
Exploiting Parallelism in Sparse Direct Solvers
Part I

Xiaoye Sherry Li
xsli@lbl.gov

Lawrence Berkeley National Laboratory

Woudschoten Conference, Oct. 3-5, 2018

Plan

Focus on the following areas:
•  Parallelism
•  Numerical operations
•  Implementation on HPC systems
•  Analyzing performance bottlenecks

2

Sparse factorizations

  Core function for indefinite, ill-conditioned, algebraic equations
(e.g., those from multiphysics, multiscale simulations)

SuperLU: direct solver
  STRUMPACK: “inexact” direct solver, preconditioner

  Usage scenarios
  Stand-alone solver
  Good for multiple right-hand sides
  Precondition Krylov solvers
  Coarse-grid solver in multigrid (e.g., Hypre)
  In nonlinear solver (e.g., SUNDIALS)
  Solving interior eigenvalue problems
  ….

è Bottom of the solvers toolchain. Can package as “black-box”

3

Example software stack

4

5

  Parallel machines
  Shared memory
  Shared address space
  Message passing
  Data parallel: vector processors
  Clusters of SMPs
  Cloud

  Programming model reflects hardware
  Historically, tight coupling
  Today, portability is important

6

Parallel programming models

  Control
  How is parallelism created?
  What orderings exist between operations?
  How do different threads of control synchronize?

  Data
  What data is private vs. shared?
  How is logically shared data accessed or communicated?

  Operations
  What are the atomic (indivisible) operations?

  Cost
  How do we account for the cost of each of the above?

OpenMP shared-memory programming

  Share the node address space.

  Most data shared within node.
  Threads communicate via
 memory read & write.
  Concurrent write to shared
 data needs locking or
 atomic operation.

7

F o r k

J o i n

Master thread

Thread 1 Thread 5

Shared data

Private data

Master thread

Private data

8

Incorrect program

•  There is a race condition on variable “s” in the program
•  A race condition or data race occurs when:

-  two threads access the same variable, and at least one does a
write.

-  the accesses are concurrent (not synchronized) so they could
happen simultaneously

Thread 1

 for i = 0, n/2-1
 s = s + x(i)*y(i)

Thread 2

 for i = n/2, n-1
 s = s + x(i)*y(i)

int s = 0;

9

Correct program

  Most computation is on private variables
  Sharing frequency is also reduced, which might improve speed
  Race condition is fixed by adding locks to critical region (only one
thread can hold a lock at a time; others wait for it)

  Shared-memory programming standards: OpenMP, Pthreads

Thread 1

 local_s1 = 0
 for i = 0, n/2-1
 local_s1 = local_s1 + x(i)*y(i)

 s = s + local_s1

Thread 2

 local_s2 = 0
 for i = n/2, n-1
 local_s2= local_s2 + x(i)*y(i)

 s = s +local_s2

int s = 0;
Lock lk;

lock(lk);

unlock(lk);

lock(lk);

unlock(lk);

Dot product using OpenMP in C

int n = 100;
double x[100], y[100];
double s = 0, local_s;

#pragma omp parallel shared (s) private (local_s)
{
 local_s = 0.0;
 #pragma omp for
 for (i = 0; i < n; ++i) {
 local_s = local_s + x[i] * y[i];
 }
 #pragma omp critical
 {
 s = s + local_s;
 }
}

10

9

Machine model 2: distributed memory

  Each processor has its own memory and cache, but cannot
directly access another processor’s memory.

  Each “node” has a Network Interface (NI) for all communication
and synchronization.

interconnect

P0

memory

NI

. . .

P1

memory

NI Pn

memory

NI

12

MPI distributed-memory programming

•  Program consists of a collection of named processes
  Usually fixed at program startup time
  Thread of control plus local address space – NO shared data

•  Processes communicate by explicit send/receive pairs
  Coordination is implicit in every communication event

Pn P1 P0

y = ..s ...

s: 12

i: 2

s: 14

i: 3

s: 11

i: 1

send P1,s

Network

receive Pn,s

Private
memory

11

Distributed dot product

Processor 1

 s = 0
 for i = 0, n/2-1
 s = s + x(i)*y(i)
 MPI_Recv(s_remote, p2,...)
 MPI_Send(s, p2, ...)
 s = s + s_remote

Processor 2

 s = 0
 for i = 0, n/2-1
 s = s + x(i)*y(i)
 MPI_Send(s, p1, ...)
 MPI_Recv(s_remote, p1,...)
 s = s + s_remote

14

MPI – the de facto standard

  MPI has become the de facto standard for parallel computing using
message passing

  Pros and Cons
  MPI created a standard for applications development in the HPC
community à portability
  The MPI standard is a least common denominator building on mid-80s
technology, so may discourage innovation

  MPI tutorial:
 https://computing.llnl.gov/tutorials/mpi/
 https://computing.llnl.gov/tutorials/mpi/exercise.html

Other machines & programming models

  Data parallel
  SIMD / vector: Intel AVX2, AVX-512 (KNL)
  GPU, at a larger scale

  Hybrid: cluster of multicore & GPU nodes
  MPI + X: (X = OpenMP, CUDA/OpenCL, …)
  Global Address Space programming (GAS languages)

  UPC++, https://bitbucket.org/berkeleylab/upcxx
  Local and shared data, as in shared memory model
  But, shared data is partitioned over multiple processes
  RMA access: Get / Put
  Remote Procedure Call (RPC)

15

16

Amdahl’s law bounding maximum speedup

  Suppose only part of an application is parallel
  Amdahl’s law

  Let s be the fraction of work done sequentially, so (1-s) is parallelizable
  P = number of cores

 (e.g., s = 1% à speedup <= 100)

  Even if the parallel part speeds up perfectly, performance is limited by
the sequential part

Speedup(P) = Time(1)/Time(P)

 <= 1/(s + (1-s)/P)

 <= 1/s

17

Overheads of parallelism

  Overheads include:
  cost of starting a thread or process
  cost of communicating shared data
  cost of synchronizing
  extra (redundant) computation

  Each of these can be in the range of milliseconds
 (= millions of flops) on some systems

  Tradeoff: Algorithm needs sufficiently large units of work to run fast

in parallel (i.e. large granularity), but not so large that there is not
enough parallel work

Sketch of SuperLU direct solver – communication pattern

18

0

3 4

0 1 2

3 4 5 3

0 2 0 1

3 4 5 3 4 5

0 1 2 0 1 2 0

1

1

2

2

5

0 1

4

0 1 2 0

3 4 5

2

5

0

0

3

3

3

look−ahead window

•  Graph at step k+1 differs from step k
•  Panel factorization on critical path

XL, J. Demmel, J. Gilbert, L. Grigori, Y. Liu, P. Sao, Meiyue Shao, I. Yamazaki

Panel Factorization Schur-complement Update

SuperLU direct solver – communication pattern

10/10/18
19

0

3 4

0 1 2

3 4 5 3

0 2 0 1

3 4 5 3 4 5

0 1 2 0 1 2 0

1

1

2

2

5

0 1

4

0 1 2 0

3 4 5

2

5

0

0

3

3

3

look−ahead window

•  Graph at step k+1 differs from step k
•  Panel factorization on critical path

8 x 16 MPI
process grid:
Send-Right
profile

Panel Factorization Schur-complement Update

Developers: XL, J. Demmel, J. Gilbert, L. Grigori, P. Sao, Meiyue Shao, I. Yamazaki

Local computation

20

Loop through N steps: (Gaussian Elimination)
 FOR (k = 1, N) {

1)  Gather sparse blocks A(:, k) and A(k,:) into dense work[]
2)  Call dense GEMM on work[]
3)  Scatter work[] into remaining sparse blocks

 }

����

�

���� �

����
�

� ��������
�

	
������� ������������

����}

Schur complement update on each MPI rank

Intel Xeon Phi: Knights Landing

Cray XC40 supercomputer at NERSC:
•  9688 KNL nodes: single socket
•  2388 Haswell nodes: 2 sockets X 16 cores

21

KNL node

•  72 cores @ 1.3 GHz, self hosted
•  2 cores form a tile
•  4 hardware threads per core (272 threads)
•  2 512-bit (8 doubles) vector units (SIMD)

Memory hierarchy
•  L1 cache per core, 64 KB
•  L2 cache per tile (2 cores share), 1MB
•  16 GB MCDRAM, >400 GB/s peak bandwidth
•  96 GB DDR4, 102 GB/s peak bandwidth

SuperLU optimization on Cori KNL node (1/2)
Work with Sam Williams, Jack Deslippe, Steve Leak, Thanh Phung

  Replace small independent single-threaded MKL GEMMs by large

multithreaded MKL GEMMs: 15-20% faster.
  Use new OpenMP features: 10-15% faster.

•  “task parallel” to reduce load imbalance
•  “nested parallel for” to increase parallelism
Vectorizing Gather/Scatter: 10-20% faster.
•  Hardware support: Load Vector Indexed / Store Vector Indexed

#pragma omp simd // vectorized Scatter
 for (i = 0; i < b; ++i) {
 nzval[indirect2[i]] = nzval[indirect[i]] - tempv[i];
 }

22

SuperLU optimization on Cori KNL node (2/2)

Reduce cache misses

  TLB (Translation Look-aside Buffer): a small cache for mapping virtual
address to physical address
•  Large page requires smaller number of TLB entries

  Alignment during malloc
•  Page-aligned for large arrays à reduce TLB read frequency
•  CacheLine-aligned malloc for threads-shared data structures à reduce

L1 read frequency, avoid false sharing

23

Single node improvement

  up to 80% faster.
  Future work: auto generate/tune GEMM of different shapes.

24

nlpkkt80, n = 1.1M, nnz = 28M
Ga19As19H42, n = 1.3M, nnz = 8.8M
RM07R, n = 0.3M, nnz = 37.5M

Arithmetic Intensity

  Arithmetic Intensity (AI) ~ Total Flops / Total DRAM Bytes
  E.g.: dense matrix-matrix multiplication: n3 flops / n2 memory

  Higher AI à better locality à amenable to many optimizations à
achieve higher % machine peak

25

A r i t h m e t i c I n t e n s i t y

O(N)
O(log(N))

O(1)

SpMV, BLAS1,2

Stencils (PDEs)

Lattice Methods

FFTs
Dense Linear Algebra

(BLAS3)
Naïve Particle Methods PIC codes

(S. Williams)

Roofline model (S. Williams)

  Is the code computation-bound or memory-bound?
  Synthesize communication, computation, and locality into a single

visually-intuitive performance figure using bound analysis
  Assume perfect overlap computation and communication w/ DRAM
  Arithmetic Intensity (AI) is computed based on DRAM traffic

E.g.: DGEMM AI = 2*M*N*K / (M*K + K*N + 2*M*N) / 8

  Time is the maximum of the time required to transfer the data and
the time required to perform the floating point operations.

26

Attainable
GFLOP/s = min

Peak GFLOP/s

AI * Peak GB/s

GEMM dimension profile

27

GEMM {m, n} dimensions GEMM {k, n} dimensions

DGEMMs performance profile

•  nlpkkt80 : n = 1.1M, nnz = 28M, ~70,000 supernodes
•  non-uniform block size, non-square, many blocks are small

DGEMM roofline performance bound

28

DGEMMs performance profile AI = 2*M*N*K / (M*K + K*N + 2*M*N) / 8

Tools for constructing Roofline model

  Software:
http://crd.lbl.gov/departments/computer-science/PAR/research/
roofline

•  LIKWID: Erlangen Regional Computing Centre
•  Lightweight, support Intel, IBM POWER, ARM

•  SDEVTune: Intel
•  Advisor: Intel
•  NVProf: Nvidia

  Publications

http://crd.lbl.gov/departments/computer-science/PAR/research/
roofline/publications/

29

GPU computing

30

Cray XK7 (Titan at ORNL): 16-core AMD + K20X GPU

Design questions for accelerator / co-processor

  Use CPU as well ?
  current accelerator DRAM still small

 à use “offload” mode.
  What to offload?

  Panel factorization not suitable for fine-grained data-parallel model
 à offload only Schur complement update

Schur complement update: GEMM, and Gather/Scatter?
  GEMM only – compute intensive
  Both GEMM and Gather/Scatter – indirect addressing, memory
intensive.

  Key: overlap activities on both sides to hide PCIe latency

31

HALO algorithm – Highly Asynchronous Lazy Offload

  Two partial sums of Schur-complement are maintained separately
on CPU and GPU

  Reduce to-be-factorized panel on CPU, absorbing GPU’s panel

32

n ns

A

n nsk

A
A(

:,k
+1

)
L(

k)

L(
k)

A
(:,

k+
1)

A(k+1,:) A (k+1,:)
U(k) U (k)

P. Sao, R. Vuduc, and X.S. Li, “A distributed CPU-GPU sparse direct solver”, Proc. of Euro-Par 2014 Parallel Processing,
August 25-29, Porto, Portugal.

P. Sao, X. Liu, R. Vuduc, and X.S. Li, “A Sparse Direct Solver for Distributed Memory Xeon Phi-accelerated Systems”,
IPDPS 2015, May 25-29, 2015, Hyderabad, India.

HALO algorithm – Highly Asynchronous Lazy Offload

  Two partial sums of Schur-complement are maintained separately
on CPU and GPU

  Reduce to-be-factorized panel on CPU, absorbing GPU’s panel

33

HALO algorithm – Highly Asynchronous Lazy Offload

  Two partial sums of Schur-complement are maintained separately
on CPU and GPU

  Reduce to-be-factorized panel on CPU, absorbing GPU’s panel

34

HALO algorithm – Highly Asynchronous Lazy Offload

  Two partial sums of Schur-complement are maintained separately
on CPU and GPU

  Reduce to-be-factorized panel on CPU, absorbing GPU’s panel

35

HALO algorithm – Highly Asynchronous Lazy Offload

  Two partial sums of Schur-complement are maintained separately
on CPU and GPU

  Reduce to-be-factorized panel on CPU, absorbing GPU’s panel

36

HALO algorithm – Highly Asynchronous Lazy Offload

  Two partial sums of Schur-complement are maintained separately
on CPU and GPU

  Reduce to-be-factorized panel on CPU, absorbing GPU’s panel

37

Copy	on	CPU	

L(
k)
	

U(k)	

Copy	on	Co-processor	

PCIe	
L(
k)
	

U(k)	

Software pipelining to hide PCIe costs

38

Send A Panels(k+2)

Ti
m

el
in

e

Reduce(k)

Panel Fact.(k)

Schur-Comp.
 update(k)

CPU MIC

... ...

Reduce(k+1)

Panel Fact.(k+1)

Schur-Comp.
 update(k+1)

k+2

Reduce(k+2)

Panel Fact.(k+2)

Receive LU Panels(k)

Send A Panels(k+1)

Receive LU Panels(k+1)

Receive LU Panels(k+2)

Send A Panels(k+3)
Schur-Comp.
 update(k+2)

Schur-Comp.
 update(k)

Schur-Comp.
 update(k+1)

Schur-Comp.
 update(k+2)

PCIe

Programming in CUDA

CPU and GPU have separate memory ... like distributed memory
programming

At each step:

•  For each CUDA stream:
•  cudaMemcpyAsync(…, HostToDevice)
•  cublasDgemm(); Scatter
•  cudaMemcpyAsync(…, DeviceToHost)

•  CPU performs its own panel factorization, and Schur complement
update

39

Strong scaling on Titan: MPI + OpenMP + CUDA

At large number of MPI processes, panel factorization becomes bottleneck
40

Summary

  Refactor existing codes and implement new codes for current and
next-generation machines (exascale in 2021)
  Fully exploit manycore node architectures

•  Vectorization, multithreading, …
•  GPU accelerator

  Reduce communication and synchronization

  Explore new algorithms that require lower arithmetic complexity,
communication and synchronization, faster convergence rate

SuperLU: new 3D algorithm to reduce communication
  STRUMPACK: “inexact” direct solver, preconditioner, based on
hierarchical low rank structures: HSS, HODLR, etc.

41

References

•  Short course, “Factorization-based sparse solvers and
preconditioners”, 4th Gene Golub SIAM Summer School,
2013.https://archive.siam.org/students/g2s3/2013/index.html
  10 hours lectures, hands-on exercises
  Extended summary:
http://crd-legacy.lbl.gov/~xiaoye/g2s3-summary.pdf

 (in book “Matrix Functions and Matrix Equations”,
https://doi.org/10.1142/9590)

•  “The Landscape of Parallel Processing Research: The View from
Berkeley”
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/ECS-2006-183.pdf
•  Contains many references

•  Jim Demmel, Kathy Yelick, et al., UCB/CS267 lecture notes for
parallel computing class
https://sites.google.com/lbl.gov/cs267-spr2018/

42

THANK YOU

