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W About me

Performed PhD research at CWI (2016)

= Supervised by prof. dr. K. J. Batenburg
= Topic: efficient tomographic reconstruction algorithms

After PhD spent a year as post-doc at Berkeley Lab
= Supervised by prof. J. A. Sethian
= Focus on developing machine learning algorithms

Currently post-doc at Computational Imaging group

Recently awarded NWO VENI grant (2018)

= Title: Machine learning for large 3D tomographic images



W Computatlonal Imagmg Group
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= Growing group of researchers focused on imaging

= Broad range of topics and expertises
= https://www.cwi.nl/research/groups/computational-imaging



W Overview

Recent developments in ML for scientific images

= Brief introduction to machine learning for images

= Problems with popular existing approaches

= Recently proposed new approach for scientific images
= Results for various scientific problems

= Conclusions and outlook



W Neural networks

= Model some unknown function f : R — R using
a nonlinear network g, with parameters ¢ ¢ RVo
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= f and ¢ are unknown



w Training networks

= Training: find¢ such that gq‘;(x) ~ f(x)

= Supervised learning: pairs of (X, f(X)) are known
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= Partial derivatives are easy and fast to compute
= Backpropagate error function derivative using chain rule



W Machine learning for images

= Rapid increase in popularity after 2012
= Even though math is much older!

= 2018 Turing award for Bengio, Hinton, and LeCun
= Used daily by companies (Google, Facebook, etc)

= Typically, use Convolutional Neural Networks (CNN)

E—> CNN | —> cat!




W Convolutional neural networks

Learn mapping from input image x to output image y
Each layer convolves images of previous layer
Often small filters (e.g. 3x3), but many layers/images

Learn filters by presenting input/target pairs
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W Encoder-decoder networks

= Deep networks have many layers

= Typically, use downscaling and upscaling to capture
features at different scales

= First encoder, then decoder



Applications of CNNs

Phtograph ' Monet 7 an Gogh

Sources from GitHub: junyanz/CycleGAN, phillipi/pix2pix, pathak22/context-encoder



W Potential for scientific images

= ML has proven successful for photographic images

= Has large potential for scientific images
= For example, ML could improve image quality, enable
automatic segmentation, perform analysis, ...

How can machine learning be applied in science?



Obvious approach




Obvious approach




E Problem 1: practical

= Complicated networks
= How to choose which operations to
use and how to combine them?

= Implementing the networks
requires expert knowledge

= What works in one problem often

does not work well for others
= Changes are needed that require
expert knowledge as well
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Problem 2: mathematical

= Networks require many parameters to achieve
accurate results (e.g. millions)

= Problem: networks prone to overfitting training set
= Large networks are often pre-trained with a huge training
set (e.g. ImageNet >10 million images)

= |n scientific problems, training data is often limited

(e.g. only a few images)
= Training large networks with limited data is difficult



E Problem 3: computational

= Networks require many layers and intermediate
images to achieve accurate results
= Applying to large images requires prohibitively large
computational costs
= GPU memory, computation time

= Networks often tested on small images (e.g. 28x28 up

to 256x256)
= Typical synchrotron CT image is 2560x2560
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New approaches specific to
scientific images are needed!



W Enc-Dec inefficiencies

= Scaling operations impose structure
= Detected features have to be copied to deeper layers
= Decoder cannot be used to improve encoder

= Better: remove scaling, reuse features, mix decoder
and encoder



W Solution 1: remove scaling

= Use dilated convolutions instead of scaling to capture
features at larger scales

(a) (b)

Yu, Fisher, and Vladlen Koltun. "Multi-scale context aggregation by dilated convolutions." arXiv
preprint arXiv:1511.07122 (2015).



W Solution 1: remove scaling




W Solution 2: dense connections

= No scaling: all intermediate images are same size
= Why limit input to previous layer only?

= |n fact, can use all previous images as input!
= [ncluding input images

= To compute output, can use all intermediate images
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W Solution 2: dense connections

= No scaling: all intermediate images are same size
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W Solution 3: mix scales

= Use small and large dilations throughout the network

= Result: encoder and decoder are effectively mixed

1 2 4 8 4 2 1




W Mixed-scale dense network

= Dilated convolutions instead of scaling
= Each layer is a single image
= All previous images (including input) are used
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(Pelt & Sethian, PNAS 2018)
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Advantages

Maximum reuse of features
= Detected feature is directly usable in deeper layers

Fewer intermediate images are needed
= Larger images can be efficiently processed

Fewer parameters are required
= Accurate training with few training examples

Network can learn how to combine different dilations
= Same network can be applied to different problems



512x512 pixels
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Results - simulations
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Global accuracy
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Results - road scene segmentation

Method Pars (M) GA CA
MS-D-Net (100 layers) 0.048 85.1 56.8
MS-D-Net (200 layers) 0.187 87.0 63.9
U-Net (3 scaling operations) (5) 1.863 83.2 50.4
U-Net (4 scaling operations) (5) 1.926 85.5 48.4
SegNet-Basic-EncoderAddition (4) 1.425 84.2 56.5
SegNet-Basic (4) 1.425 84.0 54.6
Boosting + Detectors + CRF (31) 83.8 62.5
Super Parsing (32) 83.3 51.2
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W Computational requirements

= All layers are computed in the same way

= No additional layers/operations (e.g. batchnorm, dropout)
= |mplementation is relatively easy
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W Tomography

Goal: Recover 3D interior from 2D X-ray images
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Tomographic reconstruction

Unknown object x is scanned
by penetrating waves
Projections p are measured
Using p, we aim to
reconstruct x

Acquisition is modeled by
system matrix W

WXx=p

Problems: system is ill-posed,
underdetermined, and huge
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Tomographic reconstruction

= Direct algorithms
= FBP, FDK, ...
= Analytical inversion

= |terative algorithms
= SIRT, ART, CGLS, ...
= Solve linear system

Phantom — Direct
= Regularized methods

lterative Regularized = Add regularization term




Problem statement

HQ image



Problem statement
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Analysis
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Experiments

Foam-like simulated objects

Generate three 3D objects (10243 voxels):
= 1 for training, 1 for validation, 1 for testing

Use high-quality rec as target for training
Use low-quality rec as network input



Projections & angular range
FBP MS-D Net  TV-Min
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(Pelt et al, J. Imaging 2019)
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Real-world data

ridrec (1500 projs) Gridrec (150 projs)

i
NP

Beal Y

= Fatigue-corrosion data (2160x2560x2560 voxels)
= Use first and last scans as training data

= Shown is an intermediate scan
Pelt et al, J. Imaging 2019)



Real-world data

ridrec (1500 projs) Gridrec (150 projs) MS-D Net (150 projs)

= Fatigue-corrosion data (2160x2560x2560 voxels)
= Use first and last scans as training data
= Shown is an intermediate scan

Pelt et al, J. Imaging 2019)
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w Analysis - cell labeling

b

= Goal: detect cell structures
= Nuclear envelope, mitochondria, ...

= Use eight manually labeled 5123 volumes

= 6 for training, 1 for validation, 1 for testing
(Pelt & Sethian, PNAS 2019)



W Analysis - dental CT

CBCT scan Gold Snake MS-D
standard evolution network

Typical =

Patient 6
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(Minnema et al, Med. Phys. 2019)



Single-object ML

(1) Normal scan (3) Low-res rec (4) ROl crop | (6) Train network

(2) Zoomed ROl scan | (5) High-res ROI rec (7) Apply to low-res rec

(Hendriksen et al. 2019)



W Single-object ML

Full low-res ROI high-res

(Hendriksen et al. 2019)



W Single-object ML

Full low-res ROl high-res

(Hendriksen et al. 2019)



Single-object ML

Low-resolution High-resolution Method A
reconstruction reconstruction 9 slices

Low-res:
High-res:

(Hendriksen et al. 2019)



W Conclusions

= Deep learning has large potential for scientific images
= Popular existing approaches have several problems

= Mixed-Scale Dense network for large scientific images
= Good results for various imaging problems

= Many interesting and exciting challenges remain!
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Thank you for your attention!

d.m.pelt@cwi.nl
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Training example

= Training with 100 similar images


https://docs.google.com/file/d/1F9CI7aeufrPV2z7NQYj3t52zZEkMV4Km/preview

W Deep learning for tomography

= Learn parts of existing algorithms (pelt & Batenburg 2013)
= Learned primal-dual algorithms (adler & oktem 2018)

= Use CNN as a post-processing operation (Jin etal 2017)

Data —Pp{ CT Recon

v

ML —p Output




State-of-the-art: Learned primal-dual

(a) 512 x 512 pixel human phantom (b) Filtered back-projection (FBP) (¢) Total variation (TV)
PSNR 33.65 dB, SSIM 0.830, 423 ms PSNR 37.48 dB, SSIM 0.946, 64371 ms

(Adler & Oktem 2018)

(d) FBP + U-Net denoising (e) Primal-Dual, linear (f) Primal-Dual, non-linear
PSNR 41.92 dB, SSIM 0.941, 463 ms PSNR 44.10 dB, SSIM 0.969, 620 ms PSNR 43.91 dB, SSIM 0.969, 670 ms



E State-of-the-art: FBPConvNet

FBP FBPConvNet
Ground truth SNR 5.514 SNR 8 381 SNR 11.44

(Jin et al 2017)




State-of-the-art: FBPConvNet

Skip connection
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(Jin et al 2017)



Results - sSTEM segmentation

= 512x512 pixels, only 30 images for training

Arganda-Carreras, Ignacio, et al. "Crowdsourcing the creation of image segmentation algorithms
for connectomics." Frontiers in neuroanatomy 9 (2015): 142.



Results - low-dose tomogra

= 2560x2560 tomography images of fiber composite
= Left: 1024 projections, middle/right: 128 projections

= 500 slices for training, 100 for validation, from top
= Result for slice from bottom



Parameters

Intermediate images

Max. theoretical size

Advantages

FBPConvNet MS-D Net
~ 31 million ~ 46 thousand
822 100
~1024x1024 ~ 4096x4096



Advantages

FBPConvNet MS-D Net
Parameters ~ 31 million ~ 46 thousand
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