(ii) \mathcal{H} is a Hilbert space,
(ii) $b_{y}: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{R}$ is a symmetric, uniformally coercive, and uniformally continuous bilinear form,
(iv) $f_{y} \in \mathcal{H}^{*}$ is the uniformly bounded, parameter-dependent right-hand side,
(v) $u_{y} \in \mathcal{H}$ is the solution.

We also assume the solution manifold

$$
S(\mathcal{Y}):=\left\{u_{y}: y \in \mathcal{Y}\right\}
$$

to be compact in \mathcal{H}.

Multi-Query Situation

Many applications require solving the parametric PDE multiple times for different parameters:

$$
\mathbb{R}^{p} \supset \mathcal{Y} \ni y=\left(y_{1}, \ldots, y_{p}\right) \quad \mapsto \quad u_{y} \in \mathcal{H}
$$

Examples:

- Design optimization
- Optimal control
- Routine analysis
- Uncertainty quantification
- Inverse problems

Multi-Query Situation

Many applications require solving the parametric PDE multiple times for different parameters:

$$
\mathbb{R}^{p} \supset \mathcal{Y} \ni y=\left(y_{1}, \ldots, y_{p}\right) \quad \mapsto \quad u_{y} \in \mathcal{H}
$$

Examples:

- Design optimization
- Optimal control
- Routine analysis
- Uncertainty quantification
- Inverse problems

Curse of Dimensionality:
Computational cost often much too high!

High-Fidelity Approximations

Galerkin Approach: Instead of $b_{y}\left(u_{y}, v\right)=f_{y}(v)$, we solve

$$
b_{y}\left(u_{y}^{h}, v\right)=f_{y}(v) \quad \text { for all } v \in U^{h}
$$

where $U^{h} \subset \mathcal{H}$ with $D:=\operatorname{dim}\left(U^{h}\right)<\infty$ is the high-fidelity discretization and $u_{y}^{h} \in U^{h}$ is the solution.

Cea's Lemma: u_{y}^{h} is (up to a constant) a best approximation of u_{y} by elements in U^{h}.

High-Fidelity Approximations

Galerkin Approach: Instead of $b_{y}\left(u_{y}, v\right)=f_{y}(v)$, we solve

$$
b_{y}\left(u_{y}^{h}, v\right)=f_{y}(v) \quad \text { for all } v \in U^{h}
$$

where $U^{h} \subset \mathcal{H}$ with $D:=\operatorname{dim}\left(U^{h}\right)<\infty$ is the high-fidelity discretization and $u_{y}^{h} \in U^{h}$ is the solution.

Cea's Lemma: u_{y}^{h} is (up to a constant) a best approximation of u_{y} by elements in U^{h}.

Galerkin Solution: Let $\left(\varphi_{i}\right)_{i=1}^{D}$ be a basis for U^{h}. Then u_{y}^{h} satisfies

$$
u_{y}^{h}=\sum_{i=1}^{D}\left(\mathbf{u}_{y}^{h}\right)_{i} \varphi_{i} \quad \text { with } \quad \mathbf{u}_{y}^{h}:=\left(\mathbf{B}_{y}^{h}\right)^{-1} \mathbf{f}_{y}^{h} \in \mathbb{R}^{D}
$$

where $\mathbf{B}_{y}^{h}:=\left(b_{y}\left(\varphi_{j}, \varphi_{i}\right)\right)_{i, j=1}^{D}$ and $\mathbf{f}_{y}^{h}:=\left(f_{y}\left(\varphi_{i}\right)\right)_{i=1}^{D}$.

What about Deep Neural Networks?

Parametric Map:
$\mathcal{Y} \ni y \mapsto \mathbf{u}_{y}^{\mathrm{h}} \in \mathbb{R}^{D} \quad$ such that $\quad b_{y}\left(u_{y}^{h}, v\right)=f_{y}(v) \forall v \in U^{h}$.
Can a Neural Network Approximate the Parametric Map?

What about Deep Neural Networks?

Parametric Map:

$$
\mathcal{Y} \ni y \mapsto \mathbf{u}_{y}^{\mathrm{h}} \in \mathbb{R}^{D} \quad \text { such that } \quad b_{y}\left(u_{y}^{h}, v\right)=f_{y}(v) \forall v \in U^{h} .
$$

Can a Neural Network Approximate the Parametric Map?
Advantages:

- After training, extremely rapid computation of the map.
- Flexible, universal approach.

Questions: Let $\varepsilon>0$.
(1) Does there exist a neural network Φ such that

$$
\left\|\Phi-\mathbf{u}_{y}^{\mathrm{h}}\right\| \leq \varepsilon \quad \text { for all } y \in \mathcal{Y} ?
$$

(2) How does the complexity of Φ depend on p and D ?

Deep Learning Approaches to PDEs

Common Approach to Solve PDEs with Neural Networks: Approximate the solution u of a $\operatorname{PDE} \mathcal{L}(u)=f$ by a neural network Φ, i.e., solve

$$
\mathcal{L}(\Phi)=f
$$

Key Idea: The size of the neural network does not depend exponentially on the underlying dimension.

Incomplete List:

- Lagaris, Likas, Fotiadis; 1998
- E, Yu; 2017
- Sirignano, Spiliopoulos; 2017
- Han, Jentzen, E; 2017
- Berner, Grohs, Jentzen; 2018
- Eigel, Schneider, Trunschke, Wolf; 2018
- Reisinger, Zhang; 2019
- ...

Solving Parametric PDEs

List of Deep Learning Approaches:

- K. Lee, K. Carlberg; 2018:

Learn a parametrisation of $S(\mathcal{Y})$ represented by neural networks.

- J.S. Hesthaven, S. Ubbiali; 2018:

Find reduced basis and then train neural networks to predict coeffcients of solution in that basis.

- Schwab, Zech; 2018:

Assume that there is a reduced basis of polynomial chaos functions. These and the coefficients can be efficiently represented by neural networks.

Expressivity of Deep Neural Networks

Complexity of a Deep Neural Network

Complexity of a Deep Neural Network

Recall:

- $d \in \mathbb{N}$: Dimension of input layer.
- L: Number of layers.
- N : Number of neurons.

- $\rho: \mathbb{R} \rightarrow \mathbb{R}$: (Non-linear) function called activation function.
- $T_{\ell}: \mathbb{R}^{N_{\ell-1}} \rightarrow \mathbb{R}^{N_{\ell}}, \ell=1, \ldots, L$: Affine linear maps $x \mapsto A_{\ell} x+b_{\ell}$.

Then $\Phi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{N_{L}}$ given by

$$
\Phi(x)=T_{L} \rho\left(T_{L-1} \rho\left(\ldots \rho\left(T_{1}(x)\right)\right), \quad x \in \mathbb{R}^{d}\right.
$$

is called (deep) neural network (DNN).

Complexity of a Deep Neural Network

Recall:

- $d \in \mathbb{N}$: Dimension of input layer.
- L: Number of layers.
- N : Number of neurons.

- $\rho: \mathbb{R} \rightarrow \mathbb{R}$: (Non-linear) function called activation function.
- $T_{\ell}: \mathbb{R}^{N_{\ell-1}} \rightarrow \mathbb{R}^{N_{\ell}}, \ell=1, \ldots, L$: Affine linear maps $x \mapsto A_{\ell} x+b_{\ell}$.

Then $\Phi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{N_{L}}$ given by

$$
\Phi(x)=T_{L} \rho\left(T_{L-1} \rho\left(\ldots \rho\left(T_{1}(x)\right)\right), \quad x \in \mathbb{R}^{d}\right.
$$

is called (deep) neural network (DNN).
Measure for Complexity: The number of weights $W(\Phi)$ is defined by

$$
W(\Phi):=\sum_{\ell=1}^{L}\left(\left\|A_{\ell}\right\|_{0}+\left\|b_{\ell}\right\|_{0}\right)
$$

We write $\Phi \in \mathcal{N N}_{L, W(\Phi), d, \rho}$.

One Size Fits All?

Universal Approximation Theorem (Cybenko, 1989)(Hornik, 1991):
Let $d \in \mathbb{N}, K \subset \mathbb{R}^{d}$ compact, $f: K \rightarrow \mathbb{R}$ continuous, $\rho: \mathbb{R} \rightarrow \mathbb{R}$ continuous and not a polynomial. Then, for each $\varepsilon>0$, there exist $N \in \mathbb{N}, a_{k}, b_{k} \in \mathbb{R}, w_{k} \in \mathbb{R}^{d}$ such that

$$
\left\|f-\sum_{k=1}^{N} a_{k} \rho\left(\left\langle w_{k}, \cdot\right\rangle-b_{k}\right)\right\|_{\infty} \leq \varepsilon
$$

One Size Fits All?

Universal Approximation Theorem (Cybenko, 1989)(Hornik, 1991):
Let $d \in \mathbb{N}, K \subset \mathbb{R}^{d}$ compact, $f: K \rightarrow \mathbb{R}$ continuous, $\rho: \mathbb{R} \rightarrow \mathbb{R}$ continuous and not a polynomial. Then, for each $\varepsilon>0$, there exist $N \in \mathbb{N}, a_{k}, b_{k} \in \mathbb{R}, w_{k} \in \mathbb{R}^{d}$ such that

$$
\left\|f-\sum_{k=1}^{N} a_{k} \rho\left(\left\langle w_{k}, \cdot\right\rangle-b_{k}\right)\right\|_{\infty} \leq \varepsilon
$$

The complexity can be arbitrarily large!

One Size Fits All?

Universal Approximation Theorem (Cybenko, 1989)(Hornik, 1991):
Let $d \in \mathbb{N}, K \subset \mathbb{R}^{d}$ compact, $f: K \rightarrow \mathbb{R}$ continuous, $\rho: \mathbb{R} \rightarrow \mathbb{R}$ continuous and not a polynomial. Then, for each $\varepsilon>0$, there exist $N \in \mathbb{N}, a_{k}, b_{k} \in \mathbb{R}, w_{k} \in \mathbb{R}^{d}$ such that

$$
\left\|f-\sum_{k=1}^{N} a_{k} \rho\left(\left\langle w_{k}, \cdot\right\rangle-b_{k}\right)\right\|_{\infty} \leq \varepsilon
$$

The complexity can be arbitrarily large!
Theorem (Yarotsky; 2017): For all $f \in \mathcal{C}=C^{s}\left([0,1]^{d}\right)$ and ρ the ReLU (Rectifiable Linear Unit $\rho(x)=\max \{0, x\}$), there exist neural networks $\left(\Phi_{n}\right)_{n \in \mathbb{N}}$ with $L\left(\Phi_{n}\right) \approx \log (n)$ such that

$$
\left\|f-\Phi_{n}\right\|_{\infty} \lesssim W\left(\Phi_{n}\right)^{-\frac{s}{d}} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

One Size Fits All?

Universal Approximation Theorem (Cybenko, 1989)(Hornik, 1991):
Let $d \in \mathbb{N}, K \subset \mathbb{R}^{d}$ compact, $f: K \rightarrow \mathbb{R}$ continuous, $\rho: \mathbb{R} \rightarrow \mathbb{R}$ continuous and not a polynomial. Then, for each $\varepsilon>0$, there exist $N \in \mathbb{N}, a_{k}, b_{k} \in \mathbb{R}, w_{k} \in \mathbb{R}^{d}$ such that

$$
\left\|f-\sum_{k=1}^{N} a_{k} \rho\left(\left\langle w_{k}, \cdot\right\rangle-b_{k}\right)\right\|_{\infty} \leq \varepsilon
$$

The complexity can be arbitrarily large!
Theorem (Yarotsky; 2017): For all $f \in \mathcal{C}=C^{s}\left([0,1]^{d}\right)$ and ρ the ReLU (Rectifiable Linear Unit $\rho(x)=\max \{0, x\}$), there exist neural networks $\left(\Phi_{n}\right)_{n \in \mathbb{N}}$ with $L\left(\Phi_{n}\right) \approx \log (n)$ such that

$$
\left\|f-\Phi_{n}\right\|_{\infty} \lesssim W\left(\Phi_{n}\right)^{-\frac{s}{d}} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

This result is not optimal!

One Size Fits All?

Universal Approximation Theorem (Cybenko, 1989)(Hornik, 1991):
Let $d \in \mathbb{N}, K \subset \mathbb{R}^{d}$ compact, $f: K \rightarrow \mathbb{R}$ continuous, $\rho: \mathbb{R} \rightarrow \mathbb{R}$ continuous and not a polynomial. Then, for each $\varepsilon>0$, there exist $N \in \mathbb{N}, a_{k}, b_{k} \in \mathbb{R}, w_{k} \in \mathbb{R}^{d}$ such that

$$
\left\|f-\sum_{k=1}^{N} a_{k} \rho\left(\left\langle w_{k}, \cdot\right\rangle-b_{k}\right)\right\|_{\infty} \leq \varepsilon
$$

The complexity can be arbitrarily large!
Theorem (Yarotsky; 2017): For all $f \in \mathcal{C}=C^{s}\left([0,1]^{d}\right)$ and ρ the ReLU (Rectifiable Linear Unit $\rho(x)=\max \{0, x\}$), there exist neural networks $\left(\Phi_{n}\right)_{n \in \mathbb{N}}$ with $L\left(\Phi_{n}\right) \approx \log (n)$ such that

$$
\left\|f-\Phi_{n}\right\|_{\infty} \lesssim W\left(\Phi_{n}\right)^{-\frac{s}{d}} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

This result is not optimal!
Correct Function Spaces? (Gribonval, K, Nielsen, Voigtlaender; 2019) Th

A Fundamental Lower Bound

Key Ingredient from Information Theory:
Given $\mathcal{C} \subseteq L^{2}\left(\mathbb{R}^{d}\right)$. With $E: L^{2}\left(\mathbb{R}^{d}\right) \rightarrow\{0,1\}^{\ell}, D:\{0,1\}^{\ell} \rightarrow L^{2}\left(\mathbb{R}^{d}\right)$, set

$$
L(\varepsilon, \mathcal{C}):=\min \left\{\ell \in \mathbb{N}: \exists(E, D) \in \mathfrak{E}^{\ell} \times \mathfrak{D}^{\ell}: \sup _{f \in \mathcal{C}}\|D(E(f))-f\|_{L^{2}\left(\mathbb{R}^{d}\right)} \leq \varepsilon\right\} .
$$

Then the optimal exponent $\gamma^{*}(\mathcal{C})$ is $\gamma^{*}(\mathcal{C}):=\inf \left\{\gamma \in \mathbb{R}: L(\varepsilon, \mathcal{C})=O\left(\varepsilon^{-\gamma}\right)\right\}$.

A Fundamental Lower Bound

Key Ingredient from Information Theory:
Given $\mathcal{C} \subseteq L^{2}\left(\mathbb{R}^{d}\right)$. With $E: L^{2}\left(\mathbb{R}^{d}\right) \rightarrow\{0,1\}^{\ell}, D:\{0,1\}^{\ell} \rightarrow L^{2}\left(\mathbb{R}^{d}\right)$, set

$$
L(\varepsilon, \mathcal{C}):=\min \left\{\ell \in \mathbb{N}: \exists(E, D) \in \mathfrak{E}^{\ell} \times \mathfrak{D}^{\ell}: \sup _{f \in \mathcal{C}}\|D(E(f))-f\|_{L^{2}\left(\mathbb{R}^{d}\right)} \leq \varepsilon\right\} .
$$

Then the optimal exponent $\gamma^{*}(\mathcal{C})$ is $\gamma^{*}(\mathcal{C}):=\inf \left\{\gamma \in \mathbb{R}: L(\varepsilon, \mathcal{C})=O\left(\varepsilon^{-\gamma}\right)\right\}$.
Theorem (Bölcskei, Grohs, K, and Petersen; 2017):
Let $d \in \mathbb{N}, \rho: \mathbb{R} \rightarrow \mathbb{R}$, and let $\mathcal{C} \subset L^{2}\left(\mathbb{R}^{d}\right)$. Assume that

$$
\text { Learn : }(0,1) \times \mathcal{C} \rightarrow \mathcal{N N}_{\infty, \infty, d, \rho}
$$

satisfies that, for each $f \in \mathcal{C}$ and $0<\varepsilon<1$

$$
\sup _{f \in \mathcal{C}}\|f-\operatorname{Learn}(\varepsilon, f)\|_{L^{2}\left(\mathbb{R}^{d}\right)} \leq \varepsilon .
$$

Then, for all $\gamma<\gamma^{*}(\mathcal{C})$, there is no $C>0$ with

$$
\sup _{f \in \mathcal{C}} W(\operatorname{Learn}(\varepsilon, f)) \leq C \varepsilon^{-\gamma} \quad \text { for all } \varepsilon>0
$$

A Fundamental Lower Bound

Key Ingredient from Information Theory:
Given $\mathcal{C} \subseteq L^{2}\left(\mathbb{R}^{d}\right)$. With $E: L^{2}\left(\mathbb{R}^{d}\right) \rightarrow\{0,1\}^{\ell}, D:\{0,1\}^{\ell} \rightarrow L^{2}\left(\mathbb{R}^{d}\right)$, set

$$
L(\varepsilon, \mathcal{C}):=\min \left\{\ell \in \mathbb{N}: \exists(E, D) \in \mathfrak{E}^{\ell} \times \mathfrak{D}^{\ell}: \sup _{f \in \mathcal{C}}\|D(E(f))-f\|_{L^{2}\left(\mathbb{R}^{d}\right)} \leq \varepsilon\right\} .
$$

Then the optimal exponent $\gamma^{*}(\mathcal{C})$ is $\gamma^{*}(\mathcal{C}):=\inf \left\{\gamma \in \mathbb{R}: L(\varepsilon, \mathcal{C})=O\left(\varepsilon^{-\gamma}\right)\right\}$.
Theorem (Bölcskei, Grohs, K, and Petersen; 2017):
Let $d \in \mathbb{N}, \rho: \mathbb{R} \rightarrow \mathbb{R}$, and let $\mathcal{C} \subset L^{2}\left(\mathbb{R}^{d}\right)$. Assume that

$$
\text { Learn : }(0,1) \times \mathcal{C} \rightarrow \mathcal{N \mathcal { N }}{ }_{\infty, \infty, d, \rho}
$$

satisfies that, for each $f \in \mathcal{C}$ and $0<\varepsilon<1$

$$
\sup _{f \in \mathcal{C}}\|f-\operatorname{Learn}(\varepsilon, f)\|_{L^{2}\left(\mathbb{R}^{d}\right)} \leq \varepsilon .
$$

Then, for all $\gamma<\gamma^{*}(\mathcal{C})$, there is no $C>0$ with

$$
\sup _{f \in \mathcal{C}} W(\operatorname{Learn}(\varepsilon, f)) \leq C \varepsilon^{-\gamma} \quad \text { for all } \varepsilon>0
$$

What happens for $\gamma=\gamma^{*}(\mathcal{C})$?

DNNs and Representation Systems, I

Observation: Assume a system $\left(\varphi_{i}\right)_{i \in I} \subset L^{2}\left(\mathbb{R}^{d}\right)$ satisfies:

- For each $i \in I$, there exists a neural network Φ_{i} with at most $C>0$ edges such that $\varphi_{i}=\Phi_{i}$.
Then we can construct a network Φ with $O(M)$ edges with

$$
\Phi=\sum_{i \in I_{M}} c_{i} \varphi_{i}, \quad \text { if }\left|I_{M}\right|=M
$$

DNNs and Representation Systems, II

Observation: Assume a system $\left(\varphi_{i}\right)_{i \in I} \subset L^{2}\left(\mathbb{R}^{d}\right)$ satisfies:

- For each $i \in I$, there exists a neural network Φ_{i} with at most $C>0$ edges such that $\varphi_{i}=\Phi_{i}$.
- There exists $\tilde{C}>0$ such that, for all $f \in \mathcal{C} \subset L^{2}\left(\mathbb{R}^{d}\right)$, there exists $I_{M} \subset I$ with

$$
\left\|f-\sum_{i \in I_{M}} c_{i} \varphi_{i}\right\| \leq \tilde{C} M^{-1 / \gamma^{*}(\mathcal{C})}
$$

Then every $f \in \mathcal{C}$ can be approximated up to an error of ε by a neural network with only $O\left(\varepsilon^{-\gamma^{*}(\mathcal{C})}\right)$ edges.

DNNs and Representation Systems, II

Observation: Assume a system $\left(\varphi_{i}\right)_{i \in I} \subset L^{2}\left(\mathbb{R}^{d}\right)$ satisfies:

- For each $i \in I$, there exists a neural network Φ_{i} with at most $C>0$ edges such that $\varphi_{i}=\Phi_{i}$.
- There exists $\tilde{C}>0$ such that, for all $f \in \mathcal{C} \subset L^{2}\left(\mathbb{R}^{d}\right)$, there exists $I_{M} \subset I$ with

$$
\left\|f-\sum_{i \in I_{M}} c_{i} \varphi_{i}\right\| \leq \tilde{C} M^{-1 / \gamma^{*}(\mathcal{C})}
$$

Then every $f \in \mathcal{C}$ can be approximated up to an error of ε by a neural network with only $O\left(\varepsilon^{-\gamma^{*}(\mathcal{C})}\right)$ edges.

Recall: Then, for all $\gamma<\gamma^{*}(\mathcal{C})$, there is no $C>0$ with

$$
\sup _{f \in \mathcal{C}} W(\operatorname{Learn}(\varepsilon, f)) \leq C \varepsilon^{-\gamma} \quad \text { for all } \varepsilon>0
$$

Road Map

General Approach:

(1) Determine a class of functions $\mathcal{C} \subseteq L^{2}\left(\mathbb{R}^{2}\right)$.
(2) Determine an associated representation system with the following properties:

- The elements of this system can be realized by a neural network with controlled number of edges.
- This system provides optimally sparse approximations for \mathcal{C}.

Road Map

General Approach:

(1) Determine a class of functions $\mathcal{C} \subseteq L^{2}\left(\mathbb{R}^{2}\right)$. \rightsquigarrow Cartoon-like functions!
(2) Determine an associated representation system with the following properties:

- The elements of this system can be realized by a neural network with controlled number of edges.
- This system provides optimally sparse approximations for \mathcal{C}.

Road Map

General Approach:

(1) Determine a class of functions $\mathcal{C} \subseteq L^{2}\left(\mathbb{R}^{2}\right)$.
\rightsquigarrow Cartoon-like functions!
(2) Determine an associated representation system with the following properties:
\rightsquigarrow Shearlets!

- The elements of this system can be realized by a neural network with controlled number of edges.
- This system provides optimally sparse approximations for \mathcal{C}.

Road Map

General Approach:

(1) Determine a class of functions $\mathcal{C} \subseteq L^{2}\left(\mathbb{R}^{2}\right)$.
\rightsquigarrow Cartoon-like functions!
(2) Determine an associated representation system with the following properties:
\rightsquigarrow Shearlets!

- The elements of this system can be realized by a neural network with controlled number of edges.
- This system provides optimally sparse approximations for \mathcal{C}. \rightsquigarrow This has been proven!

Road Map

General Approach:

(1) Determine a class of functions $\mathcal{C} \subseteq L^{2}\left(\mathbb{R}^{2}\right)$.
\rightsquigarrow Cartoon-like functions!
(2) Determine an associated representation system with the following properties:
\rightsquigarrow Shearlets!

- The elements of this system can be realized by a neural network with controlled number of edges.
\rightsquigarrow Still to be analyzed!
- This system provides optimally sparse approximations for \mathcal{C}. \rightsquigarrow This has been proven!

Affine Transforms

Building Principle:

Many systems from applied harmonic analysis such as

- wavelets,
- ridgelets,
- shearlets,
constitute affine systems:
$\left\{|\operatorname{det} A|^{d / 2} \psi(A \cdot-t): A \in G \subseteq G L(d), t \in \mathbb{Z}^{d}\right\}, \quad \psi \in L^{2}\left(\mathbb{R}^{d}\right)$.

Affine Transforms

Building Principle:

Many systems from applied harmonic analysis such as

- wavelets,
- ridgelets,
- shearlets,

constitute affine systems:

$$
\left\{|\operatorname{det} A|^{d / 2} \psi(A \cdot-t): A \in G \subseteq G L(d), t \in \mathbb{Z}^{d}\right\}, \quad \psi \in L^{2}\left(\mathbb{R}^{d}\right)
$$

Realization by Neural Networks:

The following conditions are equivalent:
(i) $|\operatorname{det} A|^{d / 2} \psi(A \cdot-t)$ can be realized by a neural network Φ_{1}.
(ii) ψ can be realized by a neural network Φ_{2}.

Also, Φ_{1} and Φ_{2} have the same number of edges up to a constant factor.

Construction of Generators

Wavelet generators (LeCun; 1987), (Shaham, Cloninger, Coifman; 2017):

- Assume activation function $\rho(x)=\max \{x, 0\}$ (ReLUs).
- Define

$$
t(x):=\rho(x)-\rho(x-1)-\rho(x-2)+\rho(x-3)
$$

$\rightsquigarrow t$ can be constructed with a 2 layer network.

- Observe that

$$
\phi\left(x_{1}, x_{2}\right):=\rho\left(t\left(x_{1}\right)+t\left(x_{2}\right)-1\right)
$$

yields a 2D bump function.

- Summing up shifted versions of ϕ yields a function ψ with vanishing moments.
$\rightsquigarrow \psi$ can be realized by a 3 layer neural network.

Construction of Generators

Wavelet generators (LeCun; 1987), (Shaham, Cloninger, Coifman; 2017):

- Assume activation function $\rho(x)=\max \{x, 0\}$ (ReLUs).
- Define

$$
t(x):=\rho(x)-\rho(x-1)-\rho(x-2)+\rho(x-3)
$$

$\rightsquigarrow t$ can be constructed with a 2 layer network.

- Observe that

$$
\phi\left(x_{1}, x_{2}\right):=\rho\left(t\left(x_{1}\right)+t\left(x_{2}\right)-1\right)
$$

yields a 2D bump function.

- Summing up shifted versions of ϕ yields a function ψ with vanishing moments.
$\rightsquigarrow \psi$ can be realized by a 3 layer neural network.
This cannot yield differentiable functions ψ !

Construction of Generators

Wavelet generators (LeCun; 1987), (Shaham, Cloninger, Coifman; 2017):

- Assume activation function $\rho(x)=\max \{x, 0\}$ (ReLUs).
- Define

$$
t(x):=\rho(x)-\rho(x-1)-\rho(x-2)+\rho(x-3)
$$

$\rightsquigarrow t$ can be constructed with a 2 layer network.

- Observe that

$$
\phi\left(x_{1}, x_{2}\right):=\rho\left(t\left(x_{1}\right)+t\left(x_{2}\right)-1\right)
$$

yields a 2D bump function.

- Summing up shifted versions of ϕ yields a function ψ with vanishing moments.
$\rightsquigarrow \psi$ can be realized by a 3 layer neural network.
Our Construction: Use a smoothed version of a ReLU.
\rightsquigarrow Leads to appropriate shearlet generators!

Optimal Approximation

Theorem (Bölcskei, Grohs, K, and Petersen; 2017): Let ρ be an admissible smooth rectifier, and let $\varepsilon>0$. Then there exist $C_{\varepsilon}>0$ such that, for all cartoon-like functions f and $N \in \mathbb{N}$, we can construct a neural network $\Phi \in \mathcal{N N}_{3, O(N), 2, \rho}$ satisfying

$$
\|f-\Phi\|_{L^{2}\left(\mathbb{R}^{2}\right)} \leq C_{\varepsilon} N^{-1+\varepsilon}
$$

Function classes which are optimal representable by affine systems are also optimally approximated by sparsely connected neural networks!

Numerical Experiments (with ReLUs \& Backpropagation)

Numerical Experiments (with ReLUs \& Backpropagation)

Deep Learning for Parametric PDEs

or
\section*{How to Beat the Curse of Dimensionality}

Parametric Partial Differential Equations

Our Setting: We will consider parameter-dependent equations of the form

$$
b_{y}\left(u_{y}, v\right)=f_{y}(v), \quad \text { for all } y \in \mathcal{Y}, v \in \mathcal{H}
$$

where
(i) $\mathcal{Y} \subseteq \mathbb{R}^{p}$ (p large) is the compact parameter set,
(ii) \mathcal{H} is a Hilbert space,
(ii) $b_{y}: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{R}$ is a symmetric, uniformally coercive, and uniformally continuous bilinear form,
(iv) $f_{y} \in \mathcal{H}^{*}$ is the uniformly bounded, parameter-dependent right-hand side,
(v) $u_{y} \in \mathcal{H}$ is the solution.

We also assume the solution manifold

$$
S(\mathcal{Y}):=\left\{u_{y}: y \in \mathcal{Y}\right\}
$$

to be compact in \mathcal{H}.

Reduced Basis Method: Key Idea

High-Fidelity Discretization:

Key Idea:

Offline (slow):
Compute snap shots

Online (fast):
Compute solutions for new parameters

Reduced Basis Method: Details

Assumption: For all $\varepsilon>\varepsilon_{0}$, there exists $U^{\mathrm{rb}} \subset \mathcal{H}, d(\varepsilon):=\operatorname{dim}\left(U^{\mathrm{rb}}\right) \ll D$ such that

$$
\sup _{y \in \mathcal{Y}} \inf _{w \in U^{\mathrm{rb}}}\left\|u_{y}-w\right\|_{\mathcal{H}} \leq \varepsilon
$$

\rightsquigarrow Optimality through Kolmogorov N-width!

Reduced Basis Method: Details

Assumption: For all $\varepsilon>\varepsilon_{0}$, there exists $U^{\mathrm{rb}} \subset \mathcal{H}, d(\varepsilon):=\operatorname{dim}\left(U^{\mathrm{rb}}\right) \ll D$ such that

$$
\sup _{y \in \mathcal{Y}} \inf _{w \in U^{\mathrm{rb}}}\left\|u_{y}-w\right\|_{\mathcal{H}} \leq \varepsilon .
$$

\rightsquigarrow Optimality through Kolmogorov N-width!
Transfer to Reduced Basis:

- Let $U^{\mathrm{rb}}:=\operatorname{span}\left(\psi_{i}\right)_{i=1}^{d(\varepsilon)}$ with $\left(\psi_{i}\right)_{i=1}^{d(\varepsilon)}=\left(\sum_{j=1}^{D} \mathbf{V}_{j, i} \varphi_{j}\right)_{i=1}^{d(\varepsilon)}$.

Reduced Basis Method: Details

Assumption: For all $\varepsilon>\varepsilon_{0}$, there exists $U^{\mathrm{rb}} \subset \mathcal{H}, d(\varepsilon):=\operatorname{dim}\left(U^{\mathrm{rb}}\right) \ll D$ such that

$$
\sup _{y \in \mathcal{Y}} \inf _{w \in U^{\mathrm{rb}}}\left\|u_{y}-w\right\|_{\mathcal{H}} \leq \varepsilon
$$

\rightsquigarrow Optimality through Kolmogorov N-width!
Transfer to Reduced Basis:

- Let $U^{\mathrm{rb}}:=\operatorname{span}\left(\psi_{i}\right)_{i=1}^{d(\varepsilon)}$ with $\left(\psi_{i}\right)_{i=1}^{d(\varepsilon)}=\left(\sum_{j=1}^{D} \mathbf{V}_{j, i} \varphi_{j}\right)_{i=1}^{d(\varepsilon)}$.
- Set $\mathbf{B}_{y}^{\mathrm{rb}}:=\left(b_{y}\left(\psi_{j}, \psi_{i}\right)\right)_{i, j=1}^{d(\varepsilon)}=\mathbf{V}^{T} \mathbf{B}_{y}^{\mathrm{h}} \mathbf{V} \in \mathbb{R}^{d(\varepsilon) \times d(\varepsilon)}$.
- Set $\mathbf{f}_{y}^{\mathrm{rb}}:=\left(f_{y}\left(\psi_{i}\right)\right)_{i=1}^{d(\varepsilon)}=\mathbf{V}^{T} \mathbf{f}_{y}^{\mathrm{h}} \in \mathbb{R}^{d(\varepsilon)}$.

Reduced Basis Method: Details

Assumption: For all $\varepsilon>\varepsilon_{0}$, there exists $U^{\mathrm{rb}} \subset \mathcal{H}, d(\varepsilon):=\operatorname{dim}\left(U^{\mathrm{rb}}\right) \ll D$ such that

$$
\sup _{y \in \mathcal{Y}} \inf _{w \in U^{\mathrm{rb}}}\left\|u_{y}-w\right\|_{\mathcal{H}} \leq \varepsilon
$$

\rightsquigarrow Optimality through Kolmogorov N-width!
Transfer to Reduced Basis:

- Let $U^{\mathrm{rb}}:=\operatorname{span}\left(\psi_{i}\right)_{i=1}^{d(\varepsilon)}$ with $\left(\psi_{i}\right)_{i=1}^{d(\varepsilon)}=\left(\sum_{j=1}^{D} \mathbf{V}_{j, i} \varphi_{j}\right)_{i=1}^{d(\varepsilon)}$.
- Set $\mathbf{B}_{y}^{\mathrm{rb}}:=\left(b_{y}\left(\psi_{j}, \psi_{i}\right)\right)_{i, j=1}^{d(\varepsilon)}=\mathbf{V}^{\top} \mathbf{B}_{y}^{\mathrm{h}} \mathbf{V} \in \mathbb{R}^{d(\varepsilon) \times d(\varepsilon)}$.
- Set $\mathbf{f}_{y}^{\mathrm{rb}}:=\left(f_{y}\left(\psi_{i}\right)\right)_{i=1}^{d(\varepsilon)}=\mathbf{V}^{T} \mathbf{f}_{y}^{\mathrm{h}} \in \mathbb{R}^{d(\varepsilon)}$.

Galerkin Solution: $\left(\sup _{y \in \mathcal{Y}}\left\|u_{y}-u_{y}^{\mathrm{rb}}\right\|_{\mathcal{H}} \leq C \varepsilon\right)$

$$
u_{y}^{\mathrm{rb}}=
$$

Reduced Basis Method: Details

Assumption: For all $\varepsilon>\varepsilon_{0}$, there exists $U^{\mathrm{rb}} \subset \mathcal{H}, d(\varepsilon):=\operatorname{dim}\left(U^{\mathrm{rb}}\right) \ll D$ such that

$$
\sup _{y \in \mathcal{Y}} \inf _{w \in U^{\mathrm{rb}}}\left\|u_{y}-w\right\|_{\mathcal{H}} \leq \varepsilon
$$

\rightsquigarrow Optimality through Kolmogorov N-width!
Transfer to Reduced Basis:

- Let $U^{\mathrm{rb}}:=\operatorname{span}\left(\psi_{i}\right)_{i=1}^{d(\varepsilon)}$ with $\left(\psi_{i}\right)_{i=1}^{d(\varepsilon)}=\left(\sum_{j=1}^{D} \mathbf{V}_{j, i} \varphi_{j}\right)_{i=1}^{d(\varepsilon)}$.
- Set $\mathbf{B}_{y}^{\mathrm{rb}}:=\left(b_{y}\left(\psi_{j}, \psi_{i}\right)\right)_{i, j=1}^{d(\varepsilon)}=\mathbf{V}^{\top} \mathbf{B}_{y}^{\mathrm{h}} \mathbf{V} \in \mathbb{R}^{d(\varepsilon) \times d(\varepsilon)}$.
- Set $\mathbf{f}_{y}^{\mathrm{rb}}:=\left(f_{y}\left(\psi_{i}\right)\right)_{i=1}^{d(\varepsilon)}=\mathbf{V}^{T} \mathbf{f}_{y}^{\mathrm{h}} \in \mathbb{R}^{d(\varepsilon)}$.

Galerkin Solution: $\left(\sup _{y \in \mathcal{Y}}\left\|u_{y}-u_{y}^{\mathrm{rb}}\right\|_{\mathcal{H}} \leq C \varepsilon\right)$

$$
u_{y}^{\mathrm{rb}}=\sum_{i=1}^{d(\varepsilon)}\left(\mathbf{u}_{y}^{\mathrm{rb}}\right)_{i} \psi_{i}=
$$

Reduced Basis Method: Details

Assumption: For all $\varepsilon>\varepsilon_{0}$, there exists $U^{\mathrm{rb}} \subset \mathcal{H}, d(\varepsilon):=\operatorname{dim}\left(U^{\mathrm{rb}}\right) \ll D$ such that

$$
\sup _{y \in \mathcal{Y}} \inf _{w \in U^{\mathrm{rb}}}\left\|u_{y}-w\right\|_{\mathcal{H}} \leq \varepsilon
$$

\rightsquigarrow Optimality through Kolmogorov N-width!
Transfer to Reduced Basis:

- Let $U^{\mathrm{rb}}:=\operatorname{span}\left(\psi_{i}\right)_{i=1}^{d(\varepsilon)}$ with $\left(\psi_{i}\right)_{i=1}^{d(\varepsilon)}=\left(\sum_{j=1}^{D} \mathbf{V}_{j, i} \varphi_{j}\right)_{i=1}^{d(\varepsilon)}$.
- Set $\mathbf{B}_{y}^{\mathrm{rb}}:=\left(b_{y}\left(\psi_{j}, \psi_{i}\right)\right)_{i, j=1}^{d(\varepsilon)}=\mathbf{V}^{\top} \mathbf{B}_{y}^{\mathrm{h}} \mathbf{V} \in \mathbb{R}^{d(\varepsilon) \times d(\varepsilon)}$.
- Set $\mathbf{f}_{y}^{\mathrm{rb}}:=\left(f_{y}\left(\psi_{i}\right)\right)_{i=1}^{d(\varepsilon)}=\mathbf{V}^{T} \mathbf{f}_{y}^{\mathrm{h}} \in \mathbb{R}^{d(\varepsilon)}$.

Galerkin Solution: $\left(\sup _{y \in \mathcal{Y}}\left\|u_{y}-u_{y}^{\mathrm{rb}}\right\|_{\mathcal{H}} \leq C \varepsilon\right)$

$$
u_{y}^{\mathrm{rb}}=\sum_{i=1}^{d(\varepsilon)}\left(\mathbf{u}_{y}^{\mathrm{rb}}\right)_{i} \psi_{i}=\sum_{j=1}^{D}\left(\mathbf{V u}_{y}^{\mathrm{rb}}\right)_{j} \varphi_{j}=
$$

Reduced Basis Method: Details

Assumption: For all $\varepsilon>\varepsilon_{0}$, there exists $U^{\mathrm{rb}} \subset \mathcal{H}, d(\varepsilon):=\operatorname{dim}\left(U^{\mathrm{rb}}\right) \ll D$ such that

$$
\sup _{y \in \mathcal{Y}} \inf _{w \in U^{\mathrm{rb}}}\left\|u_{y}-w\right\|_{\mathcal{H}} \leq \varepsilon
$$

\rightsquigarrow Optimality through Kolmogorov N-width!
Transfer to Reduced Basis:

- Let $U^{\mathrm{rb}}:=\operatorname{span}\left(\psi_{i}\right)_{i=1}^{d(\varepsilon)}$ with $\left(\psi_{i}\right)_{i=1}^{d(\varepsilon)}=\left(\sum_{j=1}^{D} \mathbf{V}_{j, i} \varphi_{j}\right)_{i=1}^{d(\varepsilon)}$.
- Set $\mathbf{B}_{y}^{\mathrm{rb}}:=\left(b_{y}\left(\psi_{j}, \psi_{i}\right)\right)_{i, j=1}^{d(\varepsilon)}=\mathbf{V}^{T} \mathbf{B}_{y}^{\mathrm{h}} \mathbf{V} \in \mathbb{R}^{d(\varepsilon) \times d(\varepsilon)}$.
- Set $\mathbf{f}_{y}^{\mathrm{rb}}:=\left(f_{y}\left(\psi_{i}\right)\right)_{i=1}^{d(\varepsilon)}=\mathbf{V}^{T} \mathbf{f}_{y}^{\mathrm{h}} \in \mathbb{R}^{d(\varepsilon)}$.

Galerkin Solution: $\left(\sup _{y \in \mathcal{Y}}\left\|u_{y}-u_{y}^{\mathrm{rb}}\right\|_{\mathcal{H}} \leq C \varepsilon\right)$

$$
u_{y}^{\mathrm{rb}}=\sum_{i=1}^{d(\varepsilon)}\left(\mathbf{u}_{y}^{\mathrm{rb}}\right)_{i} \psi_{i}=\sum_{j=1}^{D}\left(\mathbf{V} \mathbf{u}_{y}^{\mathrm{rb}}\right)_{j} \varphi_{j}=\sum_{j=1}^{D}\left(\mathbf{V}\left(\mathbf{B}_{y}^{\mathrm{rb}}\right)^{-1} \mathbf{V}^{T} \mathbf{f}_{y}^{\mathrm{h}}\right)_{j} \varphi_{j} .
$$

Our Analysis

Statistical Learning Problem $=$ Parametric Problem?

Comparison/Similarities:

Statistical Learning Problem

Parametric Problem
Learn $f: X \rightarrow Y$
Distribution on $X \times Y$
Loss function $\mathcal{L}: Y \times Y \rightarrow \mathbb{R}^{+}$
Training data $\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right)_{i=1}^{N}$
Training phase $\sum_{i=1}^{N} \mathcal{L}\left(f\left(\mathbf{x}_{i}\right), \mathbf{y}_{i}\right)$

Statistical Learning Problem $=$ Parametric Problem?

Comparison/Similarities:

Statistical Learning Problem

Parametric Problem

$$
\text { Learn } f: X \rightarrow Y \quad \text { Learn } \mathcal{Y} \ni y \mapsto u_{y} \in \mathcal{H}
$$

Distribution on $X \times Y$
Loss function $\mathcal{L}: Y \times Y \rightarrow \mathbb{R}^{+}$
Training data $\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right)_{i=1}^{N}$
Training phase $\sum_{i=1}^{N} \mathcal{L}\left(f\left(\mathbf{x}_{i}\right), \mathbf{y}_{i}\right)$

Statistical Learning Problem $=$ Parametric Problem?

Comparison/Similarities:

Statistical Learning Problem

 Parametric Problem$$
\text { Learn } f: X \rightarrow Y \quad \text { Learn } \mathcal{Y} \ni y \mapsto u_{y} \in \mathcal{H}
$$

Distribution on $X \times Y$

PDE
Loss function $\mathcal{L}: Y \times Y \rightarrow \mathbb{R}^{+}$
Training data $\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right)_{i=1}^{N}$
Training phase $\sum_{i=1}^{N} \mathcal{L}\left(f\left(\mathbf{x}_{i}\right), \mathbf{y}_{i}\right)$

Statistical Learning Problem $=$ Parametric Problem?

Comparison/Similarities:
Statistical Learning Problem Parametric Problem

$$
\text { Learn } f: X \rightarrow Y \quad \text { Learn } \mathcal{Y} \ni y \mapsto u_{y} \in \mathcal{H}
$$

Distribution on $X \times Y$
Loss function $\mathcal{L}: Y \times Y \rightarrow \mathbb{R}^{+}$

> Training data $\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right)_{i=1}^{N}$
> Training phase $\sum_{i=1}^{N} \mathcal{L}\left(f\left(\mathbf{x}_{i}\right), \mathbf{y}_{i}\right)$

PDE

Metric on state space

Statistical Learning Problem $=$ Parametric Problem?

Comparison/Similarities:
Statistical Learning Problem Parametric Problem

$$
\text { Learn } f: X \rightarrow Y \quad \text { Learn } \mathcal{Y} \ni y \mapsto u_{y} \in \mathcal{H}
$$

Distribution on $X \times Y$
Loss function $\mathcal{L}: Y \times Y \rightarrow \mathbb{R}^{+}$
Training data $\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right)_{i=1}^{N}$
Training phase $\sum_{i=1}^{N} \mathcal{L}\left(f\left(\mathbf{x}_{i}\right), \mathbf{y}_{i}\right)$

PDE

Metric on state space
Snapshots

Statistical Learning Problem $=$ Parametric Problem?

Comparison/Similarities:

Statistical Learning Problem

$$
\text { Learn } f: X \rightarrow Y
$$

Distribution on $X \times Y$
Loss function $\mathcal{L}: Y \times Y \rightarrow \mathbb{R}^{+}$
Training data $\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right)_{i=1}^{N}$
Training phase $\sum_{i=1}^{N} \mathcal{L}\left(f\left(\mathbf{x}_{i}\right), \mathbf{y}_{i}\right)$

Parametric Problem
Learn $\mathcal{Y} \ni y \mapsto u_{y} \in \mathcal{H}$ PDE

Metric on state space
Snapshots
Offline phase

Our Results: Discrete Version

Theorem (K, Petersen, Raslan, Schneider; 2019):
We assume the following:

- For all $\varepsilon>0$, there exists $d(\varepsilon) \ll D, \mathbf{V} \in \mathbb{R}^{D \times d(\varepsilon)}$, such that for all $y \in \mathcal{Y}$ there exists $\mathbf{B}_{y}^{\mathrm{rb}} \in \mathbb{R}^{d(\varepsilon) \times d(\varepsilon)}$ with

$$
\left\|\mathbf{V}\left(\mathbf{B}_{y}^{\mathrm{rb}}\right)^{-1} V^{T} \mathbf{f}_{y}^{\mathrm{h}}-\mathbf{u}_{y}^{\mathrm{h}}\right\| \leq \varepsilon
$$

- There exist ReLU neural networks Φ^{B} and Φ^{f} of size $O\left(\right.$ poly $(p) d(\varepsilon)^{2}$ polylog $\left.(\varepsilon)\right)$ such that, for all $y \in \mathcal{Y}$,

$$
\left\|\Phi^{B}-\mathbf{B}_{y}^{\mathrm{rb}}\right\| \leq \varepsilon \quad \text { and } \quad\left\|\Phi^{f}-V^{T} \mathbf{f}_{y}^{\mathrm{h}}\right\| \leq \varepsilon
$$

Then there exists a ReLU neural network Φ of size $O\left(d(\varepsilon)^{3}\right.$ polylog $(\varepsilon)+$ $D+\operatorname{poly}(p) d(\varepsilon)^{2}$ polylog $\left.(\varepsilon)\right)$ such that

$$
\left\|\Phi-\mathbf{u}_{y}^{\mathrm{h}}\right\| \leq \varepsilon \quad \text { for all } y \in \mathcal{Y}
$$

Our Results: Discrete Version

Theorem (K, Petersen, Raslan, Schneider; 2019):
We assume the following:

- For all $\varepsilon>0$, there exists $d(\varepsilon) \ll D, \mathbf{V} \in \mathbb{R}^{D \times d(\varepsilon)}$, such that for all $y \in \mathcal{Y}$ there exists $\mathbf{B}_{y}^{\mathrm{rb}} \in \mathbb{R}^{d(\varepsilon) \times d(\varepsilon)}$ with

$$
\left\|\mathbf{V}\left(\mathbf{B}_{y}^{\mathrm{rb}}\right)^{-1} V^{\top} \mathbf{f}_{y}^{\mathrm{h}}-\mathbf{u}_{y}^{\mathrm{h}}\right\| \leq \varepsilon .
$$

- There exist ReLU neural networks Φ^{B} and Φ^{f} of size $O\left(\right.$ poly $(p) d(\varepsilon)^{2}$ polylog $\left.(\varepsilon)\right)$ such that, for all $y \in \mathcal{Y}$,

$$
\left\|\Phi^{B}-\mathbf{B}_{y}^{\mathrm{rb}}\right\| \leq \varepsilon \quad \text { and } \quad\left\|\Phi^{f}-V^{T} \mathbf{f}_{y}^{\mathrm{h}}\right\| \leq \varepsilon
$$

Then there exists a ReLU neural network Φ of size $O\left(d(\varepsilon)^{3}\right.$ polylog $(\varepsilon)+$ $D+\operatorname{poly}(p) d(\varepsilon)^{2}$ polylog $\left.(\varepsilon)\right)$ such that

$$
\left\|\Phi-\mathbf{u}_{y}^{\mathrm{h}}\right\| \leq \varepsilon \quad \text { for all } y \in \mathcal{Y}
$$

Extremely fast computation of the parametric map, while beating the curse of dimensionality!

Our Results: Continuous Version

Theorem (K, Petersen, Raslan, Schneider; 2019):
Let $\left(\psi_{i}\right)_{i=1}^{d(\varepsilon)}$ denote the reduced basis. We assume in addition the following:

- There exist ReLU neural networks $\left(\Phi_{i}\right)_{i=1}^{d(\varepsilon)}$ of size $O(\operatorname{polylog}(\varepsilon))$ such that $\left\|\Phi_{i}-\psi_{i}\right\|_{\mathcal{H}} \leq \varepsilon$ for all $i=1, \ldots, d(\varepsilon)$.

Then there exists a ReLU neural network Φ of size $O\left(d(\varepsilon)^{3}\right.$ polylog $(\varepsilon)+$ poly $(p) d(\varepsilon)^{2}$ polylog $\left.(\varepsilon)\right)$ such that

$$
\left\|\Phi-u_{y}\right\|_{\mathcal{H}} \leq \varepsilon \quad \text { for all } y \in \mathcal{Y}
$$

Our Results: Continuous Version

Theorem (K, Petersen, Raslan, Schneider; 2019):
Let $\left(\psi_{i}\right)_{i=1}^{d(\varepsilon)}$ denote the reduced basis. We assume in addition the following:

- There exist ReLU neural networks $\left(\Phi_{i}\right)_{i=1}^{d(\varepsilon)}$ of size $O(\operatorname{polylog}(\varepsilon))$ such that $\left\|\Phi_{i}-\psi_{i}\right\|_{\mathcal{H}} \leq \varepsilon$ for all $i=1, \ldots, d(\varepsilon)$.

Then there exists a ReLU neural network Φ of size $O\left(d(\varepsilon)^{3}\right.$ polylog $(\varepsilon)+$ poly $(p) d(\varepsilon)^{2}$ polylog $\left.(\varepsilon)\right)$ such that

$$
\left\|\Phi-u_{y}\right\|_{\mathcal{H}} \leq \varepsilon \quad \text { for all } y \in \mathcal{Y}
$$

Remark: The hypotheses are fulfilled, for example, by

- Diffusion equations,
- Linear elasticity equations.

Key Idea of the Proof

Main Task: Approximate $\mathbf{V}\left(\mathbf{B}_{y}^{\mathrm{rb}}\right)^{-1} \mathbf{V}^{T} \mathbf{f}_{y}^{\mathrm{h}}$ by a ReLU neural network and control its size!

Key Idea of the Proof

Main Task: Approximate $\mathbf{V}\left(\mathbf{B}_{y}^{\mathrm{rb}}\right)^{-1} \mathbf{V}^{T} \mathbf{f}_{y}^{\mathrm{h}}$ by a ReLU neural network and control its size!

Step 1 (Scalar Multiplication from Yarotsky; 2017):
For $g(x):=\min \{2 x, 2-2 x\}$ and $g_{s}:=g \circ \ldots \circ g(s$ times), we have

$$
x^{2}=\lim _{n \rightarrow \infty} x-\sum_{s=1}^{n} \frac{g_{s}(x)}{2^{2 s}} \quad \text { for all } x \in[0,1]
$$

Key Idea of the Proof

Main Task: Approximate $\mathbf{V}\left(\mathbf{B}_{y}^{\mathrm{rb}}\right)^{-1} \mathbf{V}^{T} \mathbf{f}_{y}^{\mathrm{h}}$ by a ReLU neural network and control its size!

Step 1 (Scalar Multiplication from Yarotsky; 2017):
For $g(x):=\min \{2 x, 2-2 x\}$ and $g_{s}:=g \circ \ldots \circ g(s$ times), we have

$$
x^{2}=\lim _{n \rightarrow \infty} x-\sum_{s=1}^{n} \frac{g_{s}(x)}{2^{2 s}} \quad \text { for all } x \in[0,1]
$$

Also, g can be represented by a neural network due to

$$
g(x)=2 \rho(x)-4 \rho\left(x-\frac{1}{2}\right)+2 \rho(x-2) \quad \text { for all } x \in[0,1] .
$$

Key Idea of the Proof

Main Task: Approximate $\mathbf{V}\left(\mathbf{B}_{y}^{\mathrm{rb}}\right)^{-1} \mathbf{V}^{T} \mathbf{f}_{y}^{\mathrm{h}}$ by a ReLU neural network and control its size!

Step 1 (Scalar Multiplication from Yarotsky; 2017):
For $g(x):=\min \{2 x, 2-2 x\}$ and $g_{s}:=g \circ \ldots \circ g(s$ times), we have

$$
x^{2}=\lim _{n \rightarrow \infty} x-\sum_{s=1}^{n} \frac{g_{s}(x)}{2^{2 s}} \quad \text { for all } x \in[0,1]
$$

Also, g can be represented by a neural network due to

$$
g(x)=2 \rho(x)-4 \rho\left(x-\frac{1}{2}\right)+2 \rho(x-2) \quad \text { for all } x \in[0,1] .
$$

Moreover,

$$
x z=1 / 4\left((x+z)^{2}-(x-z)^{2}\right) \quad \text { for all } x, z \in \mathbb{R}
$$

\Longrightarrow Scalar multiplication on $[-1,1]^{2}$ can be ε-approximated by a neural network of size $\mathcal{O}\left(\log _{2}(1 / \varepsilon)\right)$.

Key Idea of the Proof

Step 2 (Multiplication):
A matrix multiplication of two matrices of size $d \times d$ can be performed by d^{3} scalar multiplications.
\Longrightarrow Matrix multiplication can be ε-approximated by a neural network of size $\mathcal{O}\left(d(\varepsilon)^{3} \log _{2}(1 / \varepsilon)\right)$.

Key Idea of the Proof

Step 2 (Multiplication):
A matrix multiplication of two matrices of size $d \times d$ can be performed by d^{3} scalar multiplications.
\Longrightarrow Matrix multiplication can be ε-approximated by a neural network of size $\mathcal{O}\left(d(\varepsilon)^{3} \log _{2}(1 / \varepsilon)\right)$.

Step 3 (Inversion):

- Neural networks can approximate matrix polynomials.
- Neural networks can the inversion operator $\mathbf{A} \mapsto \mathbf{A}^{-1}$ using

$$
\sum_{s=0}^{m} \mathbf{A}^{s} \longrightarrow\left(\mathbf{I} \mathbf{R}_{\mathbb{R}^{d}}-\mathbf{A}\right)^{-1} \quad \text { as } m \rightarrow \infty
$$

\Longrightarrow Matrix inversion can be ε-approximated by a neural network of size
$\mathcal{O}\left(d(\varepsilon)^{3} \log _{2}^{q}(1 / \varepsilon)\right)$ for a constant $q>0$.

Key Idea of the Proof

Step 4 (Discrete Parametric Map w.r.t Reduced Basis):

- Now use the assumptions on $\mathbf{B}_{y}^{\mathrm{rb}}$ and $\mathbf{f}_{y}^{\mathrm{rb}}$.
\Longrightarrow The map $y \mapsto\left(\mathbf{B}_{y}^{\mathrm{rb}}\right)^{-1} \mathbf{f}_{y}^{\mathrm{rb}}$ can be ε-approximated by a neural network Φ^{rb} of size $\mathcal{O}\left(d(\varepsilon)^{3} \log _{2}^{q}(1 / \varepsilon)+\operatorname{poly}(p) d(\varepsilon)^{2} \log _{2}^{q}(1 / \varepsilon)\right)$.

Key Idea of the Proof

Step 4 (Discrete Parametric Map w.r.t Reduced Basis):

- Now use the assumptions on $\mathbf{B}_{y}^{\mathrm{rb}}$ and $\mathbf{f}_{y}^{\mathrm{rb}}$.
\Longrightarrow The map $y \mapsto\left(\mathbf{B}_{y}^{\mathrm{rb}}\right)^{-1} \mathbf{f}_{y}^{\mathrm{rb}}$ can be ε-approximated by a neural network Φ^{rb} of size $\mathcal{O}\left(d(\varepsilon)^{3} \log _{2}^{q}(1 / \varepsilon)+\operatorname{poly}(p) d(\varepsilon)^{2} \log _{2}^{q}(1 / \varepsilon)\right)$.
For Theorem 1:
- Now use the assumption that every element from the reduced basis can be approximately represented in the high-fidelity basis.
- Consider then $\mathbf{V} \circ \Phi^{\mathrm{rb}}$.
\Longrightarrow The discrete parametric map can be ε-approximated by a neural network of size $\mathcal{O}\left(d(\varepsilon)^{3} \log _{2}^{q}(1 / \varepsilon)+d(\varepsilon) D+\operatorname{poly}(p) d(\varepsilon)^{2} \log _{2}^{q}(1 / \varepsilon)\right)$.

Key Idea of the Proof

Step 4 (Discrete Parametric Map w.r.t Reduced Basis):

- Now use the assumptions on $\mathbf{B}_{y}^{\mathrm{rb}}$ and $\mathbf{f}_{y}^{\mathrm{rb}}$.
\Longrightarrow The map $y \mapsto\left(\mathbf{B}_{y}^{\mathrm{rb}}\right)^{-1} \mathbf{f}_{y}^{\mathrm{rb}}$ can be ε-approximated by a neural network Φ^{rb} of size $\mathcal{O}\left(d(\varepsilon)^{3} \log _{2}^{q}(1 / \varepsilon)+\operatorname{poly}(p) d(\varepsilon)^{2} \log _{2}^{q}(1 / \varepsilon)\right)$.
For Theorem 1:
- Now use the assumption that every element from the reduced basis can be approximately represented in the high-fidelity basis.
- Consider then $\mathbf{V} \circ \Phi^{\mathrm{rb}}$.
\Longrightarrow The discrete parametric map can be ε-approximated by a neural network of size $\mathcal{O}\left(d(\varepsilon)^{3} \log _{2}^{q}(1 / \varepsilon)+d(\varepsilon) D+\operatorname{poly}(p) d(\varepsilon)^{2} \log _{2}^{q}(1 / \varepsilon)\right)$.
For Theorem 2:
- Now use the assumption that neural networks can approximate each element of the reduced basis.
$\Longrightarrow \begin{gathered}\text { The continuous parametric map can be } \varepsilon \text {-approximated by a neural } \\ \text { network of size } \mathcal{O}\left(d(\varepsilon)^{3} \log _{2}^{q}(1 / \varepsilon)+\operatorname{poly}(p) d(\varepsilon)^{2} \log _{2}^{q}(1 / \varepsilon)\right) \text {. }\end{gathered}$

Conclusions

What to take Home...?

Deep Learning:

- Impressive performance in combination with classical model-based methods (Inverse Problems, PDEs, ...) \rightsquigarrow Limited-Angle CT.
- Theoretical foundation of neural networks almost entirely missing: Expressivity, Learning, Generalization, and Explainability.

Expressivity of Deep Neural Networks:

- We derive a fundamental lower bound on the complexity, which each learning algorithm has to obey.
- Neural networks are as powerful approximators as classical affine systems such as wavelets, shearlets, ...

Deep Neural Networks for Parametric PDEs:

- We theoretically show that in this setting neural networks beat the curse of dimensionality by explicably constructing such networks.
- Once the network is trained, the parametric map can be computed extremely fast.

THANK YOU!

References available at:
www.math.tu-berlin.de/~kutyniok
Code available at:
www. ShearLab.org

Related Books:

- Y. Eldar and G. Kutyniok Compressed Sensing: Theory and Applications Cambridge University Press, 2012.
- G. Kutyniok and D. Labate Shearlets: Multiscale Analysis for Multivariate Data Birkhäuser-Springer, 2012.
- P. Grohs and G. Kutyniok

Theory of Deep Learning
Cambridge University Press (in preparation)

