
Multilevel Monte Carlo methods for random partial
differential equations

Aretha Teckentrup

School of Mathematics, University of Edinburgh

Joint work with:

Julia Charrier (Marseille), Mike Giles (Oxford),

Rob Scheichl (Heidelberg), Elisabeth Ullmann (TU Munich)

43rd Woudschoten Conference - October 3, 2018

A. Teckentrup (Edinburgh) MLMC for UQ October 3, 2018 1 / 24



Outline

1 Uncertainty Quantification in PDE models

2 Parametric Uncertainty in Diffusion Problems

3 (Multilevel) Monte Carlo Methods

4 Multilevel Monte Carlo Methods for Multi-scale Problems

A. Teckentrup (Edinburgh) MLMC for UQ October 3, 2018 2 / 24



Uncertainty Quantification in PDE models

Modelling and simulation with partial differential equations are
routinely used to inform decisions and assess risk.

Physical quantities appearing in the models are often not fully known,
and hence subject to uncertainty.

Uncertainty Quantification is a broad methodology for incorporating
this uncertainty in simulations.

The uncertainty can come from a variety of sources:

I geometric uncertainties (e.g. diffusion on a cell membrane)

I uncertainty about values of physical parameters (e.g. incomplete
knowledge of sub-surface geology)

I model-form uncertainty (e.g. a set of suitable scales and models)

Uncertainty quantification is frequently based on stochastic modelling.
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Parametric Uncertainty in Diffusion Problems
A Simple Model for Groundwater Flow
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Darcy’s law for an incompressible fluid leads to the
diffusion equation

−∇ · (k(x)∇p(x)) = g(x), x ∈ D ⊆ Rd,

with

I the hydraulic conductivity k of the sub-surface,

I source/sink terms g,

I the resulting pressure field p of groundwater.

Lack of data leads to uncertainty in the conductivity k.
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Parametric Uncertainty in Diffusion Problems
General Formulation

The uncertainty in k is expressed in a probabilistic formulation: k is
modelled as a random process (field, function . . . ) k(x, ω) with

I k(·, ω) ∈ L∞(D) for all ω ∈ Ω,

I k(x, ·) a random variable, for all x ∈ D.

The uncertainty in k propagates through the model to the solution p,
with p(x, ω) now a random process.

The model for k is chosen to incorporate knowledge about properties
of k: continuity/differentiability, typical length scales, contrast,
positive-valued . . .

A popular and flexible approach to define a distribution on k is a
parametric approach.
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Parametric Uncertainty in Diffusion Problems
Parametric Uncertainty [Dashti, Stuart ’17]

Suppose we want to define a probability distribution on L2(D), the
space of square integrable functions f : D → R.

Since L2(D) is separable, there exists a basis {φn}n∈N such that any
function f ∈ L2(D) can be written in the form

f(x) =

∞∑
n=1

cnφn(x), cn ∈ R,
∞∑
n=1

‖φn‖L2(D) <∞.

A common way to define a distribution on f ∈ L2(D) is the
following:

f(x, ω) = m(x) +

∞∑
n=1

ξn(ω)φn(x),

where
I {ξn}n∈N is an i.i.d. sequence of mean zero random variables,

I m(x) = E[f(x)] is a chosen mean function.
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Parametric Uncertainty in Diffusion Problems
Parametric Uncertainty [Dashti, Stuart ’17]

The parametrisation is very flexible, since you are free to choose
{φn}n∈N and {ξn}n∈N.

It includes Gaussian measures on L2(D), in which case we have the
Karhunen-Loève expansion of the Gaussian field f , with {ξn}n∈N i.i.d.
N(0, 1) and {φn}n∈N determined by the covariance operator.

The approach is not restricted to L2(D), and works for any separable
Banach space X (⇒ X = span{φn}n∈N).

We can also take non-linear transformations of the parametric
expansion, e.g. to ensure positiveness.
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Parametric Uncertainty in Diffusion Problems
Typical set-up [Barth, Schwab, Zollinger ’11], [Charrier, Scheichl, T. ’13]

The most commonly used parametrisations are:

I a log-normal distribution, i.e. k(x, ω) = exp (
∑∞
n=1 ξn(ω)φn(x)), with

ξn ∼ N(0, 1) and {φn}∞n=1 given functions in L∞(D), or

I a uniform distribution, i.e. k(x, ω) = m(x) +
∑∞
n=1 ξn(ω)φn(x), with

ξn ∼ U [−1, 1] and {φn}∞n=1 given functions in L∞(D).

Both parametrisations ensure positiveness of k. (In the uniform case,
this requires assumptions on the relative size of m and {φn}∞n=1.)

Common choices for the basis functions are:

I indicator functions on sub-domains
s⋃
i=1

Di = D ⇒ piece-wise constant

I Fourier-like bases ⇒ frequency increasing with n
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Parametric Uncertainty in Diffusion Problems
Goal of simulations

The end goal is usually to estimate the expected value of a quantity
of interest (QoI) φ(p) or φ(k, p).

I point values or local averages of the pressure p

I point values or local averages of the Darcy flow −k∇p
I outflow over parts of the boundary

I travel times of contaminant particles
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(Multilevel) Monte Carlo Methods
Monte Carlo Methods [Robert, Casella ’99]

The standard Monte Carlo estimator for Q = E[φ(p)] is

Q̂MC
h,N :=

1

N

N∑
i=1

φ(p
(i)
h )

where φ(p
(i)
h ) is the ith sample of φ(p) approximated on grid Th.

The mean square error can be shown to equal

E
[(
Q̂MC
h,N − E[φ(p)]

)2]
= V[Q̂MC

h,N ] +
(
E[Q̂MC

h,N ]− E[φ(p)]
)2

= V[φ(ph)]N−1︸ ︷︷ ︸
sampling error

+
(
E[φ(ph)− φ(p)]

)2
︸ ︷︷ ︸

FE error (“bias”)

⇒ need to solve a large number of PDEs on a fine grid!
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(Multilevel) Monte Carlo Methods
Multilevel Monte Carlo Methods [Heinrich ’01], [Giles ’08]

The multilevel method works on a sequence of levels, s.t. h` = 2−`h0,
` = 0, 1, . . . , L.

Linearity of expectation gives us

E [φ(phL)] = E [φ(ph0)] +

L∑
`=1

E
[
φ(ph`)− φ(ph`−1

)
]

We define the multilevel MC estimator

Q̂ML
{h`,N`} =

1

N0

N0∑
i=1

φ(p
(i,0)
h0

) +

L∑
`=1

1

N`

N∑̀
i=1

φ(p
(i,`)
h`

)− φ(p
(i,`)
h`−1

)

Terms are estimated independently, with N` samples on level `.
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(Multilevel) Monte Carlo Methods
Multilevel Monte Carlo Methods [Heinrich ’01], [Giles ’08]

The mean square error of the this estimator is

E
[(
Q̂ML
{h`,N`} − E[φ(p)]

)2]
= V[Q̂ML

{h`,N`}]︸ ︷︷ ︸
sampling error

+
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+

L∑
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)]
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(
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)2

N0 still needs to be large, but samples are much cheaper to obtain on
coarser grid

N` (` > 0) much smaller, since V[φ(ph`)− φ(ph`−1
)]→ 0 as h` → 0

⇒ need to solve a large number of PDEs on a coarse grid and a small
number of PDEs on a fine grid!
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(Multilevel) Monte Carlo Methods
Complexity of Multilevel Monte Carlo ([Giles, ’08], [Cliffe et al, ’11])

Assume that

(A1)
∣∣E[φ(p)− φ(ph`)]

∣∣ = O(hα` ) (FE error)

(A2) V[φ(ph`) − φ(ph`−1
)] = O(hβ` ) (FE difference)

(A3) Cost(φ(p
(i)
h`

)) = O(h−γ` ) (PDE solver)

with 2α ≥ min(β, γ). Then there exist L and {N`} such that the total cost
to obtain a mean square error

E
[
(Q̂ML
{h`,N`} − E[Q])2

]
= O(ε2)

is

Cost(Q̂ML
{h`,N`} =


O(ε−2) if β > γ

O(ε−2 log(ε)2) if β = γ

O(ε−2−(γ−β)/α) if β < γ

Cost(Q̂MC
h,N ) = O(ε−2−γ/α) !
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(Multilevel) Monte Carlo Methods
Proving assumption (A3)

Assumption (A3) is an assumption on the PDE solver. This typically

involves solving a sparse, linear system of dimension n ∼ h−d` , so with

an optimal solver we have γ ≈ d: Cost(φ(p
(i)
h`

)) = O(h−d` ).

I The cost of producing a sample k(i) has to be included as well, but this
is typically an order of magnitude cheaper and can easily be made to
have O(h−d` ) cost by choosing a suitable sampling scheme.
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(Multilevel) Monte Carlo Methods
Proving assumptions (A1), (A2)

Assumptions (A1) and (A2) are assumptions on the convergence rate
of the numerical method1.

I This depends on smoothness properties of the problem: If
k(·, ω) ∈ Ct(D), g ∈ L2(D), D is Lipschitz and convex, and φ is
Fréchet differentiable, then p(·, ω) ∈ H1+t−δ(D) for any δ > 0, and∣∣E[φ(p)− φ(ph`

)]
∣∣ = O(h2t−δ` ) ⇒ α = 2t− δ in (A1)

V[φ(ph`) − φ(ph`−1
)] = O(h4t−δ` ) ⇒ β = 4t− δ in (A2)

for standard, piece-wise linear finite elements.

I In the case of the log-normal distribution, the proofs are complicated
by the diffusion equation not being uniformly elliptic:

0 < kmin(ω) = min
x∈D

k(x, ω) ≤ k(x, ω) ≤ max
x∈D

k(x, ω) = kmax(ω) <∞,

where k(x, ω) = exp (
∑∞
n=1 ξn(ω)φn(x)), with ξn ∼ N(0, 1).

1[Barth, Schwab, Zollinger ’11], [Charrier, Scheichl, T. ’13], [T. ’12], [T.,
Scheichl, Giles, Ullmann ’13], [T., PhD thesis ’13]

A. Teckentrup (Edinburgh) MLMC for UQ October 3, 2018 15 / 24



(Multilevel) Monte Carlo Methods
Proving assumptions (A1), (A2)

Assumptions (A1) and (A2) are assumptions on the convergence rate
of the numerical method1.

I This depends on smoothness properties of the problem: If
k(·, ω) ∈ Ct(D), g ∈ L2(D), D is Lipschitz and convex, and φ is
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(Multilevel) Monte Carlo Methods
Growth of ε-cost

The computational ε-cost is the number of FLOPS required to achieve a
MSE of O(ε2).

With γ ≈ d, α = 1 and β = 2, the computational ε-costs for the diffusion
problem are bounded by:

d MLMC MC

1 O(ε−2) O(ε−3)

2 O(ε−2) O(ε−4)

3 O(ε−3) O(ε−5)

For ε = 10−3 and d = 3, the costs of MLMC and MC are O(109) and
O(1015), respectively.
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(Multilevel) Monte Carlo Methods
Numerical example

Flow cell model problem on D = (0, 1)2

k a log-normal random field with k(·, ω) ∈ C1/2−δ(D), for any δ > 0

φ(p) = ‖p‖L2(D)
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Multilevel Monte Carlo Methods for Multi-scale Problems
Motivation

Some physical models exhibit fine scale features that are unresolved
on coarse meshes. In the context of the random diffusion problem,
these are fine scale features in the coefficient k.

In a naive implementation of multilevel Monte Carlo, the coarsest
mesh size h0 needs to be small enough to resolve all features.

I If this is not the case, V[φ(ph`
)− φ(ph`−1)] will be large.

One can circumvent this problem by choosing smoother
approximations of the coefficient k on coarse grids.

Levels in the multilevel hierarchy now correspond to different mesh
sizes h`, as well as different models of coefficient k`.
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Multilevel Monte Carlo Methods for Multi-scale Problems
Level-dependent truncation of parametrisation [T. et al ’13]

Assume g = log k is a Gaussian random field with mean E[g(x)] = 0

and covariance function E[g(x)g(y)] = c(x, y) = σ2 exp
(
‖x−y‖2

0.1

)
.

⇒ fine scale features for small correlation length λ

Then we have the parametric expansion

k(x, ω) = exp

( ∞∑
n=1

ξn(ω)φn(x)

)
where φn(x) =

√
σnψn(x) with

c(λ, d)(Id− λ2∆)−
d+1
2 ψn = σnψn.

This means

k`(x, ω) = exp

(
R∑̀
n=1

ξn(ω)φn(x)

)
is a smooth approximation of k for R` small.
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Multilevel Monte Carlo Methods for Multi-scale Problems
Error Analysis [T. et al ’13]

The bias of Q̂ML
{h`,N`} depends only on the accuracy of kL.

For the rates α and β, we need to take into account the addition to
φ(p)− φ(p`).

We make use of results on the truncation error of Karhunen-Lòeve
expansions 2. We get a result of the form∣∣E[φ(p)− φ(p`)]

∣∣ = O(hα` +Rα
′
` ),

V[φ(p`) − φ(p`−1)] = O(h2α` +R2α′
` ),

where the rate α′ depends on the decay rate of {σn}n∈N. For the
example on the previous slide, we have α′ = 1

2 .

We usually choose R` as a function of h` to balance the two error
contributions.

2[Schwab, Todor, ’06],[Charrier, ’12],[Graham et al, ’13]
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Multilevel Monte Carlo Methods for Multi-scale Problems
Numerical Example

Flow cell model problem on D = (0, 1)2

k a log-normal random field with c(x, y) = σ2 exp
(
‖x−y‖2

0.1

)
Truncation order R` = 4h−1`

Expected value of outflow φ(p)

for fixed sampling error
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Conclusions

Multilevel Monte Carlo methods are an efficient tool for uncertainty
quantification in PDE models.

The methodology is generally applicable, and is not restricted to the
diffusion problem discussed here.

The definition of the coarse levels is likewise general, and can include
further simplifications in addition to a coarser mesh.
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