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▪ University collaborators and summer interns
— CU Boulder (Manteuffel, McCormick, Ruge, O’Neill, Mitchell, Southworth), Penn State (Brannick, Xu, Zikatanov), 

UCSD (Bank), Ball State (Livshits), U Wuppertal (Friedhoff, Kahl), Memorial University (MacLachlan), U Illinois (Gropp, 
Olson, Bienz), U Stuttgart (Röhrle, Hessenthaler), Monash U (De Sterck), TU Kaiserslautern (Günther)

▪ Software, publications, and other information

Our Multigrid and Parallel Time Integration 
Research Team

http://llnl.gov/casc/hypre

http://llnl.gov/casc/xbraid
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▪ Multigrid (in space)
— Motivation and background
— Parallel multigrid

▪ Multigrid in time
— Motivation and basic approach
— MGRIT – multigrid reduction (MGR) in time
— Progress and current research (a quick preview of Thu)
— Historical background and connections
— An Approaching Paradigm Shift for Scientific Computing

▪ Summary and conclusions

Outline
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▪ For many applications, the fastest and most scalable 
solvers are multigrid methods

▪ Exascale solver algorithms will need to:
— Exhibit extreme levels of parallelism (exascale → 1B cores)
— Minimize data movement & exploit machine heterogeneity
— Demonstrate resilience to faults

▪ Multilevel methods are ideal
— Key feature: Optimal O(N)

▪ Research challenge:
— No optimal solvers yet for some applications, 

even in serial!
— Parallel computing increases difficulty

Multigrid will play an important role for 
addressing exascale challenges

Helmholtz Modes

Elasticity / Plasticity

Quantum 

Chromodynamics
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Multigrid solvers have O(N) complexity, and 
hence have good scaling potential

▪ Weak scaling – want constant solution time as problem size grows in 
proportion to the number of processors
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Multigrid (MG) uses a sequence of coarse grids 
to accelerate the fine grid solution

Error on the fine grid

Error approximated on 

a smaller coarse grid

restriction

prolongation

(interpolation)

Multigrid

V-cycle

smoothing

(relaxation)
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▪ ~ 1.5 million idle cores on Sequoia!

▪ Multigrid has a high degree of concurrency
— Size of the sequential component is only O(log N)!
— This is often the minimum size achievable

▪ Parallel performance model has the expected log term

Straightforward MG parallelization yields 
optimal-order performance for V-cycles



Level  1 Level  2 Level  L

𝑇𝑉 = 𝑂 log𝑁 (comm latency) + 𝑂 Γ𝑝 (comm rate) + 𝑂(Ω𝑝)(flop rate)
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▪ m x n denotes m MPI tasks and n OpenMP threads per node

▪ Largest problem above: 72B unknowns on 1.1M cores

Parallel AMG in hypre scales to 1.1M cores on 
Sequoia (IBM BG/Q)
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▪ Architecture trend: flat clock rates, more concurrency
— Traditional time stepping is becoming a sequential bottleneck

▪ Continued advancement in scientific simulation will require 
algorithms that are parallel in time

Parallel time integration is a major paradigm 
shift driven by hardware design realities

Data from 1970-2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, 

K. Olukotun, L. Hammond, and C. Batten. Data and plot for 2010-2015 by K. Rupp.
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▪ Is this really any different from space (e.g., diffusion)?

▪ MG is used routinely to solve the spatial problem

▪ Why not use it to solve the time problem too?

But how is parallel-in-time even possible?

Time
?T0

…
??

You can’t solve at a given time point until you know the solution at the previous point

… and you can’t compute the previous point until you know the one before that … etc.

?? ?XL

…
XR

…
? ?

… and the dependence is in both directions (is this harder or easier?)
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Our approach for parallel-in-time: leverage 
spatial multigrid research and experience

Error on the fine grid

Error approximated on 

a smaller coarse grid

restriction

prolongation

(interpolation)

Multigrid

V-cycle

smoothing

(relaxation)
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Time stepping is sequential

▪ Simple advection equation, 𝑢𝑡 = −𝑐𝑢𝑥

▪ Initial condition is a wave
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Time stepping is sequential

▪ Simple advection equation, 𝑢𝑡 = −𝑐𝑢𝑥

▪ Wave propagates serially through space

340  

Time Steps
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Time stepping is sequential

▪ Simple advection equation, 𝑢𝑡 = −𝑐𝑢𝑥

▪ Wave propagates serially through space

680

Time Steps
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Time stepping is sequential

▪ Simple advection equation, 𝑢𝑡 = −𝑐𝑢𝑥

▪ Wave propagates serially through space

1024

Time Steps
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Multigrid-in-time converges to the serial space-
time solution in parallel

▪ Simple advection equation, 𝑢𝑡 = −𝑐𝑢𝑥

▪ Random initial space-time guess (only for illustration)
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Multigrid-in-time converges to the serial space-
time solution in parallel

▪ Simple advection equation, 𝑢𝑡 = −𝑐𝑢𝑥

▪ Initial condition is a wave
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Multigrid-in-time converges to the serial space-
time solution in parallel

▪ Simple advection equation, 𝑢𝑡 = −𝑐𝑢𝑥

▪ Initial condition is a wave
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Multigrid-in-time converges to the serial space-
time solution in parallel

▪ Simple advection equation, 𝑢𝑡 = −𝑐𝑢𝑥

▪ Multilevel structure allows for fast data propagation

Iteration 1
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Multigrid-in-time converges to the serial space-
time solution in parallel

▪ Simple advection equation, 𝑢𝑡 = −𝑐𝑢𝑥

▪ Multilevel structure allows for fast data propagation

Iteration 2



21
LLNL-PRES-759099

Multigrid-in-time converges to the serial space-
time solution in parallel

▪ Simple advection equation, 𝑢𝑡 = −𝑐𝑢𝑥

▪ Multilevel structure allows for fast data propagation

Iteration 3
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Multigrid-in-time converges to the serial space-
time solution in parallel

▪ Simple advection equation, 𝑢𝑡 = −𝑐𝑢𝑥

▪ Already very close to the solution

Iteration 4

Highly Parallel!
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Significantly more parallel resources can be 
exploited with multigrid in time

Parallelize in space only

Store only one time step

Parallelize in space and time

Store several time steps

Multigrid in time
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▪ General one-step method

▪ Linear setting: time marching = block forward solve
— O(N) direct method, but sequential

▪ Our approach is based on multigrid reduction (MGR) methods 
(approximate cyclic reduction)
— O(N) iterative method, but highly parallel

It’s useful to view the time integration problem 
as a large block matrix system
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MGR dates to 1979 (Ries & Trottenberg) and we 
have extended it “in time” (MGRIT)

▪ Partition the grid into C-points and F-points and define so-called ideal 
restriction and interpolation operators

▪ Then, the following is a (two-level) error propagator for an exact method

▪ MGR replaces the coarse operator RF APF and extends relaxation to 
recursively define an optimal multilevel method
— Ries, Trottenberg (1979); Foerster, Stüben, Trottenberg (1981), Schröder (1954)

t0 t1 t2 t3


T0 T1


Coarse-grid correction F-relaxation
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▪ Relaxation alternates between F / C-points
— F-relaxation = integration over coarse intervals

▪ Coarse system is a time re-discretization
— Replaces the exact Petrov-Galerkin system 

▪ Non-intrusive approach
— Time discretization is unchanged
— User only provides time integrator Φ

Applying the ideal operators in MGRIT involves 
applying the time integrator 𝚽

F-relaxation

t0 t1 t2 t3


T0 T1


t

T = mt

tN

F-point

C-point

Coarse Petrov-Galerkin 

system is not practical →

approximate it
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▪ Combines algorithm development, theory, and software proof-of-principle

▪ Goal: Create concurrency in the time dimension

▪ Non-intrusive, with unchanged time discretization
— Implicit, explicit, multistep, multistage, …

▪ Converges to same solution as sequential time stepping

▪ Extends to nonlinear problems with FAS formulation

▪ XBraid is our open source implementation of MGRIT
— User defines two objects and writes several wrapper routines (Step)

— Only stores C-points to minimize storage

▪ Many active research topics, applications, and codes
— Adaptivity in space and time, moving meshes, BDF methods, …

— Linear/nonlinear diffusion, advection, fluids, power grid, elasticity, …

— MFEM, hypre, Strand2D, Cart3D, LifeV, CHeart, GridDyn

Our MGRIT approach builds as much as possible 
on existing codes and technologies
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▪ Parallel time integration is driven 
entirely by hardware
— Time stepping is already O(N)

▪ Useful only beyond some scale
— There is a crossover point
— Sometimes need significantly more 

parallelism just to break even
— Achievable efficiency is determined 

by the space-time discretization and 
degree of intrusiveness

Parallel speedups can be significant, but in an 
unconventional way

3D Heat Equation: 333 x 4097, 

8 procs in space, 6x speedup

▪ The more time steps, the more speedup potential

• Applications that require lots of time steps benefit first

• Speedups (so far) up to 49x on 100K cores
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XBraid is open source and designed to be both 
non-intrusive and flexible

▪ User defines two objects:
— App and Vector

▪ User also writes several wrapper routines:
— Step, Init, Clone, Sum, SpatialNorm, Access, BufPack, BufUnpack
— Coarsen, Refine (optional, for spatial coarsening)

▪ Example: Step(app, u, status)
— Advances vector u from time tstart to tstop and 

returns a target refinement factor

▪ Code stores only C-points to minimize storage
— Ability to coarsen by large factors means fewer parallel resources
— Memory multiplier per processor: 

~O(log N) with time coarsening, O(1) with space-time coarsening
— Each proc starts with the right-most interval to overlap comm/comp

1) Post receive 2) Compute and send3) Compute
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▪ Navier-Stokes (compressible and incompressible)
— Strand2D, CarT3D,  LifeV (Trilinos-based)

▪ Heat equation (including moving mesh example)
— MFEM, hypre

▪ Nonlinear diffusion, the p-Laplacian
— MFEM

▪ Power-grid simulations
— GridDyn

▪ Explicit time-stepping coupled with space-time coarsening
— Heat equation 
— Advection plus artificial dissipation
— MFEM, hypre

Experiments coupling XBraid with various 
application research codes
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Some Progress and Current 
Research Directions

(a quick preview of Thursday)
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▪ Assume Φ and ΦΔ are simultaneously 
diagonalizable with eigenvalues 𝜆𝜔, 𝜇𝜔

▪ Sharp bound for error propagator

▪ Agnostic to space-time discretization
— But discretization affects convergence

▪ Eigenvalues (representative equation):
— Real (parabolic)
— Imaginary (hyperbolic without dissipation)
— Complex (hyperbolic with dissipation)

▪ Insights:
— FCF significantly faster
— High order can be faster or slower
— Artificial dissipation helps a lot
— Small coarsening factors sometimes needed

We developed a linear two-grid convergence 
theory to guide MGRIT algorithm development

Global convergence bound 

is max value on the y-axis
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▪ We have already had some initial success…

▪ 1D/2D advection and Burgers’ equation
— F-cycles needed (multilevel), slow growth in iterations
— Requires adaptive spatial coarsening
— Dissipation improves convergence
— Mainly SDIRK-k schemes to date (implicit & explicit) 

▪ Combination of FCF relaxation, F-cycles, and 
small coarsening factors improves robustness
— Confirmed by theory

▪ Navier-Stokes in 2D and 3D
— Multiple codes: Strand2D, Cart3D, LifeV, CHeart
— Compressible and incompressible
— Modest Reynolds numbers (100 – 1500)

Hyperbolic problems are a major new emphasis 
for our MGRIT algorithm research

1D Inviscid Burgers

T
im

e
 →

Navier-Stokes

7.5x speedup in Strand2D
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▪ Moving spatial mesh
— 1D diffusion with time dependent source
— Unsteady flow around moving cylinder

▪ Temporal refinement via Full Multigrid (FMG)
— ODE simulation of satellite orbit
— DAE power grid simulations in GridDyn

(25x speedup)

▪ Temporal and spatial refinement
— 2D heat equation with FOSLS (6x speedup)

▪ Initial emphasis is algorithm development
— Demonstrating parallel speedup is 

the eventual goal

Adaptivity is an important feature of many codes and 
we have begun to develop support for it in XBraid

Space

T
im

e
 →

Spatial and temporal 

refinement done here
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▪ Higher order with Richardson 
Extrapolation MGRIT at no cost

▪ Adjoint-based MGRIT solver for 
design optimization

▪ Showed potential for speeding 
up neural network training

▪ Power grid simulation with 
discontinuities and adaptivity
— WECC 179 bus system
— 12x to 53x speedup
— Investigating approaches for 

unscheduled discontinuities

Other developments and research directions

1st order

2nd order
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Adaptive time grid 

around load discontinuity
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Some Historical Background 
and Connections
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Nearly 50 years of research exists but has only 
scratched the surface

▪ Earliest work goes back to 1964 by Nievergelt
— Led to multiple shooting methods, Keller (1968)

▪ Space-time multigrid methods for parabolic problems
— Hackbusch (1984); Horton (1992); Horton and Vandewalle (1995)
— The latter is one of the first optimal & fully parallelizable methods to date

▪ Parareal was introduced by Lions, Maday, and Turinici in 2001
— Probably the most widely studied method
— Gander and Vandewalle (2007) show that parareal is a two-level FAS multigrid method

▪ Discretization specific work includes
— Minion, Williams (2008, 2010) – PFASST, spectral deferred correction, FAS
— DeSterck, Manteuffel, McCormick, Olson (2004, 2006) – FOSLS

▪ Research on these methods continues to ramp up!
— Ruprecht, Krause, Speck, Emmett, Langer, … this is not an exhaustive list

▪ Recent review: Gander (2015), “50 years of time parallel time integration”
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Parareal is an important PinT algorithm with a 
connection to MGRIT

▪ Basic parallelization algorithm
— 𝐹 is called the fine propagator
— 𝐹Δ is the coarse propagator

▪ Update step (5) is usually written in the literature as

 parallel (fine)

 serial (coarse)
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▪ Parareal is an important PinT algorithm and Parareal researchers continue to 
make significant contributions to PinT research and development

▪ Two-level MGRIT with F-relaxation is a Parareal method 
(Gander/Vandewalle, SISC, 2007)

▪ However, conclusions about Parareal do not automatically apply to MGRIT

▪ Parareal is a two-level method, MGRIT is multilevel
— Two-level limits scalability

▪ Parareal convergence results often assume an exact fine-scale propagator
— From an MGRIT perspective, this is an infinite coarsening factor
— Hyperbolic problems in particular are much harder to handle in this setting

▪ Parareal is often viewed as an approach for discretizing in time
— Parallel predictor/corrector scheme, stability analysis, …
— MGRIT is primarily viewed as a parallel-in-time solver

Although they are related, MGRIT is not Parareal
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An Approaching Paradigm Shift for 
Scientific Computing
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There continues to be skepticism about the idea 
of parallel in time

▪ What about causality?
— PinT algorithms solve the same space-time system as time stepping

▪ What about shocks and discontinuities?
— Coarse temporal grids do not (by definition) and need not (by demonstration) 

capture fine-scale features

▪ PinT requires too much memory
— Eventually there will be ample resources (this is reminiscent of the transition 

from 2D-space to 3D-space in the 1990s)

▪ What about hyperbolic problems?
— This is indeed hard and requires more research (have made progress)

▪ PinT algorithms have terrible parallel efficiencies
— Parallel efficiencies for sequential time stepping are much worse
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▪ Results for 2D heat equation

In both strong and weak scaling settings, parallel 
in time eventually outperforms time stepping
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Strong scaling: 2572 × 16,384 grid, 

max speedup is 52x

Weak scaling: grid sizes range from 

1292 × 512 to  20492 × 131,072, 

max speedup is 12.8x
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Assumptions (accept these for the moment):

1. Scientists will continue to want higher fidelity simulations, requiring an increasing 
temporal dimension (unboundedly)

𝑛
𝑡𝑖𝑚𝑒→∞

∞

2. Simulation time for time stepping is linear in 𝑛 (𝑇0 is a fixed atomic time):
𝑇𝑠𝑒𝑞 ≳ 𝑛𝑇0

3. Simulation time for PinT is polylogarithmic in 𝑛:
𝑇𝑝𝑖𝑛𝑡 ≲ log𝑝(𝑛) 𝑇0

4. Scientists have a threshold beyond which they will switch to a faster method:
If  (𝑇𝑠𝑒𝑞 > 𝑇𝑡ℎ𝑟𝑒𝑠ℎ) and  (𝑇𝑠𝑒𝑞 > 𝑇𝑝𝑖𝑛𝑡) , switch to PinT

Result:

𝑛 > 𝑛0 ⟹ 𝑇𝑠𝑒𝑞 ≳ 𝑛𝑇0 > log𝑝 𝑛 𝑇0 ≳ 𝑇𝑝𝑖𝑛𝑡 ⟹ 4

A “proof” that science simulation codes will 
eventually need to use parallel in time (PinT)
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1. Scientists will continue to want higher fidelity simulations, requiring an increasing 
temporal dimension (unboundedly)

𝑛
𝑡𝑖𝑚𝑒→∞

∞

▪ Think of 𝑛 as being a function of available memory
— This one is not hard to argue with
— Can increase fidelity by adding new features such as UQ – delays growth of 𝑛

2. Simulation time for time stepping is linear in 𝑛 (𝑇0 is a fixed atomic time):
𝑇𝑠𝑒𝑞 ≳ 𝑛𝑇0

▪ Note that if  𝑇0 ∼ 1/𝑛 (e.g., due to clock speed increases), the simulation time threshold 
could be avoided
— This is what happened throughout the 1990’s and into the 2000’s

▪ Note also that the result (𝑇𝑠𝑒𝑞 > 𝑇𝑝𝑖𝑛𝑡) is true even if 𝑇0 is not fixed

Comments on assumptions 1 and 2
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3. Simulation time for PinT is polylogarithmic in 𝑛:
𝑇𝑝𝑖𝑛𝑡 ≲ log𝑝(𝑛) 𝑇0

▪ For multigrid (solving to discretization accuracy), 𝑝 = 2
— FMG cycles: fixed number of cycles with log2 𝑛 communication
— V cycles: log 𝑛 cycles with log 𝑛 communication

▪ Example: 𝑑 spatial dimensions with Δ𝑡 ∼ Δ𝑥

— 𝑇𝑝𝑖𝑛𝑡 ≲ log2 𝑛𝑑/(𝑑+1) 𝑇0 = 
𝑑

𝑑+1
log2 𝑛 𝑇0

— Temporal and spatial dimensions are smaller due to available memory 
— Similar result with smaller constant when Δ𝑡 ∼ Δ𝑥2

▪ Can show that speedup 𝑇𝑠𝑒𝑞/𝑇𝑝𝑖𝑛𝑡 increases with 𝑛
— This result does not require a fixed 𝑇0

▪ Major research issue – developing multigrid methods that have the right 
convergence behavior

Comments on assumption 3
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4. Scientists have a threshold beyond which they will switch methods:
If  (𝑇𝑠𝑒𝑞 > 𝑇𝑡ℎ𝑟𝑒𝑠ℎ) and  (𝑇𝑠𝑒𝑞 > 𝑇𝑝𝑖𝑛𝑡) , switch to PinT

▪ Scientists have different thresholds
— Importance of simulation time vs simulation accuracy varies

▪ Some applications will need PinT sooner than others
— Different constants in the models yield different crossover values of 𝑛

▪ Assumes that memory and parallelism continue to grow
— This is the expected trend for the foreseeable future
— Even quantum computing is all about providing extreme concurrency

▪ Result does not require fixed 𝑇0
— Even if 𝑇0 decreases, eventually we have 𝑇𝑠𝑒𝑞 ≫ 𝑇𝑝𝑖𝑛𝑡
— Increased parallelism is the real driver (not fixed clock speeds)

Comments on assumption 4
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▪ Need to worry about temporal solver convergence
— Time stepping is a direct solve of a temporal discretization method 

(traditionally no distinction between the two)

▪ Choice of explicit vs implicit method may change
— Cost of parallel time integration is the same for both

▪ Computational steering changes
— Intervention at coarse temporal scales across large timelines

▪ Full space-time adaptivity becomes commonplace
— Use coarse time “steps” in coarse spatial regions

▪ Unstructured space-time grids
— Method of lines not needed

A Paradigm Shift

∗ ∗ ∗
∗

Implicit Stencil

∗
∗ ∗ ∗

Explicit Stencil
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▪ Parallel time integration is needed on future architectures
— Major paradigm shift for computational science!

▪ MGRIT algorithm extends multigrid reduction “in time”
— Non-intrusive yet flexible approach (open-source code XBraid)

▪ MGRIT approach is showing promise in a variety of settings
— Adaptivity in space and time, moving meshes, BDF methods, …
— Linear/nonlinear diffusion, advection, fluids, power grid, elasticity, …
— Coupling to codes: MFEM, hypre, Strand2D, Cart3D, LifeV, CHeart, GridDyn

▪ There is much future work to be done!
— More problem types, more complicated discretizations, performance 

improvements, adaptive meshing, ...

Summary and Conclusions
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