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neural networks

∙ Given an input x ∈ Rn0 and some target y ∈ RnL such that

(x, y) ∼ D, a neural network computes

ŷt(x,w) = WLf(WL−1...f(W1x))...),

where f(·) is the non-linear activation function and

W(l) ∈ Rnl×nl−1
are the weights.

∙ It is a compositional mapping from input x to output y with

parameters θ := (W1, ...WL).

2



training the network

∙ We train the network to minimize some loss function L, e.g. the
mean squared error for regression problems.

∙ Weights are initialized from some distribution θ0 ∼ Pinit.

∙ In a first-order method the weights are updated according to,

θt+1 = θt − η∇θL(x, y),

where L(x, y) can be the gradient computed over the full training

set (X, Y) (gradient descent), or the gradient computed over a

subset of the training data (XS, YS) (stochastic gradient descent).
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training the network

Gradient descent

∙ By a continuous approximation of gradient descent, parameters

evolve as

dθt = −η(∇θ ŷt)
T∇ŷL(ŷt),

where L is the loss function and η is the learning rate.

Stochastic training

∙ Under stochastic training we have,

dθt = −η(∇θ ŷt)
T∇ŷL(ŷt) + σdWt,

where Wt is a Brownian motion.
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an observation...

Let’s consider the S&P500 data, and try to train a neural network on

it...
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the loss surface

∙ When we are training the neural network, we are traversing the

loss surface.

∙ The loss surface is a non-convex function of the

high-dimensional weight vector θ.

∙ The loss surface has many local minima, global minima, wide

minima, sharp minima. Which minimum is good?
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the goal

∙ We would like to gain insight into which minimum is good

∙ Is there a metric we could define to measure the ‘goodness’ of a

minimum?
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generalization

∙ The ability of a network trained on dataset (x, y) to perform well

on dataset (x̂, ŷ), where (x, y), (x̂, ŷ) ∼ PX,Y.

∙ We want for datasets (x, y) and (x̂, ŷ),

L(x, θ, y)− L(x̂, θ, ŷ).

to be small.
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generalization

∙ Overparametrized networks can achieve zero train loss, however

this says nothing about their performance on unseen data (they

might overfit on the noise in the train data!)

∙ Good generalization involves finding a trade-off between the

complexity of the learned function and its ability to represent

the train data.

∙ Generalization capabilities are influenced by the network

architecture, dataset properties and the optimization algorithm

used to train the network.
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previous work on generalization

∙ Different ways of measuring these generalization capabilities

exist:

∙ The flatness of a minimum can be a good indicator of its ability to

generalize [Hochreiter, Schmidhuber (1997)], [Keskar et al (2016)],

[Srebro et al (2017)]

∙ The smoothness of the learned function can also be an indicator

[Novak et al (2018)]

∙ Various norms of the network parameters can be used to measure

the capacity of neural networks [Bartlett, (1998)] [Srebro et al

(2015)], [Bartlett et al (2017)] [Srebro et al (2017)]

∙ Noise in the neural network training algorithm can regularize

the solution resulting in better generalization [Srebro et al

(2015)] [Jastrzkebski et al (2017)] [Borovykh et al (2019)]
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measuring generalization: weight hessian

∙ An empirical way of measuring generalization is the smoothness

with respect to inputs or weights.

∙ Flatness in weight space, i.e. the size of the trace of the Hessian

with respect to the weights ∆θL(ŷt) with elements ∂θi∂θjL(ŷt)
has been proposed as a metric.
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measuring generalization: input hessian

∙ Smoothness in input space [Novak et al (2018)], e.g. the trace of

∆xL(ŷt) with elements ∂xi∂xjL(ŷt) averaged over the input

samples xi, i = 1, ...,N.

∙ Smoothness in input space can be related to noise robustness,

i.e. the output function should be robust to different noise to

the input variables

∙ Smoothness in weight and input space are related.
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measuring generalization

Let’s go back to our finance example and see if the metrics for the

minima can provide any insight into when we will be able to perform

well...
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what’s next?

∙ We have seen that there exist minima which are ‘better’ than

others

∙ Wide minima, with a small weight or input Hessian, are more

resistant to noise and seem to result in better generalization

∙ Can we use the optimization algorithm to bias into these ‘good’

minima?
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the role of the optimization algorithm

∙ It was observed [Zhang et al, 2017] that deep networks can

memorize noise, due to overparametrization, and thus perform

bad out of sample

∙ The same network can however learn well on real data and

perform well out of sample

∙ How can this be?

∙ Generalization is not implicit to the network architecture, but is

related to the way we train a neural network

∙ Ways of controlling the complexity of the learned function exist:

early stopping, learning rate, batch size

15



the role of the optimization algorithm

It could be that that there exists a so-called implicit bias [Srebro et

al (2015), (2017)]:

∙ the real-world data can be explained by a function with low

complexity;

∙ the optimization algorithm biases towards low-complexity.
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the effects of noise in the optimization algorithm

The following can be observed... Let dθt = −η(∇θ ŷt)
T∇ŷL(ŷt) + σdWt.

Increasing noise results in better test performance... Can we explain

this?
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understanding the network output

∙ Understanding the network output could help in understanding

the generalization capabilities of the network

∙ Deep neural networks are models with many parameters and

complex compositional mappings.

∙ The output is thus not an easy-to-analyze object.
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understanding the network output: two approaches

The large parameter limit

∙ under a particular scaling in the neural network and under the

limit of network width nl → ∞, the network output during

training becomes equivalent to a linear model

An Taylor expansion approximation

∙ higher order approximation terms can be obtained by using a

Taylor expansion of the output

19



the linear approximation under gradient descent

∙ The first-order approximation of the network output is given by,

ŷlint := ŷ0 +∇θ ŷ0(θt − θ0),

where θ0 are the parameters at initialization and ŷ0 is the

network output at initialization.

∙ Now, suppose wl ∼ 1√
nl−1

.

∙ Under gradient descent as n1, ...,nL → ∞, sequentially, [Jacot et

al (2018)] [Lee et al (2019)]

sup
t∈[0,T]

||ŷt − ŷlint ||2 → 0.
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the linear approximation under gradient descent

∙ If the linear approximation is sufficient we can directly solve for

the output:

ŷt(X) =
(
I− e−

η
N
∇θ ŷ0(X)∇θ ŷ0(X)

Tt
)
Y+ e−

η
N
∇θ ŷ0(X)∇θ ŷ0(X)

Ttŷ0.
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the linear approximation: the effects of gradient descent

Theorem

Gradient descent converges to the minimum norm solution, i.e.

θt → arg min
ŷ0+∇θ ŷ0(θ−θ0)=Y

||θ − θ0||2.

∙ Gradient descent biases the algorithm into weights which are

closest to the initial weights among all weights that satisfy

limt→∞ ŷt = Y.

22



the linear approximation: the effects of regularization

∙ Suppose we train the model with regularization i.e. add a term

λ||θt − θ0||22 to the loss function.

∙ Solving for the continuous form

ŷt(X) =e−
η
N
(∇θ ŷ0(X)∇θ ŷ0(X)

T+λ)tŷ0(X)

+ (∇θ ŷ0(X)∇θ ŷ0(X)
TY+ λŷ0)(∇θ ŷ0(X)∇θ ŷ0(X)

T + λ)−1

·
(
I− e−

η
N
∇θ ŷ0(X)∇θ ŷ0(X)

T+λ)t
)
.

∙ As t → ∞ this is similar to the posterior of a Gaussian process

where the likelihood is Gaussian with variance λ, i.e. λ is the

noise in the observations Y.
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the linear approximation: the effects of noise

∙ If the number of training iterations is small, also under noisy

gradient descent the linear model can be a approximation.

Suppose this is the case.

∙ Then we can solve for the network output explicitly,

ŷt(X) =
(
I− e−

η
N
Θ0t

)
Y+ e−

η
N
Θ0tŷ0(X)− σ

η

N

∫ t

0

e−
η
N
Θ0(t−s)Θ0dWs.

∙ Noise thus does not explicitly regularize or smooth the solution.

∙ The Hessian of the loss function:

E [∆L(ŷt)] = ∇θ ŷ0(X)(E[ŷt(X)]− Y),

is not a function of σ.

24



the linear approximation: the effects of noise

The network training MSE is an increasing function of noise, but test

performance does not improve with more noise.
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the linear approximation: the effects of noise

The weight Hessian, the metric for generalization, is not affected by

noise.
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when is the linear model approximation sufficient?

As the number of training iterations increases divergence grows.
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when is the linear model approximation sufficient?

For narrow neural network layers the divergence is high.
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higher order approximation

∙ Higher order approximations of the network output (for

notational simplicity θ ∈ R)

ŷ
(N)
t (X) :=

N∑
n=0

∂n
θ ŷt(X)

n!

∣∣∣∣
θ̄

(θt − θ̄)n.

∙ Under noisy training, the expected value of some function h(·)
of the weights u(t0) = E[h(θt)|θ0] solves the following Cauchy

problem, (Feynman-Kac)

(∂t +A(θ))u(t, θ) = 0,

where

A := −η∇θ ŷt(X)
T(∇ŷL(ŷt))∂θ +

1

2
σ2∂2

θ.
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solving the cauchy problem

∙ Suppose we are interested in solving the following Cauchy

problem

(∂t +A)u(t, θ) = 0, u(T, θ) = h(θ),

where A depends on θ.

∙ This is not directly solvable!

∙ The idea is to choose an expansion (An(t))n∈N that closely

approximates A(t), i.e.

A(t, θ) =
∞∑
n=0

An(t, θ).

∙ We will use a Taylor expansion of this generator.
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solving the cauchy problem

∙ Following the classical perturbation approach, the solution u

can be expanded as an infinite sum,

u =
∞∑
n=0

un.

∙ The N-th order approximation of u is then given by,

u(N)(t, θ) =
N∑

n=0

un(t, θ).

∙ We then obtain the following sequence of nested Cauchy

problems, for x ∈ R,

(∂t +A0)u
0(t, θ) = 0, u0(T, θ) = h(θ),

(∂t +A0)u
n(t, θ) = −

n∑
k=1

Ak(t, θ)u
n−k(t, θ), un(T, θ) = 0, n > 0.

∙ These are solvable!
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higher order approximation: analytic solutions

We can solve the above Cauchy problem by using a Taylor expansion

of the generator A [Lorig, Pascucci, Pagliarani (2015)]

Theorem

Consider the N-th order approximation of ŷt. The expected value of

ŷ
(N)
t is then given by

E
[
ŷ
(N)
t (X)|ŷ0

]
=

N∑
n=0

∂n
θ ŷt(X)

n!

∣∣∣∣
θ̄

2N−1∑
n=0

un
m(t0, θ),

with

u0
m(t0, θ) = ∂k

s exp

((
− η

N
µ0(t− t0) + θ − θ̄

)
s+

1

2
σ2(t− t0)s

2

) ∣∣
s=0

,

un
m(t0, θ) = Ln(0, t)u

0
m(t0, θ).
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higher order approximation: generalization

∙ Having obtained the expected value of the weights, we can

compute the Hessian of the loss function L with respect to the

weights.

∙ We obtain,

E [∆L(ŷt)] = f
(
∂n
θ ŷ0(X), σ

2
)
.

∙ The Hessian in case of higher order approximations is

influenced by σ, so that the noise has an explicit effect on the

network output.
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higher order approximation: the effects of noise

Increasing noise in the linear regime has little effect; in the

non-linear regime we observe an effect.

34



higher order approximation: the effects of noise

The weight Hessian is also affected: the more noise the smaller the

weight Hessian, i.e. the better the generalization should be (and it

is!)
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conclusion

∙ Understanding the network output is crucial to gain insight into

generalization capabilities of the network but it is complicated

due to the complex function map.

∙ We considered two approximations:

∙ Under the layer width tending to infinity, the model output can

be approximated by a linear model.

∙ Here, noise does not explicitly regularize solution, noise only

keeps model from fully converging

∙ Using a Taylor expansion approximation we obtained insight

into higher order approximations of the network output

∙ In this case, i.e. when the network is non-linear in the weights,

the noise during training has an explicit effect on the weight

Hessian.
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