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Plan 

 
Focus on the following areas: 
•  Parallelism 
•  Numerical operations 
•  Implementation on HPC systems 
•  Analyzing performance bottlenecks  
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Sparse factorizations 

  Core function for indefinite, ill-conditioned, algebraic equations 
(e.g., those from multiphysics, multiscale simulations) 

SuperLU: direct solver 
  STRUMPACK: “inexact” direct solver, preconditioner 

  Usage scenarios 
  Stand-alone solver 
  Good for multiple right-hand sides 
  Precondition Krylov solvers 
  Coarse-grid solver in multigrid (e.g., Hypre) 
  In nonlinear solver (e.g., SUNDIALS) 
  Solving interior eigenvalue problems 
  …. 

è Bottom of the solvers toolchain. Can package as “black-box” 
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Example software stack 
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  Parallel machines 
  Shared memory 
  Shared address space 
  Message passing 
  Data parallel: vector processors 
  Clusters of SMPs 
  Cloud 

  Programming model reflects hardware 
  Historically, tight coupling 
  Today, portability is important 
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Parallel programming models 

  Control 
  How is parallelism created? 
  What orderings exist between operations? 
  How do different threads of control synchronize? 

  Data 
  What data is private vs. shared? 
  How is logically shared data accessed or communicated? 

  Operations 
  What are the atomic (indivisible) operations? 

  Cost 
  How do we account for the cost of each of the above? 



OpenMP shared-memory programming 

  Share the node address space. 

 
  Most data shared within node. 
  Threads communicate via 
 memory read & write. 
  Concurrent write to shared 
 data needs locking or  
 atomic operation. 
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Incorrect program 

•  There is a race condition on variable “s” in the program 
•  A race condition or data race occurs when: 

-  two threads access the same variable, and at least one does a 
write. 

-  the accesses are concurrent (not synchronized) so they could 
happen simultaneously 

Thread 1 
 
   for i = 0, n/2-1 
        s = s + x(i)*y(i) 

Thread 2 
 
  for i = n/2, n-1 
        s = s + x(i)*y(i) 

int s = 0; 
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Correct program 

  Most computation is on private variables 
  Sharing frequency is also reduced, which might improve speed  
  Race condition is fixed by adding locks to critical region (only one 
thread can hold a lock at a time; others wait for it) 

  Shared-memory programming standards: OpenMP, Pthreads 

Thread 1 
 
    local_s1 = 0 
    for i = 0, n/2-1 
        local_s1 = local_s1 + x(i)*y(i) 
     
    s = s + local_s1 
     

Thread 2 
 
    local_s2 = 0 
    for i = n/2, n-1 
        local_s2= local_s2 + x(i)*y(i) 
     
    s = s +local_s2 
     

int s = 0; 
Lock lk; 

lock(lk); 

unlock(lk); 

lock(lk); 

unlock(lk); 



Dot product using OpenMP in C 

int n = 100; 
double x[100], y[100]; 
double s = 0, local_s; 
 
#pragma omp parallel shared (s) private (local_s) 
{ 
    local_s = 0.0; 
    #pragma omp for 
        for (i = 0; i < n; ++i) { 
             local_s = local_s + x[i] * y[i]; 
        } 
    #pragma omp critical 
    { 
         s = s + local_s; 
    } 
} 
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Machine model 2: distributed memory 

  Each processor has its own memory and cache, but cannot 
directly access another processor’s memory. 

  Each “node” has a Network Interface (NI) for all communication 
and synchronization. 

interconnect 

P0 

memory 

NI 

. . . 

P1 

memory 

NI Pn 

memory 

NI 
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MPI distributed-memory programming  

•  Program consists of a collection of named processes 
  Usually fixed at program startup time 
  Thread of control plus local address space – NO shared data 

•  Processes communicate by explicit send/receive pairs 
  Coordination is implicit in every communication event 

Pn P1 P0 

y = ..s ... 

s: 12  

i: 2 

s: 14  

i: 3 

s: 11  

i: 1 

send P1,s 

Network 

receive Pn,s 

Private 
memory 
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Distributed dot product 

Processor 1 
 
  s = 0 
  for i = 0, n/2-1 
        s = s + x(i)*y(i) 
  MPI_Recv(s_remote, p2,...) 
  MPI_Send(s, p2, ...) 
  s = s + s_remote   

Processor 2 
 
  s = 0 
  for i = 0, n/2-1 
        s = s + x(i)*y(i) 
  MPI_Send(s, p1, ...) 
  MPI_Recv(s_remote, p1,...) 
  s = s + s_remote   
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MPI – the de facto standard 

  MPI has become the de facto standard for parallel computing using 
message passing 

  Pros and Cons 
  MPI created a standard for applications development in the HPC 
community à portability 
  The MPI standard is a least common denominator building on mid-80s 
technology, so may discourage innovation 

 
 

  MPI tutorial: 
     https://computing.llnl.gov/tutorials/mpi/ 
     https://computing.llnl.gov/tutorials/mpi/exercise.html 

  



Other machines & programming models 

  Data parallel 
  SIMD / vector:  Intel AVX2, AVX-512 (KNL) 
  GPU, at a larger scale 

  Hybrid: cluster of multicore & GPU nodes 
  MPI + X:  (X = OpenMP, CUDA/OpenCL, …) 
  Global Address Space programming (GAS languages) 

  UPC++, https://bitbucket.org/berkeleylab/upcxx 
  Local and shared data, as in shared memory model 
  But, shared data is partitioned over multiple processes 
  RMA access: Get / Put 
  Remote Procedure Call (RPC) 
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Amdahl’s law bounding maximum speedup 

  Suppose only part of an application is parallel 
  Amdahl’s law 

  Let s be the fraction of work done sequentially, so (1-s) is parallelizable 
  P = number of cores 

 

 ( e.g., s = 1% à speedup <= 100 )  

  Even if the parallel part speeds up perfectly, performance is limited by 
the sequential part 

Speedup(P) = Time(1)/Time(P) 

                   <= 1/(s + (1-s)/P)  

                   <= 1/s 
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Overheads of parallelism 

  Overheads include: 
  cost of starting a thread or process 
  cost of communicating shared data 
  cost of synchronizing 
  extra (redundant) computation 

 
  Each of these can be in the range of milliseconds  
 (= millions of flops) on some systems 

 
  Tradeoff: Algorithm needs sufficiently large units of work to run fast 

in parallel (i.e. large granularity), but not so large that there is not 
enough parallel work  



Sketch of SuperLU direct solver – communication pattern 
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•  Graph at step k+1 differs from step k 
•  Panel factorization on critical path 

XL, J. Demmel, J. Gilbert, L. Grigori, Y. Liu, P. Sao, Meiyue Shao, I.  Yamazaki

Panel Factorization Schur-complement Update 



SuperLU direct solver – communication pattern 
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8 x 16 MPI 
process grid: 
Send-Right 
profile 

Panel Factorization Schur-complement Update 

Developers: XL, J. Demmel, J. Gilbert, L. Grigori, P. Sao, Meiyue Shao, I.  Yamazaki



Local computation 
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Loop through N steps: (Gaussian Elimination) 
  FOR ( k = 1, N )  { 

1)  Gather sparse blocks A(:, k) and A(k,:) into dense work[] 
2)  Call dense GEMM on work[] 
3)  Scatter work[] into remaining sparse blocks 

    } 
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Schur complement update on each MPI rank 



Intel Xeon Phi: Knights Landing 

Cray XC40 supercomputer at NERSC: 
•  9688 KNL nodes: single socket 
•  2388 Haswell nodes: 2 sockets X 16 cores 
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KNL node 
 
•  72 cores @ 1.3 GHz, self hosted 
•  2 cores form a tile 
•  4 hardware threads per core (272 threads) 
•  2 512-bit (8 doubles) vector units (SIMD) 

Memory hierarchy 
•  L1 cache per core, 64 KB 
•  L2 cache per tile (2 cores share), 1MB 
•  16 GB MCDRAM, >400 GB/s peak bandwidth 
•  96 GB DDR4, 102 GB/s peak bandwidth 



SuperLU optimization on Cori KNL node (1/2) 
Work with Sam Williams, Jack Deslippe, Steve Leak, Thanh Phung 
 
  Replace small independent single-threaded MKL GEMMs by large 

multithreaded MKL GEMMs: 15-20% faster. 
  Use new OpenMP features: 10-15% faster. 

•  “task parallel” to reduce load imbalance 
•  “nested parallel for” to increase parallelism 
Vectorizing Gather/Scatter: 10-20% faster. 
•  Hardware support: Load Vector Indexed / Store Vector Indexed 

 
#pragma omp simd     // vectorized Scatter 
     for (i = 0; i < b; ++i) { 
                nzval[ indirect2[i] ] = nzval[ indirect[i] ] - tempv[i]; 
     } 

22 



SuperLU optimization on Cori KNL node (2/2) 

Reduce cache misses 
 
  TLB (Translation Look-aside Buffer): a small cache for mapping virtual 
address to physical address 
•  Large page requires smaller number of TLB entries 

  Alignment during malloc 
•  Page-aligned for large arrays à reduce TLB read frequency 
•  CacheLine-aligned malloc for threads-shared data structures à reduce 

L1 read frequency,  avoid false sharing 
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Single node improvement 

  up to 80% faster. 
  Future work: auto generate/tune GEMM of different shapes. 
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nlpkkt80,             n = 1.1M, nnz = 28M 
Ga19As19H42,  n = 1.3M, nnz = 8.8M 
RM07R,              n = 0.3M, nnz = 37.5M 



Arithmetic Intensity 

  Arithmetic Intensity (AI) ~ Total Flops / Total DRAM Bytes 
  E.g.: dense matrix-matrix multiplication: n3 flops / n2 memory 

  Higher AI à better locality à amenable to many optimizations à 
achieve higher % machine peak  
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A r i t h m e t i c  I n t e n s i t y 

O( N ) 
O( log(N) ) 

O( 1 ) 

SpMV, BLAS1,2 

Stencils (PDEs) 

Lattice Methods 

FFTs 
Dense Linear Algebra 

(BLAS3) 
Naïve Particle Methods PIC codes 

(S. Williams) 



Roofline model (S. Williams) 

  Is the code computation-bound or memory-bound? 
  Synthesize communication, computation, and locality into a single 

visually-intuitive performance figure using bound analysis 
  Assume perfect overlap computation and communication w/ DRAM 
  Arithmetic Intensity (AI) is computed based on DRAM traffic 

     
E.g.: DGEMM  AI = 2*M*N*K / (M*K + K*N + 2*M*N) / 8 
 

  Time is the maximum of the time required to transfer the data and 
the time required to perform the floating point operations. 
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Attainable 
GFLOP/s = min 

Peak GFLOP/s 

AI * Peak GB/s  



GEMM dimension profile 
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GEMM {m, n} dimensions GEMM {k, n} dimensions 

DGEMMs performance profile 

•  nlpkkt80 :  n = 1.1M, nnz = 28M,  ~70,000 supernodes 
•  non-uniform block size, non-square, many blocks are small  



DGEMM roofline performance bound 
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DGEMMs performance profile AI = 2*M*N*K / (M*K + K*N + 2*M*N) / 8 



Tools for constructing Roofline model 

  Software: 
http://crd.lbl.gov/departments/computer-science/PAR/research/
roofline 

•  LIKWID: Erlangen Regional Computing Centre 
•  Lightweight, support Intel, IBM POWER, ARM 

•  SDEVTune: Intel 
•  Advisor: Intel 
•  NVProf: Nvidia 

 
  Publications 

http://crd.lbl.gov/departments/computer-science/PAR/research/
roofline/publications/ 
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GPU computing 
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Cray XK7 (Titan at ORNL): 16-core AMD + K20X GPU   



Design questions for accelerator / co-processor 

  Use CPU as well ? 
  current accelerator DRAM still small 

  à use “offload” mode. 
  What to offload? 

  Panel factorization not suitable for fine-grained data-parallel model 
  à offload only Schur complement update 

Schur complement update: GEMM, and Gather/Scatter? 
  GEMM only – compute intensive 
  Both GEMM and Gather/Scatter – indirect addressing, memory 
intensive. 

  Key: overlap activities on both sides to hide PCIe latency 
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HALO algorithm – Highly Asynchronous Lazy Offload 

  Two partial sums of Schur-complement are maintained separately 
on CPU and GPU 

  Reduce to-be-factorized panel on CPU, absorbing GPU’s panel 
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HALO algorithm – Highly Asynchronous Lazy Offload 

  Two partial sums of Schur-complement are maintained separately 
on CPU and GPU 

  Reduce to-be-factorized panel on CPU, absorbing GPU’s panel 
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HALO algorithm – Highly Asynchronous Lazy Offload 
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HALO algorithm – Highly Asynchronous Lazy Offload 

  Two partial sums of Schur-complement are maintained separately 
on CPU and GPU 

  Reduce to-be-factorized panel on CPU, absorbing GPU’s panel 
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HALO algorithm – Highly Asynchronous Lazy Offload 

  Two partial sums of Schur-complement are maintained separately 
on CPU and GPU 

  Reduce to-be-factorized panel on CPU, absorbing GPU’s panel 
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Software pipelining to hide PCIe costs 
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Programming in CUDA 

CPU and GPU have separate memory ... like distributed memory 
programming 
 
At each step: 

•  For each CUDA stream: 
•  cudaMemcpyAsync(…,  HostToDevice) 
•  cublasDgemm(); Scatter  
•  cudaMemcpyAsync(…,  DeviceToHost) 

•  CPU performs its own panel factorization, and Schur complement 
update 
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Strong scaling on Titan: MPI + OpenMP + CUDA 

At large number of MPI processes, panel factorization becomes bottleneck 
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Summary 

  Refactor existing codes and implement new codes for current and 
next-generation machines (exascale in 2021) 
  Fully exploit manycore node architectures 

•  Vectorization, multithreading, … 
•  GPU accelerator 

  Reduce communication and synchronization 

  Explore new algorithms that require lower arithmetic complexity, 
communication and synchronization, faster convergence rate 

SuperLU: new 3D algorithm to reduce communication 
  STRUMPACK: “inexact” direct solver, preconditioner, based on 
hierarchical low rank structures: HSS, HODLR, etc. 
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THANK YOU 


