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The 21st Century

Various technological advances in the 21st century are only possible through
integrated mathematical modeling, simulation, and optimization.

Further Examples:

Turbines
 Adjoint based jet-noise minimization

Atomistic molecular dynamics
 Simulations with ultralong timescales

Star formation
 Understanding of turbulent accretion of matter

There is a pressing need to go beyond
pure modeling, simulation, and optimization approaches!
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The Data Science Side: Impact of Deep Learning

Health Care

SurveillanceSelf-Driving Cars

Legal Issues

Very few theoretical results explaining their success!
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Deep Learning = Alchemy?

„Ali Rahimi, a researcher in arti�cial intelligence (AI) at Google in San 

Francisco, California, took a swipe at his �eld last December—and 

received a 40-second ovation for it. Speaking at an AI conference, 

Rahimi charged that machine learning algorithms, in which 

computers learn through trial and error, have become a form 

of „alchemy."  Researchers, he said, do not know why some algo-

rithms work and others don't, nor do they have rigorous criteria 

for choosing one AI architecture over another....“ 

                                                                                                       Science, May 2018
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Impact of Deep Learning on Mathematics

Some Examples:

Inverse Problems
 Image denoising (Burger, Schuler, Harmeling; 2012)
 Superresolution (Klatzer, Soukup, Kobler,

Hammernik, Pock; 2017)
 Limited-angle tomography (Bubba, K, Lassas,

März, Samek, Siltanen, Srinivan; 2018)
 Edge detection (Andrade-Loarca, K, Öktem,

Petersen; 2019)

Numerical Analysis of Partial Differential Equations
 Schrödinger equation (Rupp, Tkatchenko, Müller,

von Lilienfeld; 2012 –)
 Black-Scholes PDEs (Grohs, Hornung,

Jentzen,von Wurstemberger; 2018)
 Parametric PDEs (Schwab, Zech; 2018)
 Parametric PDEs (K, Petersen, Raslan, Schneider; 2019)
Modelling
 Learning equations from data (Sahoo, Lampert, Martius; 2018)
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Data-Driven Versus Model-Based Approaches?

Problems, Viewpoints and Solution Strategies:

Detect structural components in data sets
Deep neural networks, ...

Insert physical information in machine learning algorithm
Machine learning with physical constraints, ...

Learn parameters from given data sets
Parametric differential equations, ...

Study simulation generated data in search of underlying laws
Data analysis on simulation data, ...

Optimal balancing of
data-driven and model-based approaches!
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Mathematics of Deep Neural Networks
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The Mathematics of Deep Neural Networks

Definition:
Assume the following notions:

d ∈ N: Dimension of input layer.

L: Number of layers.

N: Number of neurons.

ρ : R→ R: (Non-linear) function called activation function.

T` : RN`−1 → RN` , ` = 1, . . . , L: Affine linear maps.

Then Φ : Rd → RNL given by

Φ(x) = TLρ(TL−1ρ(. . . ρ(T1(x))), x ∈ Rd ,

is called (deep) neural network (DNN).
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Affine Linear Maps and Weights

Remark: The affine linear map T` is defined by a matrix A` ∈ RN`−1×N`

and an affine part b` ∈ RN` via

T`(x) = A`x + b`.

A1 =

 a1
1 a1

2 0
0 0 a1

3

0 0 a1
4


A2 =

(
a2

1 a2
2 0

0 0 a2
3

)
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a1
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Training of Deep Neural Networks

High-Level Set Up:

Samples (xi , f (xi ))mi=1 of a function
such as f :M→ {1, 2, . . . ,K}.

Select an architecture of a deep neural network,
i.e., a choice of d , L, (N`)

L
`=1, and ρ.

Sometimes selected entries of the matrices (A`)
L
`=1,

i.e., weights, are set to zero at this point.

Learn the affine-linear functions (T`)
L
`=1 = (A` ·+b`)

L
`=1 by

min
(A`,b`)`

m∑
i=1

L(Φ(A`,b`)`(xi ), f (xi )) + λR((A`, b`)`)

yielding the network Φ(A`,b`)` : Rd → RNL ,

Φ(A`,b`)`(x) = TLρ(TL−1ρ(. . . ρ(T1(x))).

This is often done by stochastic gradient descent.

Goal: Φ(A`,b`)` ≈ f
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Fundamental Questions concerning Deep Neural Networks

Expressivity:
I How powerful is the network architecture?
I Can it indeed represent the correct functions?

 Applied Harmonic Analysis, Approximation Theory, ...

Learning:
I Why does the current learning algorithm produce anything reasonable?
I What are good starting values?

 Differential Geometry, Optimal Control, Optimization, ...

Generalization:
I Why do deep neural networks perform that well on data sets, which do

not belong to the input-output pairs from a training set?
I What impact has the depth of the network?

 Learning Theory, Optimization, Statistics, ...

Interpretability:
I Why did a trained deep neural network reach a certain decision?
I Which components of the input do contribute most?

 Information Theory, Uncertainty Quantification, ...
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Inverse Problems in Imaging
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Modern Imaging Science
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Solving Inverse Problems

Tikhonov Regularization:
Given an (ill-posed) inverse problem

Kf = g , where K : X → Y ,

an approximate solution f α ∈ X , α > 0, can be determined by

f α := argminf ∈X

[
‖Kf − g‖2︸ ︷︷ ︸

Data fidelity term

+ α · P(f )︸ ︷︷ ︸
Penalty term

]
.

Penalty Term: The penalty term P
ensures continuous dependence on the data,

incorporates properties of the solution.

Gitta Kutyniok Deep Learning meets Inverse Problems 2019 Woudschoten Conference 12 / 46



The World is Compressible!

Wavelet Transform (JPEG2000):

f 7→ (〈f , ψj ,m〉)j ,m.

Definition: For a wavelet ψ ∈ L2(R2), a wavelet system is defined by

{ψj,m : j ∈ Z,m ∈ Z2}, where ψj,m(x) := 2jψ(2jx −m).
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Sparsity

Paradigm:

For each class of data, there exists a sparsifying system!

Two Viewpoints of ‘Sparsifying System’:
Let C ⊆ H and (ψλ)λ ⊆ H.

Decay of Coefficients. Consider the decay for n→∞ of the sorted
sequence of coefficients

(|〈x , ψλn〉|)n for all x ∈ C.

Approximation Properties. Consider the decay for N →∞ of the error
of best N-term approximation, i.e.,

inf
#ΛN=N,(cλ)λ

∥∥∥x − ∑
λ∈ΛN

cλψλ

∥∥∥ for all x ∈ C.
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How to Penalize Non-Sparsity?

Intuition:

 Use the `1 norm!

Sparse Regularization:
Solve an ill-posed inverse problem Kf = g by

f α := argminf

[
‖Kf − g‖2︸ ︷︷ ︸

Data fidelity term

+ α · ‖(〈f , ψj ,m〉)j ,m‖1︸ ︷︷ ︸
Penalty term

]
.
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Sparsity-Based Approaches to Inverse Problems

Compressed Sensing (Candès, Romberg, Tao and Donoho; 2006) :

Goal: Solve an underdetermined linear problem

y = Ax , A an n × N-matrix with n� N,

for a solution x ∈ RN admitting a sparsifying system (ψλ)λ.

Approach: Recover x by the `1-analysis minimization problem

min
x̃
‖(〈x̃ , ψλ〉)λ‖1 subject to y = Ax̃

Some Earlier Footprints in Inverse Problems:

Donoho (1995): Wavelet-Vaguelette decomposition.

Chambolle, DeVore, Lee, Lucier (1998): Penalty on the Besov norm.

Daubechies, Defries, De Mol (2004): General sparsity constraints.

...
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Shearlets come into Play
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Mathematical Model for Images

Key Observation:

Images are governed by edge-like
structures!

Definition (Donoho; 2001):
Let ν > 0. We then define the class of cartoon-like functions by

E2(R2) = {f ∈ L2(R2) : f = f1 + χB f2},

where B ⊂ [0, 1]2 with ∂B ∈ C 2, and the functions f1 and f2 satisfy
f1, f2 ∈ C 2

0 ([0, 1]2), ‖f1‖C2 , ‖f2‖C2 , ‖∂B‖C2 < ν.
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Key Ideas of the Shearlet Construction

Wavelet versus Shearlet Approximation:

Parabolic scaling (‘width ≈ length2’):

A2j =

(
2j 0

0 2j/2

)
, j ∈ Z.

Orientation via shearing:

Sk =

(
1 k
0 1

)
, k ∈ Z.

Advantage:

Shearing leaves the digital grid Z2 invariant.

Uniform theory for the continuum and digital situation.
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(Cone-adapted) Discrete Shearlet Systems

Definition (K, Labate; 2006):
The (cone-adapted) discrete shearlet system SH(c ;φ, ψ, ψ̃), c > 0,
generated by φ ∈ L2(R2) and ψ, ψ̃ ∈ L2(R2) is the union of

{φ(· − cm) : m ∈ Z2},

{23j/4ψ(SkA2j · −cm) : j ≥ 0, |k| ≤ d2j/2e,m ∈ Z2},

{23j/4ψ̃(S̃k Ã2j · −cm) : j ≥ 0, |k| ≤ d2j/2e,m ∈ Z2}.

Theorem (K, Lim; 2011):

Let φ, ψ, ψ̃ ∈ L2(R2) be compactly supported, and let ψ̂, ˆ̃ψ satisfy certain
decay condition. Then SH(φ, ψ, ψ̃) provides an optimally sparse
approximation of f ∈ E2(R2), i.e.,

‖f − fN‖2 ≤ C · N−1 · (logN)3/2, N →∞.
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Applications

Inpainting:

(Source: K, Lim; 2012)

2D&3D (parallelized) Fast Shearlet Transform (www.ShearLab.org):

Matlab (K, Lim, Reisenhofer; 2013)

Julia (Loarca; 2017)

Python (Look; 2018)

Tensorflow (Loarca; 2019)
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Mathematical Modeling Reaches a Barrier
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Computed Tomography (CT)

Problem with Limited-Angle Tomography:

The data is too complex for mathematical modeling!
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Limited Angle-(Computed) Tomography

A CT scanner samples the Radon transform

Rf (φ, s) =

∫
L(φ,s)

f (x)dS(x),

for L(φ, s) =
{
x ∈ R2 : x1 cos(φ) + x2 sin(φ) = s

}
,

φ ∈ [−π/2, π/2), and s ∈ R.

f (x1, x2)

x1

x2

s

φ

L(φ, s)

(cosφ, sinφ)

Challenging inverse problem if Rf (·, s) is only
sampled on [−φ, φ] ⊂ [−π/2, π/2).

Applications: Dental CT, breast tomosynthesis,
electron tomography,...
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Model-Based Approaches Fail

Sparse Regularization:

argminf

[
‖Rf − g‖2︸ ︷︷ ︸

Data fidelity term

+ α · ‖(〈f , ψj ,k,m〉)j ,k,m‖1︸ ︷︷ ︸
Penalty term

]
.

Clinical Data:

Original Image

Filtered BackprojectionSparse Regularization with Shearlets
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Let’s bring Deep Learning into the Game
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Solving Inverse Problems by Deep Learning

Setup:
Given N training samples (fi , gi )

N
i=1 following the forward model

gi = Kfi + η.

Goal:

Determine a reconstruction operator Tθ such that

g = Kf + η =⇒ Tθ(g) ≈ f .

Tθ is parametrized by θ ∈ Rp and learned from training data.

Evaluation:
Evaluate the quality of Tθ by testing on the test data (fi , gi )

K
i=N+1 following

the forward model.
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Denoising Direct Inversions

Denoising Direct Inversion (Ye et al.; 2016), (Unser et. al.; 2017), ...:

Idea: Direct inversion with filtered backprojection, train CNN to
remove noise.

Illustration:

y fFBP

FBP

frec

NNθ

Inversion & denoising  Simple, ad-hoc approach to inverse problems

Intuition:
I CNN learns structured noise/artifacts.
I Rationale: Without taking FBP, CNN needs to learn physics of CT.

Gitta Kutyniok Deep Learning meets Inverse Problems 2019 Woudschoten Conference 25 / 46



Denoising Direct Inversions - The CNN Architecture

U-Net architecture, originally used for segmentation (Ronneberger et al.;
2015)

Based on fully-convolutional networks (Long et al.; 2014)

Encoder-Decoder CNN with skip-connections

[Unser et al.,2017]
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Other Deep Learning Approaches to Inverse Problems

Tikhonov Regularization:

argminf

[
‖Kf − g‖2 + α · P(f )

]
Plug-and-play with CNN-denoising [Bouman et al.,2013], [Elad et al.,2016], . . .

Iterative solvers such as Douglas-Rachford or ADMM contain a
denoising step.

Replace this step by a trained CNN.

Learned Iterative Schemes [Pock et. al.,2017], [Adler et al.,2017], . . .

Iterative solvers such as ADMM or Primal-Dual contain a proximal
step.

Replace this step by parametrized operators (not necessarily prox),
where the parameters are learned.
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Compressed Sensing using Generative Models

Generative Models:

Examples are variational auto-encoder or generative adversarial networks
(GANs)

General: Neural networks

Rk 3 z 7→ G (z) ∈ Rn,

where k � n and G is trained to produce elements similar to training data.

Task:

Let A ∈ Rm×n Gaussian matrix, measurements y = Ax0 + η be given.

Solve z0 ∈ argminz∈Rk‖AG (z)− y‖2
2 (non-convex) to within additive ε of

optimum.

Theorem (Bora et al.; 2017): G generative model from d-layer ReLU neural
network and m ∈ O(kd log(n)). Then with overwhelming probability

‖G (z0)− x0‖2 ≤ 6 min
z∈Rk
‖G (z)− x0‖2 + 3‖η‖2 + 2ε.
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The “Best” Deep Learning Approach to Limited-Angle CT

Image source: [Gu & Ye, 2017]:
Image source: [Gu & Ye, 2017]:

Missing theory, unclear what the neural network really does:

I Entire image is processed!
I Which features are modified?
I Lack of a clear interpretation!

The neural network needs to learn a lot of streaking artifacts (+noise)
[J. Gu and J. C. Ye. Multi-scale wavelet domain residual learning for limited-angle CT reconstruction. In: Procs Fully3D
(2017), pp. 443447.]
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A True Hybrid Approach
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Zooming in on the Recovery Problem

φ = 15◦, filtered backprojection (FBP)

φ = 30◦, filtered backprojection (FBP)φ = 45◦, filtered backprojection (FBP)φ = 60◦, filtered backprojection (FBP)φ = 75◦, filtered backprojection (FBP)φ = 90◦, filtered backprojection (FBP)

Some Observations:

Only certain boundaries/features seem to be “visible”!

Missing wedge creates artifacts!

Highly ill-posed inverse problem!
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Fundamental Understanding of the Problem

This Phenomenon is well understood and mathematically analyzed via the concept
of microlocal analysis, in particular, wavefront sets.

x1

x2

f = ID for a set D ⊆ R2 with
smooth boundary

x1

x2

φ

Visualization in phase space
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Visibility in CT

Theorem ([Quinto, 1993]): Let L0 = L(φ0, s0) be a
line in the plane. Let (x0, ξ0) ∈ WF(f ) such that
x0 ∈ L0 and ξ0 is a normal vector to L0.

The singularity of f at (x0, ξ0) causes a
unique singularity in W (R f ) at (φ0, s0).

Singularities of f not tangent to L(φ0, s0) do
not cause singularities in R f at (φ0, s0).

f (x1, x2)

x1

x2

s

φ

L(φ, s)

(cosφ, sinφ)

“visible”: singularities tangent “invisible”: singularities not tangent
to sampled lines to sampled lines
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Shearlets can Help

Key Idea: Filling the missing angle is an
inpainting problem of the wavefront set!

Theorem (K, Labate, 2006): “Shearlets can identify the wavefront set at fine
scales.”

More Precisely:

Continuous Shearlet Transform:

L2(R2) 3 f 7→ SHψf (a, s, t) = 〈f , ψa,s,t〉, (a, s, t) ∈ R+ × R× R2.

Resolution of Wavefront Sets (simplified from [K & Labate, 2006], [Grohs, 2011])

WF(f )c =
{

(t0, s0) ∈ R2 × [−1, 1] : for (t, s) in neighborhood U of (t0, s0):

|SHψf (a, s, t)| = O(ak) as a −→ 0, ∀k ∈ N, unif. over U
}
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Shearlets can Separate the Visible and Invisible Part

ξ1

ξ2

Wφ

Invisible

Semi-visible

Visible

Visible Wedge
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The High-level Idea

Avenue of Research

Shearlets are proven to resolve the wavefront set.

Use them in sparse/limited angle tomography for filling in missing parts of the
wavefront set.

Practical Questions:

How can we access the visible parts with shearlets?
 Sparse Regularization!

How can we inpaint the missing parts?
 Deep Learning!
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Our Approach “Learn the Invisible (LtI)”
(Bubba, K, Lassas, März, Samek, Siltanen, Srinivan; 2018)

Step 1: Reconstruct the visible

f ∗ := argminf≥0‖Rφ f − g‖2
2 + ‖ SHψ(f )‖1,w

Best available classical solution (little artifacts, denoised)

Access “wavefront set” via sparsity prior on shearlets:

I For (j , k, l) ∈ Iinv: SHψ(f ∗)(j,k,l) ≈ 0
I For (j , k, l) ∈ Ivis: SHψ(f ∗)(j,k,l) reliable and near perfect

Step 2: Learn the invisible

NN θ : SHψ(f ∗)Ivis F

(
!
≈ SHψ(fgt)Iinv

)
Step 3: Combine

fLtI = SHT
ψ (SHψ(f ∗)Ivis + F )
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Numerical Simulation

Verify the concept of (in-)visibility

with the help of an oracle:

fgt

FBP`1-analysis shearlet solution f ∗SHT
ψ

(
SHψ(f ∗)Ivis + SHψ(fgt)Iinv

)
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Our Approach – Step 2: PhantomNet

U-Net-like CNN architecture NN θ (40 layers) that is trained by minimizing:

min
θ

1

N

N∑
j=1

‖NN θ(SH(f ∗j ))− SH(f gtj )Iinv‖2
w ,2.
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Learning the Invisible

Model Based & Data Driven: Only learn what needs to be learned!

Advantages over Pure Data Based Approach:

Interpretation of what the CNN does ( 3D inpainting)

Reliability by learning only what is not visible in the data

Better performance due to better input

The neural network does not process entire image, leading to...

I ...less blurring by U-net
I ...fewer unwanted artifacts

Better generalization

Disadvantage:

Speed: dominated by `1-minimization
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Setup

Experimental Scenarios:

Mayo Clinic1: human abdomen scans provided by the Mayo Clinic for the
AAPM Low-Dose CT Grand Challenge.

I 10 patients (2378 slices of size 512× 512 with thickness 3mm)
I 9 patients for training (2134 slices) and 1 patient for testing (244 slices)
I simulated noisy fanbeam measurements for 60◦ missing wedge

Lotus Root: real data measured with the µCT in Helsinki

I generalization test of our method (training is on Mayo data!)
I 30◦ missing wedge

. . .

1We would like to thank Dr. Cynthia McCollough, the Mayo Clinic, the American Association of Physicists in Medicine
(AAPM), and grant EB01705 and EB01785 from the National Institute of Biomedical Imaging and Bioengineering for
providing the Low-Dose CT Grand Challenge data set.
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Evaluation on Test Patient

fgt

fFBP: RE = 0.50, HaarPSI=0.35fTV: RE = 0.21, HaarPSI=0.41f ∗: RE = 0.19, HaarPSI=0.43f[Gu & Ye, 2017]: RE = 0.22, HaarPSI=0.40fLtI: RE = 0.09, HaarPSI=0.76
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Average over Test Patient

Method RE PSNR SSIM HaarPSI
fFBP 0.47 17.16 0.40 0.32
fTV 0.18 25.88 0.85 0.37
f ∗ 0.17 26.34 0.85 0.40

f[Gu & Ye, 2017] 0.25 23.06 0.61 0.34
NN θ(fFBP) 0.15 27.40 0.78 0.52

NN θ(SH(fFBP)) 0.16 26.80 0.74 0.52
fLtI 0.08 32.77 0.93 0.73

HaarPSI (Reisenhofer, Bosse, K, and Wiegand; 2018)

Advantages over (MS-)SSIM, FSIM, PSNR, GSM, VIF, etc.:

Achieves higher correlations with human opinion scores.

Can be computed very efficiently and significantly faster.

www.haarpsi.org
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Generalization to Lotus Root

fgt

fFBP: RE = 0.31, HaarPSI=0.61fTV: RE = 0.12, HaarPSI=0.74f ∗: RE = 0.11, HaarPSI=0.75f[Gu & Ye, 2017]: RE = 0.25, HaarPSI=0.62fLtI: RE = 0.11, HaarPSI=0.83
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Conclusions
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What to take Home...?

Model-Based Side:

Inverse problems can be solved by sparse regularization.

Shearlets are optimal for imaging science problems.

Methods based on mathematical models today often reach a barrier.

Deep Learning:

Impressive performance in combination with classical
mathematical methods (Inverse Problems, PDEs, ...).

Theoretical foundation of neural networks almost entirely missing:
Expressivity, Learning, Generalization, and Interpretability.

Combining Both Sides (Limited-Angle Tomography):

Access and reconstruct the visible part using shearlets.

Learn only the invisible parts with a deep neural network.

 Learning the Invisible (LtI)!
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Technische Universität Berlin
Applied Functional Analysis Group  

THANK YOU!

References available at:
www.math.tu-berlin.de/∼kutyniok

Code available at:
www.ShearLab.org

Related Books:
Y. Eldar and G. Kutyniok
Compressed Sensing: Theory and Applications
Cambridge University Press, 2012.

G. Kutyniok and D. Labate
Shearlets: Multiscale Analysis for Multivariate Data
Birkhäuser-Springer, 2012.

P. Grohs and G. Kutyniok
Theory of Deep Learning
Cambridge University Press (in preparation)
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