
understanding generalization in deep neural
networks

The role of the optimization method, metrics for measur-

ing generalization, and an analytic approach for gaining

insight

Anastasia Borovykh

Based on joint work with Sander Bohte and Cornelis Oosterlee

Woudschoten, 2019

0

structure

∙ A brief introduction to neural networks and their generalization

capabilities

∙ Previous observations on generalization

∙ The role of the optimization algorithm

∙ Measuring the generalization capabilities

∙ Understanding the network output through analytic expressions

∙ A linear approximation

∙ A Taylor expansion approach

1

neural networks

∙ Given an input x ∈ Rn0 and some target y ∈ RnL such that

(x, y) ∼ D, a neural network computes

ŷt(x,w) = WLf(WL−1...f(W1x))...),

where f(·) is the non-linear activation function and

W(l) ∈ Rnl×nl−1
are the weights.

∙ It is a compositional mapping from input x to output y with

parameters θ := (W1, ...WL).

2

training the network

∙ We train the network to minimize some loss function L, e.g. the
mean squared error for regression problems.

∙ Weights are initialized from some distribution θ0 ∼ Pinit.

∙ In a first-order method the weights are updated according to,

θt+1 = θt − η∇θL(x, y),

where L(x, y) can be the gradient computed over the full training

set (X, Y) (gradient descent), or the gradient computed over a

subset of the training data (XS, YS) (stochastic gradient descent).

3

training the network

Gradient descent

∙ By a continuous approximation of gradient descent, parameters

evolve as

dθt = −η(∇θ ŷt)
T∇ŷL(ŷt),

where L is the loss function and η is the learning rate.

Stochastic training

∙ Under stochastic training we have,

dθt = −η(∇θ ŷt)
T∇ŷL(ŷt) + σdWt,

where Wt is a Brownian motion.

4

an observation...

Let’s consider the S&P500 data, and try to train a neural network on

it...

5

the loss surface

∙ When we are training the neural network, we are traversing the

loss surface.

∙ The loss surface is a non-convex function of the

high-dimensional weight vector θ.

∙ The loss surface has many local minima, global minima, wide

minima, sharp minima. Which minimum is good?

6

the goal

∙ We would like to gain insight into which minimum is good

∙ Is there a metric we could define to measure the ‘goodness’ of a

minimum?

7

generalization

∙ The ability of a network trained on dataset (x, y) to perform well

on dataset (x̂, ŷ), where (x, y), (x̂, ŷ) ∼ PX,Y.

∙ We want for datasets (x, y) and (x̂, ŷ),

L(x, θ, y)− L(x̂, θ, ŷ).

to be small.

8

generalization

∙ Overparametrized networks can achieve zero train loss, however

this says nothing about their performance on unseen data (they

might overfit on the noise in the train data!)

∙ Good generalization involves finding a trade-off between the

complexity of the learned function and its ability to represent

the train data.

∙ Generalization capabilities are influenced by the network

architecture, dataset properties and the optimization algorithm

used to train the network.

9

previous work on generalization

∙ Different ways of measuring these generalization capabilities

exist:

∙ The flatness of a minimum can be a good indicator of its ability to

generalize [Hochreiter, Schmidhuber (1997)], [Keskar et al (2016)],

[Srebro et al (2017)]

∙ The smoothness of the learned function can also be an indicator

[Novak et al (2018)]

∙ Various norms of the network parameters can be used to measure

the capacity of neural networks [Bartlett, (1998)] [Srebro et al

(2015)], [Bartlett et al (2017)] [Srebro et al (2017)]

∙ Noise in the neural network training algorithm can regularize

the solution resulting in better generalization [Srebro et al

(2015)] [Jastrzkebski et al (2017)] [Borovykh et al (2019)]

10

measuring generalization: weight hessian

∙ An empirical way of measuring generalization is the smoothness

with respect to inputs or weights.

∙ Flatness in weight space, i.e. the size of the trace of the Hessian

with respect to the weights ∆θL(ŷt) with elements ∂θi∂θjL(ŷt)
has been proposed as a metric.

11

measuring generalization: input hessian

∙ Smoothness in input space [Novak et al (2018)], e.g. the trace of

∆xL(ŷt) with elements ∂xi∂xjL(ŷt) averaged over the input

samples xi, i = 1, ...,N.

∙ Smoothness in input space can be related to noise robustness,

i.e. the output function should be robust to different noise to

the input variables

∙ Smoothness in weight and input space are related.

12

measuring generalization

Let’s go back to our finance example and see if the metrics for the

minima can provide any insight into when we will be able to perform

well...

13

what’s next?

∙ We have seen that there exist minima which are ‘better’ than

others

∙ Wide minima, with a small weight or input Hessian, are more

resistant to noise and seem to result in better generalization

∙ Can we use the optimization algorithm to bias into these ‘good’

minima?

14

the role of the optimization algorithm

∙ It was observed [Zhang et al, 2017] that deep networks can

memorize noise, due to overparametrization, and thus perform

bad out of sample

∙ The same network can however learn well on real data and

perform well out of sample

∙ How can this be?

∙ Generalization is not implicit to the network architecture, but is

related to the way we train a neural network

∙ Ways of controlling the complexity of the learned function exist:

early stopping, learning rate, batch size

15

the role of the optimization algorithm

It could be that that there exists a so-called implicit bias [Srebro et

al (2015), (2017)]:

∙ the real-world data can be explained by a function with low

complexity;

∙ the optimization algorithm biases towards low-complexity.

16

the effects of noise in the optimization algorithm

The following can be observed... Let dθt = −η(∇θ ŷt)
T∇ŷL(ŷt) + σdWt.

Increasing noise results in better test performance... Can we explain

this?

17

understanding the network output

∙ Understanding the network output could help in understanding

the generalization capabilities of the network

∙ Deep neural networks are models with many parameters and

complex compositional mappings.

∙ The output is thus not an easy-to-analyze object.

18

understanding the network output: two approaches

The large parameter limit

∙ under a particular scaling in the neural network and under the

limit of network width nl → ∞, the network output during

training becomes equivalent to a linear model

An Taylor expansion approximation

∙ higher order approximation terms can be obtained by using a

Taylor expansion of the output

19

the linear approximation under gradient descent

∙ The first-order approximation of the network output is given by,

ŷlint := ŷ0 +∇θ ŷ0(θt − θ0),

where θ0 are the parameters at initialization and ŷ0 is the

network output at initialization.

∙ Now, suppose wl ∼ 1√
nl−1

.

∙ Under gradient descent as n1, ...,nL → ∞, sequentially, [Jacot et

al (2018)] [Lee et al (2019)]

sup
t∈[0,T]

||ŷt − ŷlint ||2 → 0.

20

the linear approximation under gradient descent

∙ If the linear approximation is sufficient we can directly solve for

the output:

ŷt(X) =
(
I− e−

η
N
∇θ ŷ0(X)∇θ ŷ0(X)

Tt
)
Y+ e−

η
N
∇θ ŷ0(X)∇θ ŷ0(X)

Ttŷ0.

21

the linear approximation: the effects of gradient descent

Theorem

Gradient descent converges to the minimum norm solution, i.e.

θt → arg min
ŷ0+∇θ ŷ0(θ−θ0)=Y

||θ − θ0||2.

∙ Gradient descent biases the algorithm into weights which are

closest to the initial weights among all weights that satisfy

limt→∞ ŷt = Y.

22

the linear approximation: the effects of regularization

∙ Suppose we train the model with regularization i.e. add a term

λ||θt − θ0||22 to the loss function.

∙ Solving for the continuous form

ŷt(X) =e−
η
N
(∇θ ŷ0(X)∇θ ŷ0(X)

T+λ)tŷ0(X)

+ (∇θ ŷ0(X)∇θ ŷ0(X)
TY+ λŷ0)(∇θ ŷ0(X)∇θ ŷ0(X)

T + λ)−1

·
(
I− e−

η
N
∇θ ŷ0(X)∇θ ŷ0(X)

T+λ)t
)
.

∙ As t → ∞ this is similar to the posterior of a Gaussian process

where the likelihood is Gaussian with variance λ, i.e. λ is the

noise in the observations Y.

23

the linear approximation: the effects of noise

∙ If the number of training iterations is small, also under noisy

gradient descent the linear model can be a approximation.

Suppose this is the case.

∙ Then we can solve for the network output explicitly,

ŷt(X) =
(
I− e−

η
N
Θ0t

)
Y+ e−

η
N
Θ0tŷ0(X)− σ

η

N

∫ t

0

e−
η
N
Θ0(t−s)Θ0dWs.

∙ Noise thus does not explicitly regularize or smooth the solution.

∙ The Hessian of the loss function:

E [∆L(ŷt)] = ∇θ ŷ0(X)(E[ŷt(X)]− Y),

is not a function of σ.

24

the linear approximation: the effects of noise

The network training MSE is an increasing function of noise, but test

performance does not improve with more noise.

25

the linear approximation: the effects of noise

The weight Hessian, the metric for generalization, is not affected by

noise.

26

when is the linear model approximation sufficient?

As the number of training iterations increases divergence grows.

27

when is the linear model approximation sufficient?

For narrow neural network layers the divergence is high.

28

higher order approximation

∙ Higher order approximations of the network output (for

notational simplicity θ ∈ R)

ŷ
(N)
t (X) :=

N∑
n=0

∂n
θ ŷt(X)

n!

∣∣∣∣
θ̄

(θt − θ̄)n.

∙ Under noisy training, the expected value of some function h(·)
of the weights u(t0) = E[h(θt)|θ0] solves the following Cauchy

problem, (Feynman-Kac)

(∂t +A(θ))u(t, θ) = 0,

where

A := −η∇θ ŷt(X)
T(∇ŷL(ŷt))∂θ +

1

2
σ2∂2

θ.

29

solving the cauchy problem

∙ Suppose we are interested in solving the following Cauchy

problem

(∂t +A)u(t, θ) = 0, u(T, θ) = h(θ),

where A depends on θ.

∙ This is not directly solvable!

∙ The idea is to choose an expansion (An(t))n∈N that closely

approximates A(t), i.e.

A(t, θ) =
∞∑
n=0

An(t, θ).

∙ We will use a Taylor expansion of this generator.

30

solving the cauchy problem

∙ Following the classical perturbation approach, the solution u

can be expanded as an infinite sum,

u =
∞∑
n=0

un.

∙ The N-th order approximation of u is then given by,

u(N)(t, θ) =
N∑

n=0

un(t, θ).

∙ We then obtain the following sequence of nested Cauchy

problems, for x ∈ R,

(∂t +A0)u
0(t, θ) = 0, u0(T, θ) = h(θ),

(∂t +A0)u
n(t, θ) = −

n∑
k=1

Ak(t, θ)u
n−k(t, θ), un(T, θ) = 0, n > 0.

∙ These are solvable!

31

higher order approximation: analytic solutions

We can solve the above Cauchy problem by using a Taylor expansion

of the generator A [Lorig, Pascucci, Pagliarani (2015)]

Theorem

Consider the N-th order approximation of ŷt. The expected value of

ŷ
(N)
t is then given by

E
[
ŷ
(N)
t (X)|ŷ0

]
=

N∑
n=0

∂n
θ ŷt(X)

n!

∣∣∣∣
θ̄

2N−1∑
n=0

un
m(t0, θ),

with

u0
m(t0, θ) = ∂k

s exp

((
− η

N
µ0(t− t0) + θ − θ̄

)
s+

1

2
σ2(t− t0)s

2

) ∣∣
s=0

,

un
m(t0, θ) = Ln(0, t)u

0
m(t0, θ).

32

higher order approximation: generalization

∙ Having obtained the expected value of the weights, we can

compute the Hessian of the loss function L with respect to the

weights.

∙ We obtain,

E [∆L(ŷt)] = f
(
∂n
θ ŷ0(X), σ

2
)
.

∙ The Hessian in case of higher order approximations is

influenced by σ, so that the noise has an explicit effect on the

network output.

33

higher order approximation: the effects of noise

Increasing noise in the linear regime has little effect; in the

non-linear regime we observe an effect.

34

higher order approximation: the effects of noise

The weight Hessian is also affected: the more noise the smaller the

weight Hessian, i.e. the better the generalization should be (and it

is!)

35

conclusion

∙ Understanding the network output is crucial to gain insight into

generalization capabilities of the network but it is complicated

due to the complex function map.

∙ We considered two approximations:

∙ Under the layer width tending to infinity, the model output can

be approximated by a linear model.

∙ Here, noise does not explicitly regularize solution, noise only

keeps model from fully converging

∙ Using a Taylor expansion approximation we obtained insight

into higher order approximations of the network output

∙ In this case, i.e. when the network is non-linear in the weights,

the noise during training has an explicit effect on the weight

Hessian.

36

