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▪ Performed PhD research at CWI (2016)
▪ Supervised by prof. dr. K. J. Batenburg
▪ Topic: efficient tomographic reconstruction algorithms

▪ After PhD spent a year as post-doc at Berkeley Lab
▪ Supervised by prof. J. A. Sethian
▪ Focus on developing machine learning algorithms

▪ Currently post-doc at Computational Imaging group

▪ Recently awarded NWO VENI grant (2018)
▪ Title: Machine learning for large 3D tomographic images

About me



Computational Imaging Group

▪ Growing group of researchers focused on imaging
▪ Broad range of topics and expertises
▪ https://www.cwi.nl/research/groups/computational-imaging



Recent developments in ML for scientific images

▪ Brief introduction to machine learning for images

▪ Problems with popular existing approaches

▪ Recently proposed new approach for scientific images

▪ Results for various scientific problems

▪ Conclusions and outlook

Overview



▪ Model some unknown function                              using 
a nonlinear network        with parameters  

▪    and     are unknown

Neural networks



▪ Training: find     such that                             

▪ Supervised learning: pairs of                     are known

▪ Partial derivatives are easy and fast to compute
▪ Backpropagate error function derivative using chain rule

Training networks



▪ Rapid increase in popularity after 2012
▪ Even though math is much older!

▪ 2018 Turing award for Bengio, Hinton, and LeCun

▪ Used daily by companies (Google, Facebook, etc)

▪ Typically, use Convolutional Neural Networks (CNN)

Machine learning for images



▪ Learn mapping from input image x to output image y

▪ Each layer convolves images of previous layer

▪ Often small filters (e.g. 3x3), but many layers/images

▪ Learn filters by presenting input/target pairs

Convolutional neural networks



▪ Deep networks have many layers

▪ Typically, use downscaling and upscaling to capture 
features at different scales

▪ First encoder, then decoder

Encoder-decoder networks



Applications of CNNs

Sources from GitHub: junyanz/CycleGAN,  phillipi/pix2pix, pathak22/context-encoder



▪ ML has proven successful for photographic images

▪ Has large potential for scientific images
▪ For example, ML could improve image quality, enable 

automatic segmentation, perform analysis, …

How can machine learning be applied in science?

Potential for scientific images



Obvious approach

?



Obvious approach



Problem 1: practical

▪ Complicated networks
▪ How to choose which operations to 

use and how to combine them?

▪ Implementing the networks 
requires expert knowledge

▪ What works in one problem often 
does not work well for others
▪ Changes are needed that require 

expert knowledge as well



Problem 2: mathematical

▪ Networks require many parameters to achieve 
accurate results (e.g. millions)

▪ Problem: networks prone to overfitting training set
▪ Large networks are often pre-trained with a huge training 

set (e.g. ImageNet >10 million images)

▪ In scientific problems, training data is often limited 
(e.g. only a few images)
▪ Training large networks with limited data is difficult



Problem 3: computational

▪ Networks require many layers and intermediate 
images to achieve accurate results

▪ Applying to large images requires prohibitively large 
computational costs
▪ GPU memory, computation time

▪ Networks often tested on small images (e.g. 28x28 up 
to 256x256)
▪ Typical synchrotron CT image is 2560x2560



New approaches specific to 
scientific images are needed!



▪ Scaling operations impose structure
▪ Detected features have to be copied to deeper layers
▪ Decoder cannot be used to improve encoder

▪ Better: remove scaling, reuse features, mix decoder 
and encoder

Enc-Dec inefficiencies



Solution 1: remove scaling

▪ Use dilated convolutions instead of scaling to capture 
features at larger scales

Yu, Fisher, and Vladlen Koltun. "Multi-scale context aggregation by dilated convolutions." arXiv 
preprint arXiv:1511.07122 (2015).



Solution 1: remove scaling



▪ No scaling: all intermediate images are same size

▪ Why limit input to previous layer only?

▪ In fact, can use all previous images as input!
▪ Including input images

▪ To compute output, can use all intermediate images

Solution 2: dense connections



▪ No scaling: all intermediate images are same size

▪ Why limit input to previous layer only?

▪ In fact, can use all previous images as input!
▪ Including input images
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Solution 2: dense connections



▪ Use small and large dilations throughout the network

▪ Result: encoder and decoder are effectively mixed

Solution 3: mix scales



Mixed-scale dense network

▪ Dilated convolutions instead of scaling
▪ Each layer is a single image
▪ All previous images (including input) are used

(Pelt & Sethian, PNAS 2018)



Advantages

▪ Maximum reuse of features
▪ Detected feature is directly usable in deeper layers

▪ Fewer intermediate images are needed
▪ Larger images can be efficiently processed

▪ Fewer parameters are required
▪ Accurate training with few training examples

▪ Network can learn how to combine different dilations 
▪ Same network can be applied to different problems



Results - simulations

▪ 512x512 pixels

▪ 36 combinations
▪ shape, size, 

texture

▪ Detect 6 
combinations



Results - road scene segmentation



Computational requirements

▪ All layers are computed in the same way
▪ No additional layers/operations (e.g. batchnorm, dropout)
▪ Implementation is relatively easy



Tomography

Goal: Recover 3D interior from 2D X-ray images



Tomographic reconstruction

▪ Unknown object x is scanned 
by penetrating waves

▪ Projections p are measured
▪ Using p, we aim to 

reconstruct x
▪ Acquisition is modeled by 

system matrix W

W x = p

▪ Problems: system is ill-posed, 
underdetermined, and huge



Tomographic reconstruction

▪ Direct algorithms
▪ FBP, FDK, ...
▪ Analytical inversion

▪ Iterative algorithms
▪ SIRT, ART, CGLS, ...
▪ Solve linear system

▪ Regularized methods
▪ TV-min, wavelets, …
▪ Add regularization term



Problem statement



Problem statement



Problem statement



Problem statement



Problem statement



Experiments

▪ Foam-like simulated objects
▪ Generate three 3D objects (10243 voxels): 

▪ 1 for training, 1 for validation, 1 for testing

▪ Use high-quality rec as target for training
▪ Use low-quality rec as network input



Projections & angular range

(Pelt et al, J. Imaging 2019)



Noise

(Pelt et al, J. Imaging 2019)



(Pelt et al, J. Imaging 2019)

Real-world data

▪ Fatigue-corrosion data (2160x2560x2560 voxels)
▪ Use first and last scans as training data
▪ Shown is an intermediate scan
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Real-world data
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Problem statement



Analysis - cell labeling

▪ Goal: detect cell structures
▪ Nuclear envelope, mitochondria, …

▪ Use eight manually labeled 5123 volumes
▪ 6 for training, 1 for validation, 1 for testing

(Pelt & Sethian, PNAS 2019)



Analysis - dental CT

(Minnema et al, Med. Phys. 2019)



Single-object ML

(Hendriksen et al. 2019)

(1) Normal scan (3) Low-res rec (4) ROI crop (6) Train network

(2) Zoomed ROI scan (5) High-res ROI rec (7) Apply to low-res rec



Single-object ML

(Hendriksen et al. 2019)



Single-object ML

(Hendriksen et al. 2019)



Single-object ML

(Hendriksen et al. 2019)

Low-res: 68.26 μm
High-res: 17.07 μm



Conclusions

▪ Deep learning has large potential for scientific images

▪ Popular existing approaches have several problems

▪ Mixed-Scale Dense network for large scientific images

▪ Good results for various imaging problems

▪ Many interesting and exciting challenges remain!



Thank you for your attention!

d.m.pelt@cwi.nl
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Training example

▪ Training with 100 similar images

https://docs.google.com/file/d/1F9CI7aeufrPV2z7NQYj3t52zZEkMV4Km/preview


Deep learning for tomography

▪ Learn parts of existing algorithms (Pelt & Batenburg 2013)

▪ Learned primal-dual algorithms (Adler & Oktem 2018)

▪ Use CNN as a post-processing operation (Jin et al 2017)



State-of-the-art: Learned primal-dual

(Jin et al 2017)
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State-of-the-art: FBPConvNet

(Jin et al 2017)



State-of-the-art: FBPConvNet

(Jin et al 2017)



Results - ssTEM segmentation

▪ 512x512 pixels, only 30 images for training
Arganda-Carreras, Ignacio, et al. "Crowdsourcing the creation of image segmentation algorithms 
for connectomics." Frontiers in neuroanatomy 9 (2015): 142.



Results - low-dose tomography

▪ 2560x2560 tomography images of fiber composite
▪ Left: 1024 projections, middle/right: 128 projections

▪ 500 slices for training, 100 for validation, from top
▪ Result for slice from bottom



Advantages

FBPConvNet MS-D Net

Parameters ~ 31 million ~ 46 thousand

Intermediate images 822 100

Max. theoretical size ~ 1024x1024 ~ 4096x4096
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Similar Improvement


