
LLNL-PRES-759163

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Parallel Multigrid Reduction in Time –

Theory, Practice, and Applications
The forty-third Woudschoten Conference
Zeist, The Netherlands

Robert D. Falgout
Center for Applied Scientific ComputingOctober 3 - 5, 2018

2
LLNL-PRES-759163

▪ University collaborators and summer interns
— CU Boulder (Manteuffel, McCormick, Ruge, O’Neill, Mitchell, Southworth), Penn State (Brannick, Xu, Zikatanov),

UCSD (Bank), Ball State (Livshits), U Wuppertal (Friedhoff, Kahl), Memorial University (MacLachlan), U Illinois (Gropp,
Olson, Bienz), U Stuttgart (Röhrle, Hessenthaler), Monash U (De Sterck), TU Kaiserslautern (Günther)

▪ Software, publications, and other information

Our Multigrid and Parallel Time Integration
Research Team

http://llnl.gov/casc/hypre

http://llnl.gov/casc/xbraid

Lu

Wang

Veselin

Dobrev

Rob

Falgout

Ulrike

Yang

Panayot

Vassilevski

Tzanio

Kolev

Daniel

Osei-Kuffuor

Jacob

Schroder

Matthieu

Lecouvez

Ruipeng

Li

3
LLNL-PRES-759163

▪ Basic MGRIT algorithm, philosophy, and properties

▪ Software

▪ Space-time adaptivity

▪ Multistage and multistep methods
— Power grid simulations

▪ Hyperbolic problems

▪ Theory

▪ Richardson extrapolation

▪ New optimization feature in XBraid

▪ Summary and conclusions

Outline

4
LLNL-PRES-759163

Our approach for parallel-in-time: leverage
spatial multigrid research and experience

Error on the fine grid

Error approximated on

a smaller coarse grid

restriction

prolongation

(interpolation)

Multigrid

V-cycle

smoothing

(relaxation)

5
LLNL-PRES-759163

Significantly more parallel resources can be
exploited with multigrid in time

Parallelize in space only

Store only one time step

Parallelize in space and time

Store several time steps

Multigrid in time

x (space)
t

(t
im

e
)

Serial time stepping

x (space)

t
(t

im
e
)

6
LLNL-PRES-759163

▪ General one-step method

▪ Linear setting: time marching = block forward solve
— O(N) direct method, but sequential

▪ Our approach is based on multigrid reduction (MGR) methods
(approximate cyclic reduction)
— O(N) iterative method, but highly parallel

It’s useful to view the time integration problem
as a large block matrix system

7
LLNL-PRES-759163

▪ Relaxation alternates between F / C-points
— F-relaxation = integration over coarse intervals

▪ Coarse system is a time re-discretization
— Replaces the exact Petrov-Galerkin system

▪ Non-intrusive approach
— Time discretization is unchanged
— User only provides time integrator Φ

MGR dates to 1979 (Ries & Trottenberg) and we
are extending it “in time” (MGRIT)

F-relaxation

t0 t1 t2 t3


T0 T1


t

T = mt

tN

F-point

C-point

Coarse Petrov-Galerkin

system is not practical →

approximate it

8
LLNL-PRES-759163

▪ Combines algorithm development, theory, and software proof-of-principle

▪ Goal: Create concurrency in the time dimension

▪ Non-intrusive, with unchanged time discretization
— Implicit, explicit, multistep, multistage, …

▪ Converges to same solution as sequential time stepping

▪ Extends to nonlinear problems with FAS formulation

▪ XBraid is our open source implementation of MGRIT
— User defines two objects and writes several wrapper routines (Step)

— Only stores C-points to minimize storage

▪ Many active research topics, applications, and codes
— Adaptivity in space and time, moving meshes, BDF methods, …

— Linear/nonlinear diffusion, advection, fluids, power grid, elasticity, …

— MFEM, hypre, Strand2D, Cart3D, LifeV, CHeart, GridDyn

Our MGRIT approach builds as much as possible
on existing codes and technologies

9
LLNL-PRES-759163

▪ Parallel time integration is driven
entirely by hardware
— Time stepping is already O(N)

▪ Useful only beyond some scale
— There is a crossover point
— Sometimes need significantly more

parallelism just to break even
— Achievable efficiency is determined

by the space-time discretization and
degree of intrusiveness

Parallel speedups can be significant, but in an
unconventional way

3D Heat Equation: 333 x 4097,

8 procs in space, 6x speedup

▪ The more time steps, the more speedup potential

• Applications that require lots of time steps benefit first

• Speedups (so far) up to 49x on 100K cores

10
LLNL-PRES-759163

Software

11
LLNL-PRES-759163

XBraid is open source and designed to be both
non-intrusive and flexible

▪ User defines two objects:
— App and Vector

▪ User also writes several wrapper routines:
— Step, Init, Clone, Sum, SpatialNorm, Access, BufPack, BufUnpack
— Coarsen, Refine (optional, for spatial coarsening)

▪ Example: Step(app, u, status)
— Advances vector u from time tstart to tstop and

returns a target refinement factor

▪ Code stores only C-points to minimize storage
— Ability to coarsen by large factors means fewer parallel resources
— Memory multiplier per processor:

~O(log N) with time coarsening, O(1) with space-time coarsening
— Each proc starts with the right-most interval to overlap comm/comp

1) Post receive 2) Compute and send3) Compute

12
LLNL-PRES-759163

▪ Navier-Stokes (compressible and incompressible)
— Strand2D, CarT3D, LifeV (Trilinos-based)

▪ Heat equation (including moving mesh example)
— MFEM, hypre

▪ Nonlinear diffusion, the p-Laplacian
— MFEM

▪ Power-grid simulations
— GridDyn

▪ Explicit time-stepping coupled with space-time coarsening
— Heat equation
— Advection plus artificial dissipation
— MFEM, hypre

Experiments coupling XBraid with various
application research codes

13
LLNL-PRES-759163

Compressible Navier-Stokes (nonlinear) – up to
7.5x speedup, 4K cores, typical multigrid scaling

▪ Coupled XBraid with Strand-2D
— ~ 500 lines of XBraid code to wrap

13,500 lines of Strand-2D code
— ~ 3 weeks with minimal outside help

Velocity magnitude

at time step 5120

Iteration 1 Iteration 5 Iteration 13

14
LLNL-PRES-759163

Only a small amount of new code was required
to couple Strand2D & XBraid

▪ Defined two objects and wrote a handful of short routines to
wrap the existing 13,500 lines of code

Vector Object

App Object

Time Integration Routine (Phi / Step)

15
LLNL-PRES-759163

Space-Time Adaptivity

16
LLNL-PRES-759163

▪ Moving spatial mesh
— 1D diffusion with time dependent source
— Ben Southworth (CU Boulder)

▪ Temporal refinement
— ODE simulation of satellite orbit
— Matthieu Lecouvez (LLNL)

▪ Temporal and spatial refinement
— 2D heat equation with FOSLS formulation
— Ben O’Neill (CU Boulder)

▪ Current emphasis is on algorithmic development
— Demonstrating parallel speedup will come later

Exploring model problems to demonstrate adaptivity
approach and develop capability in Braid

17
LLNL-PRES-759163

▪ Mesh points move towards regions with rapidly changing
solution, induced by time dependent heat sources

Moving mesh proof-of-concept – 1D space,
nonlinear parabolic problem

Space

T
im

e
 →

▪ Initial spatial mesh is
uniform

▪ Time step:
— Evolve the solution on

the existing mesh
— Move the mesh based

on another PDE
— Remap the solution to

the new mesh

18
LLNL-PRES-759163

Moving mesh proof-of-concept – 1D space,
nonlinear parabolic problem

0

2.5

5

Space

T
im

e
 →

Iteration 0 (+FCF)

19
LLNL-PRES-759163

Moving mesh proof-of-concept – 1D space,
nonlinear parabolic problem

0

2.5

5

Space

T
im

e
 →

Iteration 1 (+FCF)

20
LLNL-PRES-759163

Moving mesh proof-of-concept – 1D space,
nonlinear parabolic problem

0

2.5

5

Space

T
im

e
 →

Iteration 2 (+FCF)

21
LLNL-PRES-759163

Moving mesh proof-of-concept – 1D space,
nonlinear parabolic problem

0

2.5

5

Space

T
im

e
 →

Iteration 4

Fast and scalable
convergence

Future: more
complex moving
mesh problems

22
LLNL-PRES-759163

Adaptivity in time/space via full multigrid (FMG)

▪ User returns refinement factor in Step()

▪ Example time grid hierarchy

▪ User requests refinement factors on the finest grid which
generates a new grid and hierarchy

Level 0

Level 1

Level 2

Level -1

Level 0

Level 1

Level 2

F-pointC-point (coarse grid)

2 24

Notice

new

C-pts

23
LLNL-PRES-759163

Temporal adaptivity proof-of-concept: Classic ODE
simulation of satellite orbit around earth and moon

▪ One region requires very fine time steps
— 4 orbit periods, refining step size as needed
— 2 variables in space (x, y)

T
im

e
 s

te
p
 s

iz
e

10-4

10-3

10-2

10-1

0 20 40
Time 20

x

y

24
LLNL-PRES-759163

Adaptivity in time and space: FOSLS formulation
for linear heat equation

▪ 2D Linear Heat Equation – 2nd order

▪ Backward Euler

▪ FOSLS functional (LSF): Find vk+1 such that G(vk+1) = ǁLvk+1 – fk+1ǁ
is minimized at each time step

25
LLNL-PRES-759163

Manufactured solution yields refined space-time
grids in the center of the space-time domain

26
LLNL-PRES-759163

Spatial and temporal adaptivity are done in the
same place in the FMG cycle

▪ This approach simplifies the code somewhat
— For example, can assume vector sum occurs on the same spatial grid

▪ Temporal and spatial adaptivity are currently done separately
— Temporal – based on Richardson extrapolation
— Spatial – based on FOSLS error estimator (LSF); FOSLS functional computed

locally on each cell; done with Coarsen() and Refine() functions

▪ Threshold refinement is used to mark the spatial mesh for refinement
— Refine only a given percentage of the total error (Dörfler marking)

Spatial and temporal

refinement done here

27
LLNL-PRES-759163

Some comments on results and plans

▪ Braid space-time solution resembles sequential case

▪ Without threshold refinement, get over-refinement
in both space and time at later time points
— Sequential uses 96 time steps
— Braid uses 126 time steps

▪ Need load balancing in the temporal dimension

▪ Parameters used:
— Time error tolerance = 0.0001
— Space LSF tolerance = 0.001
— Threshold refinement: 75% of global error

▪ Future: Add support for de-refinement

28
LLNL-PRES-759163

▪ Current temporal refinement approach, 5 processor example
— User provides rfactors = requested refinement factors

▪ Developed a load balancing feature (not yet in the release)
— User provides wfactors = weights to indicate time step costs
— Employs assumed partition algorithm from hypre

Load balancing is needed for space-time refinement
since the cost of each time step varies

Level 0
← wfactors1.0 1.08.0 1.0 1.0

Fine

2 24 1 1 ← r-factors

Refined

Refinement

Level -1

Refinement

29
LLNL-PRES-759163

▪ Space-time refinement has been used for many years in the
block-structured AMR community
— E.g., AMReX (BoxLib), Chombo, SAMRAI

Future work – providing support for space-time
refinement in block-structured AMR codes

space
ti
m

e

Space-time

space

ti
m

e

Space & Time

30
LLNL-PRES-759163

▪ XBraid Vector = finest spatial-grid unknowns + unknowns on
coarser grids nearby + other state data like flux arrays
— Or something similar… details will vary between SAMR frameworks

Time-stepping in SAMR is done via a recursive
algorithm on a hierarchy of structured grids

sync

sync

space

ti
m

e

Spatial Grids

31
LLNL-PRES-759163

▪ This could work for new space-time FE approaches being
developed, but another coarsening option is needed here

XBraid’s fixed coarsening factor approach will
not integrate well with SAMR codes

CF = 2

Note: no spatial coarsening

32
LLNL-PRES-759163

▪ New features need to be implemented
— Variable coarsening (not too difficult)
— Multilevel load balancing (harder)

Most natural coarsening strategy for SAMR is to
use reuse the XBraid FMG hierarchy

33
LLNL-PRES-759163

Multistage / Multistep Methods
and Power Grid Simulations

34
LLNL-PRES-759163

We are exploring parallel in time methods for
both multistage and multistep methods

▪ XBraid framework is designed for one-step time-integrators
(such as the multistage Runge-Kutta methods)

𝑢𝑛−1 𝑢𝑛

𝑢𝑛−1

𝑢𝑛
𝑢𝑛−𝑞

…

▪ Backward Difference Formula methods (BDF) are very efficient

— They are multistep methods

— They are much cheaper: require only one nonlinear solve per step

— Easily provide local error estimates, useful for time adaptivity

How can we use

multistep methods within

the XBraid framework?

35
LLNL-PRES-759163

Redefine with only one step

— 𝑤𝑛 =
𝑢2𝑛
𝑢2𝑛+1

= ෞ𝜑𝑛(𝑤𝑛−1) ≡
𝜑2𝑛 𝑢2𝑛−2, 𝑢2𝑛−1

𝜑2𝑛+1 𝑢2𝑛−1, 𝜑2𝑛 𝑢2𝑛−2, 𝑢2𝑛−1

To fit in the XBraid one-step framework, we use
a “trick”

▪ The multistep method can be rewritten as one-step method

— Step 1: 𝑢2𝑛 = 𝜑2𝑛 𝑢2𝑛−2, 𝑢2𝑛−1

Exactly the same
operations

— Step 2: 𝑢2𝑛+1 = 𝜑2𝑛+1 𝑢2𝑛−1, 𝑢2𝑛

▪ Redefine the stepping function as a one step method

— 𝑤𝑛 =
𝑢2𝑛
𝑢2𝑛+1

36
LLNL-PRES-759163

Grouping unknowns can lead to stability
problems with BDF methods

▪ We reduce the order on coarse time grids to maintain stability

▪ In almost all cases, this approach results in stability on all grids

37
LLNL-PRES-759163

Parallel-in-time for power grid systems

▪ Collaboration
— Phillip Top (GridDyn)
— Carol Woodward (SUNDIALS)
— MGRIT team (Lecouvez, Schroder, Falgout)

▪ GridDyn simulates real-word power grids

— Solves differential algebraic systems (DAEs)

— Uses SUNDIALS for sequential time integration

▪ Sequential time integration bottleneck is present
— Many time steps and a desire to achieve real-time and long-time simulations
— Limited spatial parallelism

WECC System: 179 buses

and 793 unknowns

𝐹(𝑡, 𝑦, 𝜕𝑦/𝜕𝑡) = 0

38
LLNL-PRES-759163

Parallel-in-time for power grid systems

▪ Target real-world scenarios with discontinuities
— Discontinuity-handling is critical to be relevant
— They arise due to equipment limit adjustments,

controls, faults, etc.
— Build on previous work*

▪ Model problem: apply square pulse to bus 143
of WECC system every 2 seconds
— Creates complex grid dynamics
— Strategy:

• Place a time point at each discontinuity
• Use temporal adaptivity around discontinuity
• Properly handle state at discontinuity

— Explore scalability w.r.t. number of discontinuities
• Longest simulation is 460s → 460 discontinuities

WECC System: 179 buses

and 793 unknowns

* Lecouvez, Falgout, Woodward, Top, “A Parallel Multigrid Reduction in Time Method for Power Systems,” PES, 2016.

50 MW

load

39
LLNL-PRES-759163

▪ Note that MGRIT coarsens well beyond a time-step size of 1 sec
— Coarsest grid has only 4 time points

Two solution components for bus 143

Angle at bus 143 Voltage at bus 143

40
LLNL-PRES-759163

Results: SDIRK-4 method and 5ms time-step size
– max speedup with 92K time steps ~53x

▪ Solver is robust with respect to the number of discontinuities
— Proper placement of time-points around discontinuity is critical

100 102 10

Total ore ount

101

102

R
u
n
ti
m
e
 s

Serial aseline

Serial aseline

Serial aseline

F cycle,

 cycle

F cycle,

 cycle

F cycle, 60

 cycle

41
LLNL-PRES-759163

Results: BDF2 method and 5ms time-step size
– max speedup with 92K time steps ~12x

▪ Solver is robust with respect to the number of discontinuities
— Proper placement of time-points around discontinuity is critical

100 102 10

Total ore ount

101

102

10

R
u
n
ti
m
e
 s
 Serial aseline

Serial aseline

Serial aseline

F cycle,

 cycle

F cycle,

 cycle

F cycle, 60

 cycle

42
LLNL-PRES-759163

Results: SDIRK-4 method with variable time-
stepping (nested iteration) – max speedup ~47x

▪ Adaptively refine around discontinuities for improved accuracy
— Approximately 114K time points

▪ Current research: discontinuities with unknown location

Refinement around

discontinuity at 𝑡 = 4.5

10-2

10-5

10-7

d
t

4.0 4.25 4.5 4.75 5.0
time

100 102 10

Total ore ount

101

102

R
u
n
ti
m
e
 s

Serial aseline F cycle, 60

 cycle

43
LLNL-PRES-759163

Hyperbolic Problems

44
LLNL-PRES-759163

▪ We have already had some initial success…

▪ 1D/2D advection and Burgers’ equation
— F-cycles needed (multilevel), slow growth in iterations
— Requires adaptive spatial coarsening
— Dissipation improves convergence
— Mainly SDIRK-k (implicit) schemes to date

▪ Combination of FCF relaxation, F-cycles, and
small coarsening factors improves robustness
— Confirmed by theory

▪ Navier-Stokes in 2D and 3D
— Multiple codes: Strand2D, Cart3D, LifeV, CHeart
— Compressible and incompressible
— Modest Reynolds numbers (100 – 1500)

Hyperbolic problems are a major new emphasis
for our MGRIT algorithm research

1D Inviscid Burgers

T
im

e
 →

Navier-Stokes

7.5x speedup in Strand2D

45
LLNL-PRES-759163

Compressible Navier-Stokes with Cart3D –
convergence is fast, ~5 iterations

▪ Taylor-Green problem: turbulent decay of vortex, Re=1600
— Higher-order spatial discretization on 583 x 20,000 Cartesian grid
— Velocity magnitude at x=0 cross-section

Serial Time Integration XBraid iteration 1

46
LLNL-PRES-759163

Adaptive space-time coarsening for linear
advection and inviscid Burgers’ equation

▪ Consider a scalar 1D conservation law

▪ Space discretization – vertex-centered finite volume approach
with Lax-Friedrichs flux approximation for 𝑓∗ 𝑡

▪ Time discretization – both implicit and explicit Euler

▪ Two equations:
— Linear advection: 𝑢𝑡 + 𝑎 𝑥, 𝑡 𝑢𝑥 = 0
— Inviscid Burgers’ equation: 𝑢𝑡 + 𝑢𝑢𝑥 = 0

𝜕𝑡𝑢 + 𝜕𝑥 𝑓 𝑢, 𝑥, 𝑡 = 0

𝜕𝑡𝑢𝑗 +
1

𝛿𝑥𝑗
𝑓
𝑗+

1

2

∗ 𝑡 − 𝑓
𝑗−

1

2

∗ 𝑡 = 0

47
LLNL-PRES-759163

Coarsening in space is detrimental when the
wave speed is small (showing iteration counts)

▪ Advection: 𝑢𝑡 + 𝑎𝑢𝑥 = 0, 𝑢0 𝑥 = sin
𝜋𝑥

2
, −2 ≤ 𝑥 ≤ 2, 0 ≤ 𝑡 ≤ 4

▪ Factor-2 space/time coarsening; geometric interpolation/restriction in space

Implicit

𝑁𝑥 × 𝑁𝑡 27 × 27 29 × 29 211 × 211 27 × 28 29 × 210 211 × 212

Time

only

2-level 14 15 15 50 100+ 100+

F-cycle 14 17 22 100+ 100+ 100+

Time +

Space

2-level 15 15 16 30 31 31

F-cycle 15 20 28 34 41 54

Time

only

2-level 8 8 8 7 7 7

F-cycle 8 9 10 8 34 100+

Time +

Space

2-level 64 92 92 100+ 100+ 100+

F-cycle 64 94 95 100+ 100+ 100+

Explicit

𝑎
=
1

𝑎
=
0
.1

48
LLNL-PRES-759163

Adaptive spatial coarsening – coarsen in space
only when wave speed is “large enough”

▪ Basic approach:
— Coarsen in space (factor 2) to build tentative coarse grids (all levels)
— Add points to each coarse grid if the wave speed is “small”:

▪ For implicit, this is sufficient

▪ For explicit, need to balance convergence and stability
— Mark cells as “keep”, “delete”, or “neutral” based on local Courant number
— If several “delete” cells are adjacent, coarsen the sequence by 2
— If a single “delete” cell lies between two “keep” cells, use a local coarse-grid Courant

number to make decisions

▪ For Burgers, we only have approximations to wave speeds
— Compute spatial grids for each iteration until the residual is “small”

if
𝜕𝑓

𝜕𝑢

𝛿𝑡

𝛿𝑥𝑗
< 𝑡𝑜𝑙 , add “keep” cell 𝑗

49
LLNL-PRES-759163

Space-time grids for linear advection (1) –
performance is similar to case with 𝒂 = 𝟏

▪ 𝑎 𝑥, 𝑡 = − sin2 𝜋 𝑥 − 𝑡 , 𝑁𝑥 = 𝑁𝑡 = 64

50
LLNL-PRES-759163

Space-time grids for linear advection (2) –
performance is similar to case with 𝒂 = 𝟏

▪ 𝑎 𝑥, 𝑡 = − sin 2.5𝜋𝑡 sin 𝜋𝑥 , 𝑁𝑥 = 𝑁𝑡 = 64

51
LLNL-PRES-759163

Space-time grids for inviscid Burgers’ equation –
convergence is not affected by shock

▪ 𝑢0 𝑥 = 0.25 − 0.75 sin
𝜋𝑥

16
, 𝑁𝑥 = 𝑁𝑡 = 64

▪ Convergence ~50% slower than explicit advection studies

— Still needs work, but initial results are promising

52
LLNL-PRES-759163

Status of adaptive space-time coarsening work

▪ Parallel speedups (so far) on IBM BG/Q at LLNL
— Explicit linear advection ~ 4x on 131K cores
— Implicit linear advection ~ 6x on 65K cores
— Burgers’ equation: still a work in progress

▪ Improving parallel results
— Main issue: need faster convergence
— Parallel space-time decomposition
— Additional optimizations to the code

▪ Next steps:
— Higher-order discs (less diffusive)
— Higher dimensions (2D/3D)

Strong scaling -

implicit linear advection

53
LLNL-PRES-759163

Theory

54
LLNL-PRES-759163

▪ Assume Φ and ΦΔ are simultaneously
diagonalizable with eigenvalues 𝜆𝜔, 𝜇𝜔

▪ Sharp bound for error propagator (FCF)

▪ Agnostic to space-time discretization
— But discretization affects convergence

▪ Eigenvalues (representative equation):
— Real (parabolic)
— Imaginary (hyperbolic without dissipation)
— Complex (hyperbolic with dissipation)

▪ Insights:
— FCF significantly faster
— High order can be faster or slower
— Small coarsening factors sometimes needed
— Artificial dissipation helps a lot

We developed a linear two-grid convergence
theory to guide MGRIT algorithm development

Global convergence bound

is max value on the y-axis

55
LLNL-PRES-759163

Richardson Extrapolation

56
LLNL-PRES-759163

▪ RE combines approximations at two scales to achieve higher order
— Consider fine and coarse grids with coarsening factor 𝑚
— Let 𝑢𝑓,𝑖 and 𝑢𝑐,𝑖 be 𝑘𝑔-order fine and coarse approximations at point 𝑖

▪ Note: RE does not guarantee improvement (asymptotic)

▪ Sequential RE:

Richardson extrapolation (RE) can extend MGRIT to
improve time step accuracy at almost no extra cost

𝑢∗,𝑖 = 𝑎 𝑢𝑓,𝑖 − 𝑏 𝑢𝑐,𝑖 ; 𝑎 =
𝑚𝑘𝑔

𝑚𝑘𝑔 − 1
; 𝑏 =

1

𝑚𝑘𝑔 − 1

Richardson

Extrapolation

57
LLNL-PRES-759163

▪ RE can be viewed as a forward solve of the following system
(considering the linear case again for simplicity)

RE is referred to as 𝝉-extrapolation in the
multigrid community → 𝝉-MGRIT

58
LLNL-PRES-759163

▪ Ideal Petrov-Galerkin coarse-grid operator

▪ Coarse-grid discretization = practical approximation to ideal

𝝉-MGRIT is derived similarly to MGRIT

59
LLNL-PRES-759163

▪ FAS coarse-grid equations (𝑏 = 0 is standard MGRIT):

▪ Right-hand-side is modified with “C-relaxation” below
— These are already computed quantities in standard MGRIT

𝝉-MGRIT involves a slight modification to the
FAS coarse-grid right-hand-side

= 𝑅𝐼 𝑔 − 𝐴𝑢 + 1 + 𝑏 𝐵Δ 𝑅𝐼𝑢 − 𝑏𝑅𝐼𝐴 𝑢

𝐵Δ 𝑢Δ = 𝑅𝐼 𝑔 − 𝐴𝜏𝑢 + 𝐵Δ 𝑅𝐼𝑢

60
LLNL-PRES-759163

▪ Error contraction bounds for F- and FCF-relaxation MGRIT

▪ Error contraction bounds for F- and FCF-relaxation 𝜏-MGRIT

Theory for 𝝉-MGRIT is similar to MGRIT results

Note

multiplier

61
LLNL-PRES-759163

▪ 𝜏-MGRIT = solid lines; MGRIT = dotted lines

F-relaxation – 𝝉-MGRIT is slightly slower,
but can increase convergence order

𝑚 = 4 𝑚 = 16

62
LLNL-PRES-759163

▪ 𝜏-MGRIT = solid lines; MGRIT = dotted lines

FCF-relaxation – 𝝉-MGRIT is slightly slower,
but can increase convergence order

𝑚 = 4 𝑚 = 16

63
LLNL-PRES-759163

▪ Exact solution:

Numerical experiments – first order ODE

SDIRK-1 SDIRK-2

64
LLNL-PRES-759163

▪ SDIRK-1 𝜏-MGRIT is not better than SDIRK-2 MGRIT, but …
— 𝜏-MGRIT potentially improves any given method at no extra cost

Digits accuracy per second, 1D Heat Equation

𝑚 = 4 𝑚 = 16

Compare

65
LLNL-PRES-759163

▪ RE provides an error estimate (uniform grid)

▪ RE on variably-spaced grids

▪ Error estimate on variably-space grid

𝝉-MGRIT is natural for adaptive time integration

66
LLNL-PRES-759163

New Optimization Feature in Xbraid:
XBraid-adjoint

67
LLNL-PRES-759163

Example1

▪ Objective: Lift maximization

▪ Design: Amplitudes of actuation

Runtimes

▪ Simulation: 2.5h

▪ Optimization: 1,152h

Motivation: PDE constrained optimization

Motivation

Speedup the optimization process with unsteady PDEs!

I Objective: Lift maximization

I Design: Amplitudes of actuation

Base flow Optimized flow

54% lift increase

Runt ime

Simulation 2.5h

Optimization 1152h
[Ötzkaya, Nemili et al., 2015]

Stefanie Günther et al. T ime-Parallel Simultaneous One-shot Opt imizat ion 2/ 20

Motivation

Speedup the optimization process with unsteady PDEs!

I Objective: Lift maximization

I Design: Amplitudes of actuation

Base flow Optimized flow

54% lift increase

Runt ime

Simulation 2.5h

Optimization 1152h
[Ötzkaya, Nemili et al., 2015]

Stefanie Günther et al. T ime-Parallel Simultaneous One-shot Opt imizat ion 2/ 20

1. Ötzkaya, Nemili et al., 2015

68
LLNL-PRES-759163

▪ Optimize objective function 𝐽, with a design variable 𝑢 (continuous)

▪ While satisfying constraint of the forward in time process, (continuous)
with state variable 𝑦 and initial condition 𝑔

Problem description:
Optimization with unsteady PDEs

69
LLNL-PRES-759163

▪ Optimize objective function 𝐽, with a design variable 𝑢 (discrete)

▪ While satisfying constraint of the forward in time process, (discrete)
with state variable 𝑦 and initial condition 𝑔

Problem description:
Optimization with unsteady PDEs

70
LLNL-PRES-759163

Form Lagrangian

1. State equations:

2. Adjoint equations:

3. Design equation:

First Order Optimality Conditions

71
LLNL-PRES-759163

Initial design 𝑢𝑖
For 𝑖 = 1, 2, …

1. State equations solve:

2. Adjoint equations solve:

3. Design update:

Nested Optimization Approach

Time

Parallel!

Time

Parallel!

72
LLNL-PRES-759163

▪ Solve for (reduced gradient of J w.r.t. design u)

XBraid-adjoint: three new wrapper routines of
existing user code to obtain time parallelism

Functions 2 and 3 allow XBraid to compute

Iteration k of XBraid-adjoint:

Reduced gradient:

XBraid-Adjoint

1. ObjectiveT:

2. Step_diff:

3. ObjectiveT_diff:

73
LLNL-PRES-759163

▪ Step_diff():

XBraid example: ex-01-adjoint.c

...

74
LLNL-PRES-759163

▪ ObjectiveT() and ObjectiveT_diff() are similar

▪ Initialize and run XBraid-adjoint:

XBraid example: ex-01-adjoint.c

...

75
LLNL-PRES-759163

▪ Parallel time integration is needed on future architectures
— Major paradigm shift for computational science!

▪ MGRIT algorithm extends multigrid reduction “in time”
— Non-intrusive yet flexible approach (open-source code XBraid)

▪ MGRIT approach is showing promise in a variety of settings
— Adaptivity in space and time, moving meshes, BDF methods, …
— Linear/nonlinear diffusion, advection, fluids, power grid, elasticity, …
— Coupling to codes: MFEM, hypre, Strand2D, Cart3D, LifeV, CHeart, GridDyn

▪ There is much future work to be done!
— More problem types, more complicated discretizations, performance

improvements, adaptive meshing, ...

Summary and Conclusions

Disclaimer

This document was prepared as an account of work sponsored by an agency of the

United States government. Neither the United States government nor Lawrence

Livermore National Security, LLC, nor any of their employees makes any warranty,

expressed or implied, or assumes any legal liability or responsibility for the accuracy,

completeness, or usefulness of any information, apparatus, product, or process

disclosed, or represents that its use would not infringe privately owned rights. Reference

herein to any specific commercial product, process, or service by trade name,

trademark, manufacturer, or otherwise does not necessarily constitute or imply its

endorsement, recommendation, or favoring by the United States government or

Lawrence Livermore National Security, LLC. The views and opinions of authors

expressed herein do not necessarily state or reflect those of the United States

government or Lawrence Livermore National Security, LLC, and shall not be used for

advertising or product endorsement purposes.

Thank You!

