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Two lectures:

» Part |I: Mathematical properties of nonlinear
eigenproblems (NEPSs)
m Definition and historical aspects
m Examples and applications
m Solution structure

» Part II: Numerical methods for NEPs
m Solvers based on Newton’s method
m Solvers using contour integrals
m Linear interpolation methods

S. GUTTEL AND F. TISSEUR, The nonlinear eigenvalue problem.
Acta Numerica 26:1-94, 2017.
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Solvers Based on Newton’s Method

Universi

m Newton’s method is a natural approach to compute
e’vals/e’vecs of NEPs provided good initial guesses are
available. Local quadratic convergence.

m Initial guess is the only crucial parameter = great
advantage over other NEP eigensolvers.

m Two broad ways NEP F(\)v = 0 can be tackled by a
Newton-type method:

» Apply Newton’s method to a scalar equation
f(z) = 0 whose roots are the wanted e’vals of F.

» Apply Newton’s method directly to the vector
problem F(\)v = 0 together with some
normalization condition on v.
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Newton’s Method for Scalar Function

Most obvious approach: Find roots of f(z) = detF(z) .
Combining Newton’s method with Jacobi’s formula
w _ FO9)
/(M)
f'(z) = detF(z)trace(F(2) 'F'(2)),

AT = )

we obtain the Newton-trace iteration [Lancaster 1966]

1

AK+T) — (k) )
trace (F(A()~1F'(A(K))
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Newton’s Method for Scalar Function

Most obvious approach: Find roots of f(z) = detF(z) .
Combining Newton’s method with Jacobi’s formula
A — \(K) (A1)
F(AW)
f'(z) = detF(z)trace(F(2) 'F'(2)),

we obtain the Newton-trace iteration [Lancaster 1966]

1
trace (F(A()~1F/(AK)))~

AK+T) — (k)

Potential problems:
@ Inverse of nearly singular F(A(9)) as A*) — ).
@ Requires F'(z) explicitly. Computationally expensive.
@ Initialization?
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Newton’s Method for Scalar Function (Cont.)

Kublanovskaya f(z) = r.n(2) , where rp,(2) is (n, n) entry of
R in rank-revealing QR decomposition of F(z),

F(z)II(z) = Q(z)R(z).
This yields the Newton-QR iteration for a root of r,,(2),
A = 2K — 1 /(ef Qe F' (A\0) 11k R, en).

At convergence, we can take x = IIkR, 'e,, y = Qxe, as
approx for the right and left e’'vecs of the converged e’val.
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Newton’s Method for Scalar Function (Cont.)

Kublanovskaya f(z) = r.n(2) , where rp,(2) is (n, n) entry of
R in rank-revealing QR decomposition of F(z),

F(z)II(z) = Q(z)R(z).
This yields the Newton-QR iteration for a root of r,,(2),
A = 2K — 1 /(ef Qe F' (A\0) 11k R, en).
At convergence, we can take x = IIkR, 'e,, y = Qxe, as

approx for the right and left e’'vecs of the converged e’val.

» Garret, Bai and Li (2016) propose an efficient
implementation for large banded NEPs.

» MATLAB and C++ implementations including deflation
are publicly available.
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Convergence basins

iz2
F(z) = ¢ has e'vals 0, +v/27, +iv27 in
N={zeC:-3<Re(z)<3,-3<1Im(z) <3}.

1 1
"».,_7" e B ' 3 ' ' *”"h‘* '

Newton-trace method Newton-QR method
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Convergence basins

F(z) = ei122 ] has e'vals 0, +v/2r, +iv2x in
N={zeC:-3<Re(z)<3,-3<1Im(z) <3}.
3 e : 3 : =7
25 2t
1 1
0 0f
1t -1 -A!.
2t 2t
3 -3_3
Newton-trace method Newton-trace (secant) method
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Newton-QR for Banded NEP

Consider the 1oaded_string problem defined by

A Cg)V:
— 0

with C;, C; tridiagonal and C; = e,el. n = 100.
Use NQR4UB [Garret and Li (2013)] to compute the 5 e'vals in
[4,296] with 1ambda0 = 4.

F()\)V: (01 —ACo + \

Residuals |r,n(\)|/||F(M)||F at eachiter. (N, vi) = %
. . T~ > i A | e vi) | me(A W)
10° o2y 14482 | 35617 | 3.7e-16
o 36372 | 3.1e17 | 2.1e-16
50 W 4123.0 | 2.7e-17 | 9.2e-17
5| 2022 | 49e-17 | 5.4e-16
9| 719.4 | 35e-17 | 1.8e-16
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Other Variants

Many variations based on scalar root finding exist:
@ Newton-LU [Yang 1983, Wobst 1987]

@ BDS (bordered, deletion, substitution) method
[Andrew/Chu/Lancaster 1995]

@ implicit determinant method [Spence/Poulton 2005]
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Newton’s Method for Vector Equation

Applying Newton’s method to A'[{] = 0 where
vi | FQ\)v
w5 = 1)

leads to the Newton’s iteration

VDT TR TEO®)  F®)e ] [ F(A®) )
A a0 0 wvk —1 |-

Other variants include
@ nonlinear inverse iteration [Unger 1950, Ruhe 1973]

@ two-sided Rayleigh functional iteration [Schreiber 2008]

@ residual inverse iteration [Neumaier 1985]
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lterative Projection Methods for NEPs

Let U € C™* with k < nand U*U = I, (search space) and
Q € C™k, @*Q = I (test space). Instead of solving
F(\)v =0, solve k x k projected NEP Q*F(J)Ux =0 (%)
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lterative Projection Methods for NEPs

Let U € C™* with k < nand U*U = I, (search space) and
Q € C™k, @*Q = I (test space). Instead of solving
F(\)v =0, solve k x k projected NEP Q*F(J)Ux =0 (%)

Let (9, x) be an e’pair of (x).
@ If ||[F(9¥)Ux| is small enough, accept (¢, Ux) as an
approximate e’pair for F.
@ If not, extend search space into span{U, Av} by one
step of Newton iteration with initial guess (¢, Ux).
Av solves the Jacobi—-Davidson correction eqn:

(I, — F(O)v@*)F(9) (I, — w*)Av = —F(J)v.

(Does not need to be solved accurately.)
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lterative Projection Methods for NEPs

Let U € C™* with k < nand U*U = I, (search space) and
Q € C™k, @*Q = I (test space). Instead of solving
F(\)v =0, solve k x k projected NEP Q*F(J)Ux =0 (%)

Let (9, x) be an e’pair of (x).
@ If ||[F(9¥)Ux| is small enough, accept (¢, Ux) as an
approximate e’pair for F.
@ If not, extend search space into span{U, Av} by one
step of Newton iteration with initial guess (¢, Ux).
Av solves the Jacobi—-Davidson correction eqn:

(I, — F(O)v@*)F(9) (I, — w*)Av = —F(J)v.
(Does not need to be solved accurately.)

Variations of Jacobi—Davidson for NEPs are proposed by
[Hochstenbach and Sleijpen (2003)], [Betcke and Voss (2004)], [Voss
(2007)] and [Effenberger (2013)].
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Deflation of Computed Eigenpairs

m Prevent the iteration from converging to already
computed eigenpairs.
m Maps the already computed eigenvalues to infinity.

Suppose we have computed ¢ simple e'vals of F, A\y,..., A,
andletx;,y; e C"best yix;=1,i=1,... (. Let

IN-'(z) = F(z)ili (I — %y,x,*).

Then A(F) = A(F)U {co} \ {M\,..., A\e}.
If V is an e’vec of F with e’val ) then
0
z—\i—1 <\ ~
V—H(’—TA,W/)V
is an e’vec of F associated with the e’val \.
Ferng et al. (2001 Huang et al. (2016)].
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Robust Succesive Computation of Eigenpairs

m Suppose we have already computed a minimal
invariant pair (V, M) € C™™ x C™ for F.

m Extend (V. M) into one size larger minimal invariant
pair

= (1v x1.[M 2]) cermnecmon

[Effenberger (2013)] shows that (), [}]) is an eigenpair of
an (n+ m) x (n+ m) NEP F(X)[;] = 0.

m Solve F()\) [3] = 0 by any of the previous methods.
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Block-Newton Method

(V,M) € C™™ x C™™is an invariant pair for
F e H(2,C™n) if

F(V,M) = CiVfi(A) + CoVa(A) + - - - + C V) (A) = Opsem-
Add normalization condition:
N(V, M) =0mxm-
[Kressner (2009)] showed that (V, M) is complete iff Jacobian

M : Cnxm X mem — (Cn><m < mem
(AV, AM) — (Lr(AV, AM), Ly(AV, AM))

is invertible. Newton correction (AV, AM) satisfies

M(AV, AM) = —(F(V, M), Omxm)-
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Safeguarded Iteration for Hermitian NEPs

Assume F(z) = F(z)* for all z € C and that if A\« is a kth
eigenvalue of F(z) (i.e., n = 0 is the kth largest eigenvalue
of the Hermitian matrix F(\x)), then (see Part )

Ak = min max p(x) el
VESK  xeVNK(p)
VNK(p)#0 Xx#0

This suggests the safeguarded iteration [Werner 1970]:

1 Choose an initial approx A\(%) to jth e’val of F.
2 For k=0,1,... until convergence

3 Compute e'vec x¥) of jth largest e'val of F(A)).

4 Compute real root p of x¥)*F(p)x*) = 0 closest to A\(¥)
5 set AK+1) = o,

6 end
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Safeguarded Iteration for Hermitian NEPs

Assume F(z) = F(z)* for all z € C and that if A\« is a kth
eigenvalue of F(z) (i.e., n = 0 is the kth largest eigenvalue
of the Hermitian matrix F(\x)), then (see Part )

Ak = min max p(x) el
VESK  xeVNK(p)
VNK(p)#0 Xx#0

This suggests the safeguarded iteration [Werner 1970]:

1 Choose an initial approx A\(%) to jth e’val of F.
2 For k=0,1,... until convergence

3 Compute e'vec x¥) of jth largest e'val of F(A)).

4 Compute real root p of x¥)*F(p)x*) = 0 closest to A\(¥)
5 set AK+1) = o,

6 end

Local quadratic convergence [Niendorf and Voss (2010)].
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Methods Based on Contour Integration

Given F € H(£2,C"™"M). By Keldysh’s theorem we have
F(z)™" = V(zl = J)""W* + R(2)

on some closed set X C (2, where J is an m x m Jordan
block matrix containing all the eigenvalues A(F) N 2.
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Methods Based on Contour Integration

Given F € H(£2,C"™"M). By Keldysh’s theorem we have
F(z)™" = V(zl = J)""W* + R(2)

on some closed set X C (2, where J is an m x m Jordan
block matrix containing all the eigenvalues A(F) N 2.

Let I C {2 be a contour enclosing the eigenvalues of J,
let X € C™" be a “probing matrix”, and f € H({2,C) (filter
function). Then

. —1
f. 27T1/f Xoz

= f(z Twrx
27r1 / 0z
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Beyn'’s Integral Approach

Construct
— 1 —1 _ *
Ay = o FF(z) Xoz=VWX
Ay = L ZF(2)7'Xéz=VJIW*X.
2m Jp

Assuming that V, W, and W*X are of full rank m,
can show that e’vals of AAy — A; are e'vals of F inside I'.
[Asakura 2009] [Beyn 2012] [Yokota/Sakurai 2013]
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Beyn'’s Integral Approach

Construct
Ay = L F(z)‘1X5z: VWX
271—1 T
Al = 1 zF(z2)” X6z=VJW*X.
2ri r

Assuming that V, W, and W*X are of full rank m,
can show that e’vals of AAy — A; are e'vals of F inside I'.
[Asakura 2009] [Beyn 2012] [Yokota/Sakurai 2013]

Other fiIter functions f can be used via
= ;& [.f(z)F(z)~"'X¢éz leading to higher-order

moments
[Murakami '10] [Gttel et al *15] [Austin/Trefethen *15] [Van Barel ’16]
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Quadrature

The contour integrals involved in Ay and A, are
approximated by numerical quadrature.

Let v : [0,1] — " be a parameterization,
then

An = ZWKZ/F )X = A
is a quadrature approximation with n.
nodes (j = 1,2).

Note that the n. solves F(+(t,))~' X are completely
decoupled and can be assigned to different processors.

— Great potential for parallelization!
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Care has to be taken with the quadrature rule

The quality of the quadrature approximation determines the
accuracy of the computed e’vals [Beyn 2012] [Giittel/T. 2017].

Example: Quadrature errors ||A; — A; .|| @s nc increases
(right) with different quadrature rules on (almost) square
contour (left).

ol
1l 10
L X egenvaues | @ | | YA
0.5 domainQ | ¥ || v S NN
— conformal ol e NN R
ol - - ‘square 10
e Bernstein ellipse
05 e
1074} |~ conformal I
—+—trapezoid
-1 —— Gauss-Legendre|
-1 -0.5 0 0.5 1 0 50 100 150



Methods based on linear interpolation

Instead of solving F(\)v = 0 directly, we may approximate
F ~ R, on X C C by simpler NEP and solve R,(\)v = 0.
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Methods based on linear interpolation

Instead of solving F(\)v = 0 directly, we may approximate
F ~ R, on X C C by simpler NEP and solve R,(\)v = 0.

Practical approach: Rational form
Rm(Z) = bo(Z)Do + by (Z)D1 S ec o qF bm(Z)Dm

where D; € C™" are fixed and b; are rational functions.
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Methods based on linear interpolation

Instead of solving F(\)v = 0 directly, we may approximate
F ~ R, on X C C by simpler NEP and solve R,(\)v = 0.

Practical approach: Rational form
Rm(Z) = bo(Z)Do aF b1 (Z)D1 qF °° 9 9F bm(Z)Dm
where D; € C™" are fixed and b; are rational functions.

Particularly useful: (scaled) rational Newton basis

Z—O‘j

~ B (1 = Z/&44)

with interpolation points o; € X and poles & € C\ X.

bo(Z) =1, bj+1 (Z) bj(Z)

Choice of o}, {;, 5; by NLEIGS sampling [Gttel et al 2014].
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NLEIGS sampling

Assume F is holomorphic on 2 = C\ = and we target the
eigenvalues in X' C (2.

Assume we have chosen nodes og,01,...,0m € X and
poles &y, ..., ¢m € =. Define s5(2) := (2 — om)bm(2).

By the Hermite—Walsh formula we have

F(2) - Ru(2) = = / Sn(2) FLE) g,

" 27 Jp sm(Q) (-2
and so the uniform approximation error on X' satisfies

|F = Rnlls := max|[F(2) = Rn(2)ll2 < Clism= - lIs5'lIr

Aim: Make s,, small on X' and large on I".
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NLEIGS sampling of F on X
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NLEIGS sampling of F on X
1. Discretize boundaries of X' and = sufficiently fine.

The nonlinear eigenvalue problem

Frangoise Tisseur




NLEIGS sampling of F on X

1. Discretize boundaries of X' and = sufficiently fine.
2. Choose interpolation node o € X' and set Ry(z) = F(oy).-
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NLEIGS sampling of F on X

1. Discretize boundaries of X' and = sufficiently fine.
2. Choose interpolation node o € X' and set Ry(z) = F(oy).-

10
—e—error || F - Rl ||Z
10°
10710
z
2 107
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NLEIGS sampling of F on X

1. Discretize boundaries of X' and = sufficiently fine.
2. Choose interpolation node o € X' and set Ry(z) = F(oy).-
3. Forj=1,2,...,mchoose o; and ¢; such that

max |5 1(2)| = I 1(o) and mins; 1(2)] = [s;-1(&)]

10
—e—error || F - Rl ||Z
10°
10 10
2z
= 107
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NLEIGS sampling of F on X

1. Discretize boundaries of X' and = sufficiently fine.
2. Choose interpolation node o € X' and set Ry(z) = F(oy).-
3. Forj=1,2,...,mchoose o; and ¢; such that

max |5 1(2)| = I 1(o) and mins; 1(2)] = [s;-1(&)]

Choose 3; such that ||sj|| > = 1 and set D; = Flop—Fii(op)

bj(oj
10°
—e—error || F - Rl ||Z
10°
10*10
>
= 107
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NLEIGS sampling of F on X

1. Discretize boundaries of X' and = sufficiently fine.
2. Choose interpolation node o € X' and set Ry(z) = F(oy).-
3. Forj=1,2,...,mchoose o; and ¢; such that

max |5 1(2)| = I 1(o) and mins; 1(2)] = [s;-1(&)]

Choose 3; such that ||sj|| > = 1 and set D; = Flop—Fii(op)

bj(oj
10°
—e—error || F - Rl ||Z
10°
10*10
>
= 107
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NLEIGS sampling of F on X

1. Discretize boundaries of X' and = sufficiently fine.
2. Choose interpolation node o € X' and set Ry(z) = F(oy).-
3. Forj=1,2,...,mchoose o; and ¢; such that

max |5 1(2)| = I 1(o) and mins; 1(2)] = [s;-1(&)]

Choose 3; such that ||sj|| > = 1 and set D; = Flop—Fii(op)

bj(oj
10°
—e—error || F - Rl ||Z
10°
10*10
>
= , 107
T
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NLEIGS sampling of F on X

1. Discretize boundaries of X' and = sufficiently fine.
2. Choose interpolation node o € X' and set Ry(z) = F(oy).-
3. Forj=1,2,...,mchoose o; and ¢; such that

max |5 1(2)| = I 1(o) and mins; 1(2)] = [s;-1(&)]

Choose 3; such that ||sj|| > = 1 and set D; = Flop—Fii(op)

bj(oj
10°
—e—error || F - Rl ||Z
10°
10*10
>
= , 107
T
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NLEIGS sampling of F on X

1. Discretize boundaries of X' and = sufficiently fine.
2. Choose interpolation node o € X' and set Ry(z) = F(oy).-
3. Forj=1,2,...,mchoose o; and ¢; such that

max |5 1(2)| = I 1(o) and mins; 1(2)] = [s;-1(&)]

Choose 3; such that ||sj|| > = 1 and set D; = Flop—Fii(op)

bj(o;
10°
—e—error || F - Rl Il
10°
10710
2z
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NLEIGS sampling of F on X

1. Discretize boundaries of X' and = sufficiently fine.
2. Choose interpolation node o € X' and set Ry(z) = F(oy).-
3. Forj=1,2,...,mchoose o; and ¢; such that

max |5 1(2)| = I 1(o) and mins; 1(2)] = [s;-1(&)]

Choose 3; such that ||sj|| > = 1 and set D; =

F(oj)=Ri—1(g;

bj(o;

)-

. |—e—error||F - R Il
.

- --1/cap(z,z)

z
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Krylov solution

Interpolation techniques can be combined with

@ linearization of R, = structured GEP A, x = ABx
@ rational Krylov algorithms for solving GEP

@ dynamic increase of degree m during Krylov iteration
— infinite Arnoldi method [Jarlebring et al 2012]

@ compact Krylov basis storage of [Lu, Su, Bai 2016]
— CORK [Van Beeumen et al 2015].
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Krylov solution

Interpolation techniques can be combined with

@ linearization of R, = structured GEP A, x = ABx
@ rational Krylov algorithms for solving GEP

@ dynamic increase of degree m during Krylov iteration
— infinite Arnoldi method [Jarlebring et al 2012]

@ compact Krylov basis storage of [Lu, Su, Bai 2016]
— CORK [Van Beeumen et al 2015].
NLEIGS implementations are available in the

@ SLEPc library version 3.7 [Campos & Roman 2016]
@ Rational Krylov Toolbox [Berljafa & Gttel 2015].
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Concluding Remarks

NEPs have interesting mathematical properties. They arise
in many applications and their efficient solution requires
ideas from numerical linear algebra, complex analysis, and
approximation theory (among other fields).
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Concluding Remarks

NEPs have interesting mathematical properties. They arise
in many applications and their efficient solution requires
ideas from numerical linear algebra, complex analysis, and
approximation theory (among other fields).

There is more to be said, e.g.,

@ Structured NEPs?
@ Higher-order integral moments
@ Preconditioning/scaling of linearizations

@ Implementation, software packages
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