
Sparse Direct Solvers II: The Key Ingredients

Jennifer Scott

STFC Rutherford Appleton Laboratory

and the University of Reading

Woudschoten Conference, 3-5 October 2018

Overview

Having given an introduction to sparse matrices and Sparse Direct
Methods, we now look at the different phases of a sparse direct
solver:

Step 2: Analyse

Step 3: Scale and Factorize

Step 4: Solve

Recall: Step 1 was reordering the matrix.

Step 2: Analyse

Graph theory used to analyse the sparsity pattern of the reordered
matrix (numerical values not generally used).

Sparse data structures needed by the factorization are set up.

Data structure used depends on the factorization algorithm and on
the computer architecture.

As architectures have changed, so too have the data structures but
we always only manipulate and store the entries that are non zero
(or we decide to treat as non zero).

Note: historically, the analyse phase was much faster than the
factorization. Considerable effort has gone into parallelising the
factorization so that the gap between the times for the two phases
has narrowed. Maybe able to reuse for series of problems.

We will assume that A has a symmetric sparsity pattern.

Key objectives of analyse:

I Identify sets of columns of A with the same (or similar)
sparsity patterns (supervariables). These are important in
applications where there are multiple degrees of freedom at a
finite-element node.

I Identify sets of columns of L with same (or similar) sparsity
patterns (supernodes).

I Determine an assembly tree that will be used to guide the
numerical factorization (recall: multifrontal algorithm).

Other tasks may include:

I handling errors in the user-supplied data (including
out-of-range indices and duplicate entries). Important for
inexperienced users when input data structures can be
complicated.

I modifying the ordering of the assembly tree to minimize
memory requirements.

I reordering variables within supernodes to increase cache
locality during the factorization.

The package HSL MC78 (Hogg and Scott 2010) performs these
common tasks and can be employed within a sparse direct solver
(eg used by HSL MA97).

Importance of supervariables

If the average number of variables in each supervariable is k, the
amount of integer data held during the analyse phase reduces by a
factor of about k2.

Problem n ne nsvar k Storage (Mbytes)
(103) (106) (103) Original Condensed

pkustk14 152 14.8 34 4.45 113 6
F1 344 26.8 120 2.85 204 25
af shell10 1508 52.3 302 5.00 401 16
audikw 1 944 77.6 314 3.00 592 65

nsvar is number of supervariables. The storage is the integer storage for
holding the sparsity pattern of A in its original form and in its condensed form.

Node amalgamation in assembly tree

Amalgamate parent node pnode with its child cnode if

I list of uneliminated variables at cnode is same as list of
variables at pnode (in this case no additional fill in)

I both involve fewer than nemin eliminations (nemin can be
chosen by user)

Results are:

I fewer nodes in the tree

I some zeros are treated as non zeros so increase in number of
entries in factors, memory requirements and flop count

I but if nemin chosen correctly, improved performance (in terms
of time) through greater use of dense linear algebra kernels

Supernodes

Consecutive columns with essentially identical sparsity structure
can often be found in a triangular factor (may be relaxed).

A supernode corresponds to a group of p consecutive columns
j , j + 1, ..., j + p − 1 in a triangular factor such that

I columns j , j + 1, ..., j + p − 1 have a dense diagonal block

I columns j , j + 1, ..., j + p − 1 have identical sparsity pattern
below row j + p − 1

Benefits:

I allows use of level 3 BLAS

I reduces amount of indirect addressing (inefficient)

I allows compact representation of factor sparsity structure

Step 3: Scale and factorize

Key issue: the factorization can become unstable (the size of
individual entries in the matrix factors L and U can grow so that
the computed solution is not close to the exact solution)

Remedy: incorporate numerical pivoting.

This means checking the size of the entries and performing row
(and column) interchanges as the factorization proceeds to limit
growth in the size of the entries.

Pivoting for stability

Recall first step of Gaussian elimination:

A =

(
α2 wT

v B

)
=

(
α 0

v/α I

)(
α wT

0 C

)

C = B − vwT/α.

If α is small, some entries in B may be lost from the calculation of
C . And if α = 0.0, we have breakdown.

Pivoting: swap the current diagonal entry with a larger entry.

Goal: control growth of entries in L and U and prevent breakdown
if pivot candiadte is zero.

Pivoting for stability

I Pivoting strategies:
I Total (complete) pivoting: at each stage, choose largest entry

in reduced matrix. Expensive in terms of time and fill in.

I Partial pivoting: select largest entry in first column of reduced
matrix.

I Rook pivoting: pivot must be largest in its row and column.

I Partial pivoting commonly used (cheap and usually OK).

I Rook pivoting has become more popular in recent years.

Pivoting for stability

I Pivoting strategies:
I Total (complete) pivoting: at each stage, choose largest entry

in reduced matrix. Expensive in terms of time and fill in.

I Partial pivoting: select largest entry in first column of reduced
matrix.

I Rook pivoting: pivot must be largest in its row and column.

I Partial pivoting commonly used (cheap and usually OK).

I Rook pivoting has become more popular in recent years.

Pivoting for stability

I Pivoting strategies:
I Total (complete) pivoting: at each stage, choose largest entry

in reduced matrix. Expensive in terms of time and fill in.

I Partial pivoting: select largest entry in first column of reduced
matrix.

I Rook pivoting: pivot must be largest in its row and column.

I Partial pivoting commonly used (cheap and usually OK).

I Rook pivoting has become more popular in recent years.

Pivoting for stability

I Pivoting strategies:
I Total (complete) pivoting: at each stage, choose largest entry

in reduced matrix. Expensive in terms of time and fill in.

I Partial pivoting: select largest entry in first column of reduced
matrix.

I Rook pivoting: pivot must be largest in its row and column.

I Partial pivoting commonly used (cheap and usually OK).

I Rook pivoting has become more popular in recent years.

Pivoting in the symmetric case

Let A = AT

I Compute A = LDLT . Only store L and D.

I Positive definite case: A = (LD1/2)(LD1/2)T with D diagonal
and L unit lower triangular. Cholesky factorization

I Indefinite case: Partial pivoting destroys symmetry so

I either move a large diagonal entry to (1,1) position, or
I move a large off-diagonal entry to (1,2) position and use 2× 2

pivot (
a11 a12
a12 a22

)
.

D is block diagonal with 1× 1 and 2× 2 blocks

Recall supernodes

A11

A21

m

p

The major numerical tasks to be performed on each supernode are:

Factor A11 = L11D11L
T
11;

Solve L21 = A21(D11L
T
11)−1;

Form S = L21D11L
T
21 (Schur complement); and

Scatter S across other supernodes.

Key difference from an otherwise equivalent dense factorization is
that pivots can only be selected from within A11.

But when selecting pivots, the factor task needs to take account of
the values of the entries in A21 as well as those in A11.

If a candidate pivot is found to be unsuitable, it is moved to a later
supernode for elimination. Such pivots are said to be delayed.

How do we decide if a pivot is suitable? In the sparse case,
selecting the largest entry in the column is too restrictive.

Pivot test

Given a pivot threshold u ∈ [0, 0.5], stability criteria:
I a 1× 1 pivot on column q is stable if

|a(q, q)| ≥ u max
i>q
|a(i , q)|,

I a 2× 2 pivot on columns q and q + 1 is stable if∣∣∣∣∣
(

a(q, q) a(q, q + 1)
a(q, q + 1) a(q + 1, q + 1)

)−1
∣∣∣∣∣
(

maxi>q+1 |a(i , q)|
maxi>q+1 |a(i , q + 1)|

)
≤
(
u−1

u−1

)
, .

These imply each entry in L is bounded by u−1 and growth
between consecutive steps (and hence in D) is at most u−1.

Choosing u is a balance between stability and sparsity.
Default often u = 0.01.

Effects of delayed pivots

If a candidate pivot fails the stability test, it must be delayed.
Consequences:

I More memory needed (during the factorization and to hold
the factors).

I Slows down the factorization and makes the solve more
expensive.

I Restricts the scope for parallelism.

I Makes programming much harder!

So we want to try and avoid delayed pivots.

Significant effort in recent years to limit the need for pivoting.

One way is to prescale A to make its entries “nice”.

Scaling: Equilibration

AS = D−1
R AD−1

C ,

where DR and DC are diagonal matrices, is an equilibration of A
if the norms of the rows and columns of AS have approximately
the same magnitude.
Define

DR = diag

(√
max

j
|Aij |

)
and DC = diag

(√
max

i
|Aij

)
.

More generally, the process can be applied iteratively. The norms
of the rows and columns tend to +1

Can prove linear convergence with asymptotic rate of 0.5 in the
∞− norm (in practice, only need a few iterations).

Algorithm is implemented in HSL code MC77.

Alternative approach: maximum matchings

Idea: permute A prior to GE to put large entries on the diagonal.

Why?
Would like to pivot down the diagonal (cheaper than searching for
off-diagonal pivots and no interchanges that destroy symmetry
needed).

Pivoting down diagonal may be more stable if large entries are on
diagonal.

Maximum matching algorithm implemented in HSL code MC64

(Duff and Koster): all diagonal entries are one and off-diagonal
entries less than one in absolute value.

There is also a symmetric variant: symmetrically permute large
entries to subdiagonal to use within 2× 2 pivots.

Example

Optimization augmented system problem ncvxqp1 (n = 12, 111).

This is a symmetric indefinite problem; we factorize using
multifrontal algorithm with partial pivoting.

Delayed pivots/time (seconds):

I No scaling: 1.7 ∗ 105 / 102

I Equilibration MC77: 4.0 ∗ 104 / 8.75

I Maximum matching MC64: 1.3 ∗ 104 / 2.34

In this example, MC64 is better than MC77 but not always the case.

Note: MC64 can be expensive (may cost more to scale than to
factorize). Recent work on cheaper versions (such as approximate
maximum matchings, parallel variants).
We recommend its use for “tough” symmetric indefinite problems.

Static pivoting

I Scale and put large entries on to diagonal (or subdiagonal)
first

I If necessary perturb small diagonal entries as factorization
progresses (static pivoting) so that pivot sequence not
altered. This means A + ∆AD = LU. The hope is that
A ≈ LU.

I Use iterative refinement (or FGMRES) to recover accuracy

Success not guaranteed ie may not obtain required accuracy. But

I can be useful if less accuracy is required

I can be significantly faster (if only a small number of steps of
refinement needed)

I factors may be much sparser so less memory required and
solve phase is faster.

Communication avoiding sparse LDLT

A key problem with pivoting is that it inhibits parallelism (all the
entries in a candidate pivot column have to be up-to-date before
we can be sure the pivot is ok).

Possible idea:

Try-it-and-see pivoting:

I Store a copy before pivoting

I Do numerical test a posteriori

I Back-track if it breaks

I Still need a fall back plan

Compressed pivoting (Hogg and Scott 2014)

n

p

2p

p

1. Compress information into small matrix

2. Determine pivot order

3. Execute pivoting

O(log n) messages rather than O(p log n)

?

Compressed pivoting (Hogg and Scott 2014)

n

p

2p

p

1. Compress information into small matrix

2. Determine pivot order

3. Execute pivoting

O(log n) messages rather than O(p log n)

?

Compressed pivoting (Hogg and Scott 2014)

n

p

2p

p

1. Compress information into small matrix

2. Determine pivot order

3. Execute pivoting

O(log n) messages rather than O(p log n)

?

Compressed pivoting (Hogg and Scott 2014)

n

p

2p

p

1. Compress information into small matrix

2. Determine pivot order

3. Execute pivoting

O(log n) messages rather than O(p log n)

?

Compressed pivoting (Hogg and Scott 2014)

n

p

2p

p

1. Compress information into small matrix

2. Determine pivot order

3. Execute pivoting

O(log n) messages rather than O(p log n)

?

Alternative approach: avoid pivoting by ordering for stability

MC64 can be used to combine scaling with ordering.
But while reducing delayed pivots

I it may not eliminate need for numerical pivoting and

I it can lead to more flops and factor fill than we would like.

Alternatives? Lungten, Schilders and Scott (2017) recently
proposed an approach for saddle-point systems

Kz = b, K =

[
A BT

B −C

]
,

with A n × n symmetric positive-definite, B m × n matrix of full
row rank with m < n, and C symmetric positive semidefinite.

They consider case where for some permutation matrices Pr , Pc

PrBPc = [B1 B2] ,

with B1 m ×m nonsingular upper triangular matrix.

Many practical applications where this is possible eg network
analysis of electronic circuits and water distribution pipe networks.

Lungten et al present algorithms to find suitable permutations.
Example: Original and permuted B

0 20 40 60 80 100

0

10

20

30

40

50

60
0 20 40 60 80 100

0

10

20

30

40

50

60

Now have

K =

 A11 A12 BT
1

A21 A22 BT
2

B1 B2 −C

Choose P to be the permutation matrix with columns

P = [e1 en+1 e2 en+2 . . . em en+m em+1 . . . en] ,

then
PTKP = [Kij],

where

Kij =

[
aii bii

bii −cii

]
, 1 ≤ i = j ≤ m;

[
aij bji

0 −cij

]
, 1 ≤ j < i ≤ m;[

aij 0

bij cij

]
, 1 ≤ i < j ≤ m;

[
aij

bij

]
, 1 ≤ i ≤ m < j ≤ n;

[
aij bji

]
, 1 ≤ j ≤ m < i ≤ n;

[
aii
]
, m < i , j ≤ n.

Compute a fill-reducing ordering for K by

1. compressing the adjacency graph of PKPT by considering
each block as a single entity and merging the sparsity patterns
of the rows and columns belonging to a 2× 2 diagonal block,

2. applying fill-reducing ordering (eg AMD) to compressed graph.

Lungten et al prove the existence of the resulting LDLT

factorization without modifying the pivot sequence (which is not
the case for the MC64 matching-based ordering).

Thus this is a possible approach to avoid pivoting and delayed
pivots for some tough saddle-point problems.

Another issue: the challenge of bit compatibility

Context: Subsequent runs on same problem give (slightly) different
answers Aim: Get the same answer every time.

1 + (ε/2 + ε/2) 6= (1 + ε/2) + ε/2

Why would we not require bit compatibility?

I If we don’t, answers are still equally valid

I More efficient: insisting on bit compatibility restricts
parallelism and optimization of the code.

I Compatibility is difficult to achieve.

I Must be achieved by all other software used by the solver.

The challenge of bit compatibility

Context: Subsequent runs on same problem give (slightly) different
answers Aim: Get the same answer every time.

1 + (ε/2 + ε/2) 6= (1 + ε/2) + ε/2

But its very attractive ...

I Hard to debug without it: make it an option?

I Confuses non-expert users.

I Software that uses the solver may behave unexpectedly.

I Some users insist on it (eg financial forecasting, nuclear
regulation ...

Achieving bit-compatibility

Must add up in the same order ie enforce ordering on additions:
Choose ((1 + 2) + 3) + 4 or (1 + 2) + (3 + 4)

Our parallel (multicore) multifrontal direct solver HSL MA97 (Hogg
and Scott 2011) guarantees bit compatibility.

Step 4: Solve

At this point, we are nearly done!

We have the factorization PAQ = LU and we have triangular
systems to solve. Ly = b and Ux = y

Traditionally, this was seen as the “cheap and easy” step but with
parallel computers it presents challenges. Need faster solve.

Context: The factors L and U must be read from memory

Enemy is: bandwidth

Note: much more economical to solve for several right-hand sides
b at once (only read the factors once and BLAS 3 can be used in
place of BLAS 2).

In general, the right-hand sides b are dense (or are treated as
dense).

In recent years, interest in solving systems where b is sparse (e.g.,
b could be a column of the identity), although solution x is dense.

In this case, significant savings may be possible.

Some solvers offer an option of inputting b as a sparse vector
(e.g., MUMPS).

This is still an active area.

Life is a journey, not a destination (R W Emerson 1920)

O’Connor (1985) Although sparse matrices may seem a rather
narrow and specialised topic, it has developed into a very active
area of research ... It draws on topics such as linear algebra,
numerical analysis, graph theory, combinatorics, data structures
and software design ...

Software for sparse matrix problems is not easy to design and
develop ...

So we need experts to do it and make it available ...

It is better to travel well than to arrive (Buddha)

Sparse direct solvers have had a relatively short history and have
been studied by a small but very active international community of
researchers.

Enormous progress has been made as problems are routinely solved
that would have been regarded as impossible when I began in this
field.

But challenges remain and constantly being developed

I Ever larger problems requiring real-time solutions.

I New application areas giving rise to problems with different
structures compared to more traditional engineering
applications.

I Exploitation of new computer architectures (operations are
cheap, memory accesses are expensive).

I Combining direct and iterative solvers to exploit the best of
both in hybrid approaches.

And there will be more that we have not yet thought of ...

All journeys have secret destinations of which the traveller is
unaware (M Buber, Jewish Philosopher)

Finally ... so what is behind backslash?

It actually depends on the characteristics of A.

If A is unsymmetric, an LU factorization is performed by
UMFPACK (Davis).

If A is symmetric and positive definite, a Cholesky factorization is
performed using supernodal solver CHOLMOD (Davis).

Otherwise, A is symmetric indefinite and the multifrontal sparse
solver MA57 (HSL, Duff) is employed.

To find out more, the recent book Direct Methods for Sparse
Matrices by Duff, Erisman and Reid (OUP 2017) is a great place
to start.

