

Machine learning for large scientific images

D.M. Pelt

Computational Imaging Group, CWI

2019 Woudschoten Conference

- Performed PhD research at CWI (2016)
 - Supervised by prof. dr. K. J. Batenburg
 - Topic: efficient tomographic reconstruction algorithms
- After PhD spent a year as post-doc at Berkeley Lab
 - Supervised by prof. J. A. Sethian
 - Focus on developing machine learning algorithms
- Currently post-doc at Computational Imaging group
- Recently awarded NWO VENI grant (2018)
 - Title: Machine learning for large 3D tomographic images

CWI Computational Imaging Group

Growing group of researchers focused on imaging

- Broad range of topics and expertises
- https://www.cwi.nl/research/groups/computational-imaging

Recent developments in ML for scientific images

- Brief introduction to machine learning for images
- Problems with popular existing approaches
- Recently proposed new approach for scientific images
- Results for various scientific problems
- Conclusions and outlook

Neural networks

- Model some unknown function $f: \mathbb{R}^m \to \mathbb{R}^n$ using a nonlinear network g_{ϕ} with parameters $\phi \in \mathbb{R}^{N_{\phi}}$

• f and ϕ are unknown

Training networks

- Training: find ϕ such that $g_{\phi}(\mathbf{x}) \approx f(\mathbf{x})$
- Supervised learning: pairs of (x, f(x)) are known

- Partial derivatives are easy and fast to compute
 - Backpropagate error function derivative using chain rule

Machine learning for images

- Rapid increase in popularity after 2012
 - Even though math is much older!
- 2018 Turing award for Bengio, Hinton, and LeCun
- Used daily by companies (Google, Facebook, etc)
- Typically, use Convolutional Neural Networks (CNN)

- Learn mapping from input image x to output image y
- Each layer convolves images of previous layer
- Often small filters (e.g. 3x3), but many layers/images
- Learn filters by presenting input/target pairs

- Deep networks have many layers
- Typically, use downscaling and upscaling to capture features at different scales
- First encoder, then decoder

Applications of CNNs

Sources from GitHub: junyanz/CycleGAN, phillipi/pix2pix, pathak22/context-encoder

Potential for scientific images

- ML has proven successful for photographic images
- Has large potential for scientific images
 - For example, ML could improve image quality, enable automatic segmentation, perform analysis, ...

How can machine learning be applied in science?

Obvious approach

Obvious approach

Problem 1: practical

- Complicated networks
 - How to choose which operations to use and how to combine them?
- Implementing the networks requires expert knowledge
- What works in one problem often does not work well for others
 - Changes are needed that require expert knowledge as well

Problem 2: mathematical

- Networks require many parameters to achieve accurate results (e.g. millions)
- Problem: networks prone to overfitting training set
 - Large networks are often pre-trained with a huge training set (e.g. ImageNet >10 million images)
- In scientific problems, training data is often limited (e.g. only a few images)
 - Training large networks with limited data is difficult

- Networks require many layers and intermediate images to achieve accurate results
- Applying to large images requires prohibitively large computational costs
 - GPU memory, computation time
- Networks often tested on small images (e.g. 28x28 up to 256x256)
 - Typical synchrotron CT image is 2560x2560

New approaches specific to scientific images are needed!

- Scaling operations impose structure
- Detected features have to be copied to deeper layers
- Decoder cannot be used to improve encoder

 Better: remove scaling, reuse features, mix decoder and encoder

Solution 1: remove scaling

 Use dilated convolutions instead of scaling to capture features at larger scales

Yu, Fisher, and Vladlen Koltun. "Multi-scale context aggregation by dilated convolutions." arXiv preprint arXiv:1511.07122 (2015).

Solution 2: dense connections

- No scaling: all intermediate images are same size
- Why limit input to previous layer only?
- In fact, can use all previous images as input!
 - Including input images
- To compute output, can use all intermediate images

Solution 2: dense connections

- No scaling: all intermediate images are same size
- Why limit input to previous layer only?
- In fact, can use all previous images as input!
 - Including input images
- To compute output, can use all intermediate images

Solution 3: mix scales

- Use small and large dilations throughout the network
- Result: encoder and decoder are effectively mixed

Mixed-scale dense network

- Dilated convolutions instead of scaling
- Each layer is a single image
- All previous images (including input) are used

(Pelt & Sethian, PNAS 2018)

Advantages

- Maximum reuse of features
 - Detected feature is directly usable in deeper layers
- Fewer intermediate images are needed
 - Larger images can be efficiently processed
- Fewer parameters are required
 - Accurate training with few training examples
- Network can learn how to combine different dilations
 - Same network can be applied to different problems

Results - simulations

- 512x512 pixels
- 36 combinations
 - shape, size, texture
- Detect 6 combinations

Results - road scene segmentation

Method	Pars (M)	GA	CA
MS-D-Net (100 layers)	0.048	85.1	56.8
MS-D-Net (200 layers)	0.187	87.0	63.9
U-Net (3 scaling operations) (5)	1.863	83.2	50.4
U-Net (4 scaling operations) (5)	1.926	85.5	48.4
SegNet-Basic-EncoderAddition (4)	1.425	84.2	56.5
SegNet-Basic (4)	1.425	84.0	54.6
Boosting + Detectors + CRF (31)		83.8	62.5
Super Parsing (32)		83.3	51.2

CWI

Computational requirements

- All layers are computed in the same way
 - No additional layers/operations (e.g. batchnorm, dropout)
 - Implementation is relatively easy

Tomography

Goal: Recover 3D interior from 2D X-ray images

Tomographic reconstruction

CWI

- Unknown object x is scanned by penetrating waves
- Projections p are measured
- Using p, we aim to reconstruct x
- Acquisition is modeled by system matrix W

$$W x = p$$

 Problems: system is ill-posed, underdetermined, and huge

CWI Tomographic reconstruction

- Direct algorithms
 - FBP, FDK, ...
 - Analytical inversion
 - Iterative algorithms
 - SIRT, ART, CGLS, ...
 - Solve linear system
- Regularized methods
 - TV-min, wavelets, …
 - Add regularization term

HQ data

HQ image

Analysis

Experiments

- Foam-like simulated objects
- Generate three 3D objects (1024³ voxels):
 - 1 for training, 1 for validation, 1 for testing
- Use high-quality rec as target for training
- Use low-quality rec as network input

Projections & angular rangeFBPMS-D NetTV-Min

CWI

Noise

FBP

MS-D Net

TV-Min

Real-world data

- Fatigue-corrosion data (2160x2560x2560 voxels)
- Use first and last scans as training data
- Shown is an intermediate scan

Real-world data

- Fatigue-corrosion data (2160x2560x2560 voxels)
- Use first and last scans as training data
- Shown is an intermediate scan

Analysis - cell labeling

Goal: detect cell structures

CWI

- Nuclear envelope, mitochondria, …
- Use eight manually labeled 512³ volumes
 - 6 for training, 1 for validation, 1 for testing

(Pelt & Sethian, PNAS 2019)

(Minnema et al, Med. Phys. 2019)

(1) Normal scan	(3) Low-res rec (4) ROI crop	(6) Train network
(2) Zoomed ROI scan	(5) High-res ROI rec	(7) Apply to low-res rec

Full low-resROI high-res100 μm25 μm

Full low-resROI high-res100 μm25 μm

Low-res: 68.26 μm High-res: 17.07 μm

Conclusions

- Deep learning has large potential for scientific images
- Popular existing approaches have several problems
- Mixed-Scale Dense network for large scientific images
- Good results for various imaging problems
- Many interesting and exciting challenges remain!

Thank you for your attention!

d.m.pelt@cwi.nl

Pelt, Daniël M., and James A. Sethian. "A mixed-scale dense convolutional neural network for image analysis." Proceedings of the National Academy of Sciences 115.2 (2018): 254-259.

Pelt, Daniël M., Kees J. Batenburg, and James A. Sethian. "Improving tomographic reconstruction from limited data using mixed-scale dense convolutional neural networks." Journal of Imaging 4.11 (2018): 128.

Hendriksen, Allard A., et al. "On-the-Fly Machine Learning for Improving Image Resolution in Tomography." Applied Sciences 9.12 (2019): 2445.

Minnema, Jordi, et al. "Segmentation of dental cone-beam CT scans affected by metal artifacts using a mixed-scale dense convolutional neural network." Medical physics (2019).

Training example

Χ

 g_{ϕ}

 $f(\mathbf{x})$

Training with 100 similar images

Deep learning for tomography

- Learn parts of existing algorithms (Pelt & Batenburg 2013)
- Learned primal-dual algorithms (Adler & Oktem 2018)
- Use CNN as a post-processing operation (Jin et al 2017)

CWI State-of-the-art: Learned primal-dual

(a) 512×512 pixel human phantom

(b) Filtered back-projection (FBP) PSNR 33.65 dB, SSIM 0.830, 423 ms

(c) Total variation (TV) PSNR 37.48 dB, SSIM 0.946, 64371 ms

(d) FBP + U-Net denoising PSNR 41.92 dB, SSIM 0.941, 463 ms

(e) Primal-Dual, linear PSNR 44.10 dB, SSIM 0.969, 620 ms

(f) Primal-Dual, non-linear PSNR 43.91 dB, SSIM 0.969, 670 ms

(Jin et al 2017)

(Jin et al 2017)

Results - ssTEM segmentation

512x512 pixels, only 30 images for training

Arganda-Carreras, Ignacio, et al. "Crowdsourcing the creation of image segmentation algorithms for connectomics." Frontiers in neuroanatomy 9 (2015): 142.

- 2560x2560 tomography images of fiber composite
 - Left: 1024 projections, middle/right: 128 projections
- 500 slices for training, 100 for validation, from top
 - Result for slice from bottom

Advantages

	FBPConvNet	MS-D Net
Parameters	~ 31 million	~ 46 thousand
Intermediate images	822	100
Max. theoretical size	~ 1024x1024	~ 4096x4096

Advantages

