Krylov methods for eigenvalue problems: theory and algorithms

Karl Meerbergen

KULEUVEN

October 4-6th, 2017

Two lectures

(1) Krylov methods for eigenvalue problems: theory and algorithms

- Concepts of spectral approximation
- Convergence/approximation theory
- Algorithms
(2) Krylov methods for eigenvalue problems: applications
- Computing eigenvalues with largest real part (stability analysis)
- Nonlinear eigenvalue problems

Outline of lecture 1

(1) What is an eigenvalue problem?
(2) Power method and friends
(3) Stopping criteria
4. Matrix transformations
(5) Rational Krylov sequences

6 Generalized eigenvalue problems
(7) Other methods

Eigenvalue problems

An eigenvalue problem is every mathematical problem that can be translated to

What is an eigenvalue problem
For matrix $A \in \mathbb{C}^{n \times n}$, find a particular $\lambda \in \mathbb{C}$ and $x \in \mathbb{C}^{n}, x \neq 0$ such that

$$
A x=\lambda x
$$

or find a particular $\lambda \in \mathbb{C}$ and $x, y \in \mathbb{C}^{n}, x, y \neq 0$ such that

$$
\begin{aligned}
A x & =\lambda x \\
y^{*} A & =\lambda y^{*}
\end{aligned}
$$

We call (λ, x) and eigenpair of A. (Later more on properties of eigenvalue problems)

Power method

Initial vector $x^{(0)}$ with $\left\|x^{(0)}\right\|_{2}=1$
for $k=1,2, \ldots$ do

$$
\begin{aligned}
& y^{(k)}=A \cdot x^{(k-1)} \\
& x^{(k)}=y^{(k)} /\left\|y^{(k)}\right\|_{2}
\end{aligned}
$$

end for
Theorem (Convergence)
Let the n eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ of A be ordered as follows:

$$
\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{n}\right|
$$

(λ_{1} is the dominant eigenvalue; λ_{1} is simple.)
$x^{(k)}$ converges to the dominant eigenvector.

Theorem (Convergence speed)

The convergence rate of the dominant eigenvalue is $\left|\lambda_{2}\right| /\left|\lambda_{1}\right|$.

Olmstead benchmark problem

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =(1-C) \frac{\partial^{2} v}{\partial X^{2}}+C \frac{\partial^{2} u}{\partial X^{2}}+R u-u^{3} \\
B \frac{\partial v}{\partial t} & =u-v
\end{aligned}
$$

u represents the speed of the fluid
v is related to viscoelastic forces.
The boundary conditions are $u(0)=u(1)=0$ and $v(0)=v(1)=0$.
Discretization with central differences
A is the Jacobian at the steady state for $B=2, C=0.1$ and $R=4.5$.

Shifted power method

Power on $A-\sigma l$.

Convergence to dominant eigenvalue of $A-\sigma l$ with rate of convergence $\left|\lambda_{1}-\sigma\right| /\left|\lambda_{2}-\sigma\right|$. Implementation:

$$
(A-\alpha I) x^{(k-1)}=A x^{(k-1)}-\alpha x^{(k-1)}
$$

Example (Olmstead):

- Shift $\sigma=-2000.0$
- Convergence rate: 0.99857 (slow!)

Two friends

- Subspace iteration
- Arnoldi method (Krylov)

Subspace iteration

Is the power method on a subspace, or a block of vectors:
Initial vectors $V^{(0)}=\left[v_{1}^{(0)}, \ldots, v_{m}^{(0)}\right] \in \mathbb{C}^{n \times m}$ with $\left\|V^{(0)}\right\|_{2}=1$ for $k=1,2, \ldots$ do
$W^{(k)}=A \cdot V^{(k-1)}$
Orthonormalize the columns of $W^{(k)} \rightarrow V^{(k)}$.
end for
Theorem (Convergence)
Let the n eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ of A be ordered as follows:

$$
\left|\lambda_{1}\right| \geq \cdots \geq\left|\lambda_{m}\right|>\left|\lambda_{m+1}\right| \geq \cdots \geq\left|\lambda_{n}\right|
$$

($\lambda_{1}, \ldots, \lambda_{m}$ are the m dominant eigenvalues.)
Range $\left(V^{(k)}\right)$ converges to the dominant invariant subspace.

Theorem (Convergence speed)

The rate of convergence is $\left|\lambda_{m+1}\right| /\left|\lambda_{1}\right|$.

Subspace iteration

Extracting eigenvalues by Galerkin projection

- $x=V z$ with $z \in \mathbb{C}^{m}$.
- Galerkin:

$$
A x-\lambda x \perp \operatorname{Range}(V)
$$

becomes:

$$
\begin{aligned}
V^{*}(A x-\lambda x) & ==0 \\
V^{*}(A V z-\lambda V z) & =0 \\
\left(V^{*} A V\right) z & =\lambda z
\end{aligned}
$$

$$
\left(V^{*} A V\right) z=\lambda z
$$

Subspace iteration

Gram-Schmidt orthogonalization

- It is very (very) important that the columns of V are orthogonal
- Modified Gram-Schmidt is numerically unstable, i.e., columns of V are not orthogonal to machine precision
- Iterative Gram-Schmidt is the solution

Gram-Schmidt for orthogonalization of vector w against columns of V :

$$
\begin{aligned}
& \tilde{w}=w-V\left(V^{*} w\right) \\
& v=\tilde{w} /\|\tilde{w}\|_{2}
\end{aligned}
$$

Subspace iteration

Gram-Schmidt orthogonalization

- It is very (very) important that the columns of V are orthogonal
- Modified Gram-Schmidt is numerically unstable, i.e., columns of V are not orthogonal to machine precision
- Iterative Gram-Schmidt is the solution

Iterative Gram-Schmidt for orthogonalization of vector w against columns of V :

$$
\begin{aligned}
& \tilde{W}=w-V\left(V^{*} w\right) \\
& \tilde{\tilde{w}}=\tilde{w}-V\left(V^{*} \tilde{w}\right) \\
& V=\tilde{\tilde{w}} /\|\tilde{\tilde{w}}\|_{2}
\end{aligned}
$$

Iterative Gram-Schmidt is backward stable: $[V, V]$ has orthonormal columns and w is spanned by the columns of $[V, v]$.

Subspace iteration

Example (Olmstead)

- Subspace iteration for A + 2000I.
- Convergence rate for the power method: 0.99857 (slow!)
- For subspace iteration with $m=10: 0.96587$ (still slow)

Subspace (polynomial) iteration

Convergence of subspace iteration can be controlled by using shifts: (matrix iteration k)

$$
\operatorname{Range}\left(V^{(k)}\right)=\operatorname{Range}\left((A-\sigma l)^{k} V^{(0)}\right)
$$

A better choice (often) is to choose a filter polynomial that removes the unwanted eigenvalues.

Initial vectors $V^{(0)}=\left[v_{1}^{(0)}, \ldots, v_{m}^{(0)}\right] \in \mathbb{C}^{n \times m}$ with $\left\|V^{(0)}\right\|_{2}=1$
for $k=1,2, \ldots, k$ do
$W^{(k)}=\left(A-\sigma_{k} l\right) \cdot V^{(k-1)}$
Orthonormalize the columns of $W^{(k)} \rightarrow V^{(k)}$.
end for

Chebyshev iteration

Chebyshev iteration:
Initial vectors $V^{(0)}=\left[v_{1}^{(0)}, \ldots, v_{m}^{(0)}\right] \in \mathbb{C}^{n \times m}$ with $\left\|V^{(0)}\right\|_{2}=1$
$W^{(-1)}=0$
$W^{(0)}=V^{(0)}$
for $j=1,2, \ldots, k$ do

$$
W^{(j)}=2 A W^{(j-1)}-W^{(j-2)}
$$

end for
Orthonormalize the columns of $W^{(k)} \rightarrow V^{(k)}$.

Chebyshev iteration

Theorem (Convergence)

Let the n eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ of A be ordered as follows:

$$
\left|T_{k}\left(\lambda_{1}\right)\right| \geq \cdots \geq\left|T_{k}\left(\lambda_{m}\right)\right|>\left|T_{k}\left(\lambda_{m+1}\right)\right| \geq \cdots \geq\left|T_{k}\left(\lambda_{n}\right)\right|
$$

$\left(\lambda_{1}, \ldots, \lambda_{m}\right.$ are the m dominant eigenvalues of $T_{k}(A)$. Range $\left(V^{(k)}\right)$ converges to the m eigenvalues of A outside $[-1,1]$. The rate of convergence is $\left|T_{k}\left(\lambda_{1}\right)^{-1}\right|$.

For complex eigenvalues:
For computing eigenvalues outside $[\alpha, \beta]$, shift and scale the Chebyshev polynomial:

$$
T_{k}\left(\frac{A-\frac{\alpha+\beta}{2}}{\frac{\beta-\alpha}{2}}\right)
$$

Inverse iteration

Subspace iteration applied to $(A-\sigma I)^{-1}$
Initial vectors $V^{(0)}=\left[v_{1}^{(0)}, \ldots, v_{m}^{(0)}\right] \in \mathbb{C}^{n \times m}$ with $\left\|V^{(0)}\right\|_{2}=1$ for $k=1,2, \ldots, k$ do

Solve $(A-\sigma l) W^{(k)}=\cdot V^{(k-1)}$
Orthonormalize the columns of $W^{(k)} \rightarrow V^{(k)}$.
end for

Theorem (Convergence)

Let the n eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ of A be ordered as follows:

$$
\left|\lambda_{1}-\sigma\right| \leq \cdots \geq\left|\lambda_{m}-\sigma\right|<\left|\lambda_{m+1}-\sigma\right| \geq \cdots \geq|\lambda-n-\sigma|
$$

$\lambda_{1}, \ldots, \lambda_{m}$ are the m eigenvalues of A nearest σ.
Range $\left(V^{(k)}\right)$ converges to the m eigenvalues of A o nearest σ.
The rate of convergence is $\left|\lambda_{1}-\sigma\right| /\left|\lambda_{m+1}-\sigma\right|$.

Inverse iteration

Example: Olmstead problem

Eigenvalues of A and shift σ

Eigenvalues of $(A-\sigma I)^{-1}$

Arnoldi method

Build a Krylov space (from a power sequence):

$$
\left\{v_{1}, A v_{2}, A^{2} v_{1}, \ldots A^{k-1} v_{1}\right\}
$$

Arnoldi algorithm produces orthonormal basis $V_{k}=\left[v_{1}, \ldots, v_{k}\right]$:
Given v_{1} with $\left\|v_{1}\right\|_{2}=1$
for $j=1, \ldots, k$ do

$$
w_{j}=A \cdot v_{j}
$$

Block Gram-Schmidt

$$
h_{i, j}=v_{i}^{*} w_{j} \text { for } i=1, \ldots, j
$$

$$
f_{j}=w_{j}-\sum_{i=1}^{j} v_{i} h_{i, j}
$$

$$
h_{j+1, j}=\left\|f_{j}\right\|_{2}
$$

$$
v_{j+1}=f_{j} / h_{j+1, j}
$$

end block
end for
Eliminate w_{j} and f_{j} :

$$
A v_{j}=\sum_{i=1}^{j} v_{i} h_{i, j}+f_{j}=\sum_{i=1}^{j+1} v_{i} h_{i, j}
$$

Arnoldi method

Recurrence relations

$$
A v_{j}=\sum_{i=1}^{j} v_{i} h_{i, j}+f_{j}=\sum_{i=1}^{j+1} v_{i} h_{i, j}
$$

Define

$$
H_{k}=\left[\begin{array}{cccc}
h_{1,1} & h_{1,2} & \cdots & h_{1, k} \\
h_{2,1} & \ddots & & \vdots \\
0 & \ddots & & \vdots \\
0 & & h_{k, k-1} & h_{k, k}
\end{array}\right] \in \mathbb{C}^{k \times k}
$$

Arnoldi factorization:

$$
A V_{k}-V_{k} H_{k}=f_{k} e_{k}^{T}
$$

From $V_{k}^{*} V_{k}=I$ and $V_{k}^{*} f_{k}=0$, we find: $H_{k}=V_{k}^{*} A V_{k}$

Arnoldi method

Computation of Ritz values using Galerkin projection $x=V_{k} z$:

$$
\begin{aligned}
A x-\lambda x & \perp \operatorname{Range}\left(V_{k}\right) \\
V_{k}^{*}\left(A V_{k} z-\lambda V_{k} z\right) & =0 \\
\left(V_{k}^{*} A V_{k}\right) z & =\lambda\left(V_{k}^{*} V_{k}\right) z \\
H_{k} z & =z
\end{aligned}
$$

Arnoldi method

Convergence:

- Convergence rate for $\left(\lambda_{i}, x_{i}\right)$:

$$
\tan \left(v_{1}, y_{i}\right) \cdot \min _{p \in \mathbb{P}_{k}, p\left(\lambda_{i}\right)=1} \max _{\lambda \in \Lambda(A) \backslash\left\{\lambda_{i}\right\}}|p(\lambda)|
$$

Example (Olmstead) $-k=10$

- In words: well-separated extreme eigenvalues converge
- Krylov space is a space of polynomials. Fast convergence when there is a polynomial p, so that $p(A) v_{1}$ makes small angle with an eigenvector associated with λ_{i}.
- The Krylov spaces for A and $A-\sigma I$ are the same. Shifting does not change convergence. first.

Arnoldi method

Convergence:

- Convergence rate for $\left(\lambda_{i}, x_{i}\right)$:

$$
\tan \left(v_{1}, y_{i}\right) \cdot \min _{p \in \mathbb{P}_{k}, p\left(\lambda_{i}\right)=1} \max _{\lambda \in \Lambda(A) \backslash\left\{\lambda_{i}\right\}}|p(\lambda)|
$$

Example (Olmstead) $-k=11$

- In words: well-separated extreme eigenvalues converge
- Krylov space is a space of polynomials. Fast convergence when there is a polynomial p, so that $p(A) v_{1}$ makes small angle with an eigenvector associated with λ_{i}.
- The Krylov spaces for A and $A-\sigma l$ are the same. Shifting does not change convergence. first.

Arnoldi method

Convergence:

- Convergence rate for $\left(\lambda_{i}, x_{i}\right)$:

$$
\tan \left(v_{1}, y_{i}\right) \cdot \min _{p \in \mathbb{P}_{k}, p\left(\lambda_{i}\right)=1} \max _{\lambda \in \Lambda(A) \backslash\left\{\lambda_{i}\right\}}|p(\lambda)|
$$

Example (Olmstead) $-k=12$

- In words: well-separated extreme eigenvalues converge
- Krylov space is a space of polynomials. Fast convergence when there is a polynomial p, so that $p(A) v_{1}$ makes small angle with an eigenvector associated with λ_{i}.
- The Krylov spaces for A and $A-\sigma I$ are the same. Shifting does not change convergence. first.

Arnoldi method

Convergence:

- Convergence rate for $\left(\lambda_{i}, x_{i}\right)$:

$$
\tan \left(v_{1}, y_{i}\right) \cdot \min _{p \in \mathbb{P}_{k}, p\left(\lambda_{i}\right)=1} \max _{\lambda \in \Lambda(A) \backslash\left\{\lambda_{i}\right\}}|p(\lambda)|
$$

Example (Olmstead) $-k=13$

- In words: well-separated extreme eigenvalues converge
- Krylov space is a space of polynomials. Fast convergence when there is a polynomial p, so that $p(A) v_{1}$ makes small angle with an eigenvector associated with λ_{i}.
- The Krylov spaces for A and $A-\sigma I$ are the same. Shifting does not change convergence. first.

Arnoldi method

Convergence:

- Convergence rate for $\left(\lambda_{i}, x_{i}\right)$:

$$
\tan \left(v_{1}, y_{i}\right) \cdot \min _{p \in \mathbb{P}_{k}, p\left(\lambda_{i}\right)=1} \max _{\lambda \in \Lambda(A) \backslash\left\{\lambda_{i}\right\}}|p(\lambda)|
$$

Example (Olmstead) $-k=14$

	$\stackrel{\square}{\bullet}$
*	

- In words: well-separated extreme eigenvalues converge
- Krylov space is a space of polynomials. Fast convergence when there is a polynomial p, so that $p(A) v_{1}$ makes small angle with an eigenvector associated with λ_{i}.
- The Krylov spaces for A and $A-\sigma l$ are the same. Shifting does not change convergence. first.

Arnoldi method

Convergence:

- Convergence rate for $\left(\lambda_{i}, x_{i}\right)$:

$$
\tan \left(v_{1}, y_{i}\right) \cdot \min _{p \in \mathbb{P}_{k}, p\left(\lambda_{i}\right)=1} \max _{\lambda \in \Lambda(A) \backslash\left\{\lambda_{i}\right\}}|p(\lambda)|
$$

Example (Olmstead) $-k=15$

- In words: well-separated extreme eigenvalues converge
- Krylov space is a space of polynomials. Fast convergence when there is a polynomial p, so that $p(A) v_{1}$ makes small angle with an eigenvector associated with λ_{i}.
- The Krylov spaces for A and $A-\sigma I$ are the same. Shifting does not change convergence. first.

Arnoldi method

Convergence:

- Convergence rate for $\left(\lambda_{i}, x_{i}\right)$:

$$
\tan \left(v_{1}, y_{i}\right) \cdot \min _{p \in \mathbb{P}_{k}, p\left(\lambda_{i}\right)=1} \max _{\lambda \in \Lambda(A) \backslash\left\{\lambda_{i}\right\}}|p(\lambda)|
$$

Example (Olmstead) $-k=16$

- In words: well-separated extreme eigenvalues converge
- Krylov space is a space of polynomials. Fast convergence when there is a polynomial p, so that $p(A) v_{1}$ makes small angle with an eigenvector associated with λ_{i}.
- The Krylov spaces for A and $A-\sigma l$ are the same. Shifting does not change convergence. first.

Arnoldi method

Convergence:

- Convergence rate for $\left(\lambda_{i}, x_{i}\right)$:

$$
\tan \left(v_{1}, y_{i}\right) \cdot \min _{p \in \mathbb{P}_{k}, p\left(\lambda_{i}\right)=1} \max _{\lambda \in \Lambda(A) \backslash\left\{\lambda_{i}\right\}}|p(\lambda)|
$$

Example (Olmstead) $-k=17$

- In words: well-separated extreme eigenvalues converge
- Krylov space is a space of polynomials. Fast convergence when there is a polynomial p, so that $p(A) v_{1}$ makes small angle with an eigenvector associated with λ_{i}.
- The Krylov spaces for A and $A-\sigma l$ are the same. Shifting does not change convergence. first.

Arnoldi method

Convergence:

- Convergence rate for $\left(\lambda_{i}, x_{i}\right)$:

$$
\tan \left(v_{1}, y_{i}\right) \cdot \min _{p \in \mathbb{P}_{k}, p\left(\lambda_{i}\right)=1} \max _{\lambda \in \Lambda(A) \backslash\left\{\lambda_{i}\right\}}|p(\lambda)|
$$

Example (Olmstead) $-k=18$

- In words: well-separated extreme eigenvalues converge
- Krylov space is a space of polynomials. Fast convergence when there is a polynomial p, so that $p(A) v_{1}$ makes small angle with an eigenvector associated with λ_{i}.
- The Krylov spaces for A and $A-\sigma l$ are the same. Shifting does not change convergence. first.

Arnoldi method

Convergence:

- Convergence rate for $\left(\lambda_{i}, x_{i}\right)$:

$$
\tan \left(v_{1}, y_{i}\right) \cdot \min _{p \in \mathbb{P}_{k}, p\left(\lambda_{i}\right)=1} \max _{\lambda \in \Lambda(A) \backslash\left\{\lambda_{i}\right\}}|p(\lambda)|
$$

Example (Olmstead) $-k=19$

- In words: well-separated extreme eigenvalues converge
- Krylov space is a space of polynomials. Fast convergence when there is a polynomial p, so that $p(A) v_{1}$ makes small angle with an eigenvector associated with λ_{i}.
- The Krylov spaces for A and $A-\sigma I$ are the same. Shifting does not change convergence. first.

Arnoldi method

Convergence:

- Convergence rate for $\left(\lambda_{i}, x_{i}\right)$:

$$
\tan \left(v_{1}, y_{i}\right) \cdot \min _{p \in \mathbb{P}_{k}, p\left(\lambda_{i}\right)=1} \max _{\lambda \in \Lambda(A) \backslash\left\{\lambda_{i}\right\}}|p(\lambda)|
$$

Example (Olmstead) $-k=20$

- In words: well-separated extreme eigenvalues converge
- Krylov space is a space of polynomials. Fast convergence when there is a polynomial p, so that $p(A) v_{1}$ makes small angle with an eigenvector associated with λ_{i}.
- The Krylov spaces for A and $A-\sigma l$ are the same. Shifting does not change convergence. first.

Stopping criteria

- Residual: Given $\tilde{\lambda} \in \mathbb{C}$ and $\tilde{x} \in \mathbb{C}^{n},\|\tilde{x}\|_{2}=1$

$$
r=A \tilde{x}-\tilde{\lambda} \tilde{x}
$$

- Backward error: $(\tilde{\lambda}, \tilde{x})$ is an eigenpair of

$$
A-\frac{r \tilde{x}^{*}}{\tilde{x}^{*} \tilde{x}}
$$

- In Arnoldi:

$$
\begin{aligned}
A \tilde{x}-\tilde{\lambda} \tilde{x} & =A V_{k} z-\tilde{\lambda} V_{k} z \\
& =V_{k} H_{k} z-\tilde{\lambda} V_{k} z+v_{k+1} \beta_{k} e_{k}^{T} z \\
& =f_{k} e_{k}^{T} z \\
\|A \tilde{x}-\tilde{\lambda} \tilde{x}\| & =h_{k+1, k}\left|e_{k}^{T} z\right|
\end{aligned}
$$

Matrix transformations

- The Arnoldi method is faster than subspace iteration (usually), but often still converges very slowly, in particular for large scale problems arising from PDEs for similar reasons as iterative methods for linear systems of equations.
- The main problem:
- Memory cost: nk
- Gram-Schmidt computational cost: $n k^{2}$
- Solutions:
- Matrix transformation
- Restart (as in restarted GMRES)

Chebyshev transformation

- As for subspace iteration, compute the eigenvalues of $T_{k}(A)$ instead of A.
- Eigenvalues of $T_{k}(A)$ are better separated, so, convergence is faster.

Shift-and-invert transformation

$$
T=(A-\sigma I)^{-1}
$$

- The most important transformation
- Based on inverse iteration

Shift-and-invert transformation

Convergence of the Shift-and-Invert Arnoldi method:

- Some say: convergence to the eigenvalues nearest σ : this is true for subspace iteration but not for Arnoldi.
- There is also convergence to well separated eigenvalues further away from σ.
- The eigenvalues nearest σ converge well, but other eigenvalues may also converge.
- Shift-and-invert is used in all kinds of situations, but keep this is in mind.

Implementation:

- One sparse $L U$ factorization
- k backward solves
- This is what makes this method so popular

Implicit restarting

- Explicit restart
- Improving one Ritz vector:

$$
\left\{x_{1}, A x_{1}, \ldots, A^{k-1} x_{1}\right\}
$$

- Improving two Ritz vectors:

$$
\left\{\left(\alpha_{1} x_{1}+\alpha_{2} x_{2}\right), A\left(\alpha_{1} x_{+} \alpha_{2} x_{2}\right), \ldots, A^{k-1}\left(\alpha_{1} x_{+} \alpha_{2} x_{2}\right)\right\}
$$

How do we choose α_{1} and α_{2} ?

- Polynomial filter:

$$
\left\{\phi_{p}(A) v_{1}, A \phi_{p}(A) v_{1}, \ldots, A^{k-1} \phi_{p}(A) v_{1}\right\}
$$

How do we choose the polynomial ϕ_{p} ?

- Implicit restart

Implicit restart

- [Morgan, 1996] showed that the best linear combination is

$$
v_{1}^{+}=\rho_{1} x_{1}+\cdots, \rho_{p} x_{p}
$$

with ρ_{i} the residual norms.

Implicit restart

- [Morgan, 1996] showed that the best linear combination is

$$
v_{1}^{+}=\rho_{1} x_{1}+\cdots, \rho_{p} x_{p}
$$

with ρ_{i} the residual norms.

- He proves that this is the same starting vector as

$$
v_{1}^{+}=\phi_{p}(A) v_{1} \quad, \quad \phi_{p}(\lambda)=\left(\lambda-\lambda_{1}\right) \cdots\left(\lambda-\lambda_{p}\right)
$$

Implicit restart

- [Morgan, 1996] showed that the best linear combination is

$$
v_{1}^{+}=\rho_{1} x_{1}+\cdots, \rho_{p} x_{p}
$$

with ρ_{i} the residual norms.

- He proves that this is the same starting vector as

$$
v_{1}^{+}=\phi_{p}(A) v_{1} \quad, \quad \phi_{p}(\lambda)=\left(\lambda-\lambda_{1}\right) \cdots\left(\lambda-\lambda_{p}\right)
$$

- [Sorensen 1992] showed that this is done by implicit restarting:
(1) QR factorization of $Q R=\phi_{p}\left(H_{k}\right)$
(2) Keep the first p columns of Q
(3) Compute $V_{p}^{+}=V_{k} Q$ and $H_{p}^{+}=Q^{*} H_{k} Q$

Implicit restart

- [Morgan, 1996] showed that the best linear combination is

$$
v_{1}^{+}=\rho_{1} x_{1}+\cdots, \rho_{p} x_{p}
$$

with ρ_{i} the residual norms.

- He proves that this is the same starting vector as

$$
v_{1}^{+}=\phi_{p}(A) v_{1} \quad, \quad \phi_{p}(\lambda)=\left(\lambda-\lambda_{1}\right) \cdots\left(\lambda-\lambda_{p}\right)
$$

- [Sorensen 1992] showed that this is done by implicit restarting:
(1) QR factorization of $Q R=\phi_{p}\left(H_{k}\right)$
(2) Keep the first p columns of Q
(3) Compute $V_{p}^{+}=V_{k} Q$ and $H_{p}^{+}=Q^{*} H_{k} Q$
- [M. \& Spence 1997] and [Lehoucq, 1999] show that

$$
\operatorname{Range}\left(V_{p}^{+}\right)=\operatorname{Range}\left(\phi_{p}(A) V_{p}\right)
$$

(= polynomial subspace iteration)

Implicit restart

Before 'implicit restart':

- Subspace dimension is k
- Ritz vectors x_{1}, \ldots, x_{p}.

After 'implicit restart':

- Subspace dimension is reduced from k to p.
- Ritz vectors x_{1}, \ldots, x_{p}.
- Recurrence relation: $A V_{p}^{+}-V_{p}^{+} H_{p}^{+}=f_{p}^{+} e_{p}^{T}$
$k-p$ additional Krylov steps:
- Subspace dimension increased from p to k.
- Recurrence relation: $A V_{k}^{+}-V_{k}^{+} H_{k}^{+}=f_{k}^{+} e_{k}^{T}$
- Is the same subspace as

$$
\operatorname{span}\left\{x_{1}, \ldots, x_{p}, A x, \ldots, A x^{k-p}\right\}
$$

with x any from $\left\{x_{1}, \ldots, x_{p}\right\}$.

Implicit restart

1: k Arnoldi steps with starting vector $v_{1}: V_{k}, H_{k}$
2: while Desired Ritz pairs have not converged do
3: \quad Compute Ritz pairs and select ϕ_{k-p}.
4: \quad QR on H_{k} with shifts: H_{p}^{+}, V_{p}^{+}.
5: $\quad k-p$ Arnoldi steps to expand V_{p}^{+}to V_{k}^{+}.
6: end while

- Convergence is similar to polynomial subspace iteration, but with cheaper iterations [Lehoucq, 1998]
- Convergence of full Arnoldi and restarted Arnoldi for selected eigenvalues is very much alike [Morgan 1995]
- In practice use the QR method's bulge chasing instead of Arnoldi on H_{k}.
- More numerically stable, but mathematically equivalent: Krylov Schur [Stewart 2001] (was known by Lehoucq in 1995).

Implicit restart

Polynomial filters $\phi_{k-p}(\lambda)=\left(\lambda-\sigma_{1}\right) \cdots\left(\lambda-\sigma_{k-p}\right)$:

- Exact shifts: shifts are Ritz values (Sorensen \& Morgan)
- Chebyshev shifts: select the parameters of the Chebyshev polynomial from the Ritz values and filter out the ellipse with unwanted eigenvalues
- Leja shifts (potential theory) [Calvetti, Reichel, Sorensen,
 1994]
- Zero shifts (see further)

Implicit restart

Matrix is tridiagonal:

- Main diagonal: $1, \ldots, 1000$
- Superdiagonal: -0.1
- Subdiagonal: 0.1

Arnoldi:

- $k=24, p=6$
- 10 sweeps of implicit restarts are compared to full Arnoldi with
$24+9 \cdot 18=186$ iterations

[Morgan, 1996]

Newton method

- Apply Newton (Raphson) to:

$$
\begin{array}{r}
A x-\lambda x=0 \\
x^{*} x=1
\end{array}
$$

for (λ, x)

- $\lambda^{(k+1)}=\lambda^{(k)}+\Delta \lambda, x^{(k+1}=x^{(k)}+\Delta x$:

$$
\left[\begin{array}{cc}
A-\lambda^{(k)} \mid & -x^{(k)} \\
2\left(x^{(k)}\right)^{*} & 0
\end{array}\right]\binom{\Delta x}{\Delta \lambda}=-\binom{A x^{(k)}-\lambda^{(k)} X^{(k)}}{\left\|x^{(k)}\right\|_{2}-1}
$$

- Explicitly normalize $x^{(k)}$ and on every iteration:

$$
x^{(k+1)}=-\Delta \lambda\left(A-\lambda^{(k)} l\right)^{-1} x^{(k)}
$$

Rational Krylov sequences

A generalization of the shift-and-invert Arnoldi method:
1: Given v_{1} with $\left\|v_{1}\right\|_{2}=1$.
2: $\mathbf{f o r} j=1, \ldots, k$ do
3: \quad Solve $\left(A-\sigma_{j} I\right) w_{j}=v_{j}$
4: Block Gram-Schmidt
5: $\quad h_{i, j}=v_{i}^{*} w_{j}$ for $i=1, \ldots, j$
6: $\quad f_{j}=w_{j}-\sum_{i=1}^{j} v_{i} h_{i, j}$
7: $\quad h_{j+1, j}=\left\|f_{j}\right\|_{2}$
8: $\quad v_{j+1}=f_{j} / h_{j+1, j}$
9: end block
10: end for
Eliminate w_{j} and f_{j} :

$$
\left(A-\sigma_{j} I\right)^{-1} v_{j}=\sum_{i=1}^{j} v_{i} h_{i, j}+f_{j}=\sum_{i=1}^{j+1} v_{i} h_{i, j}
$$

Rational Krylov sequences

Recurrence relations

$$
\left(A-\sigma_{j} l\right)^{-1} v_{j}=\sum_{i=1}^{j} v_{i} h_{i, j}+f_{j}=\sum_{i=1}^{j+1} v_{i} h_{i, j}
$$

Rational Krylov factorization:

$$
A V_{k} H_{k}-V_{k} K_{k}=\left(A-\sigma_{k} I\right) f_{k} e_{k}^{T}
$$

with

$$
K_{k}=I_{k}+H_{k} \Sigma_{k} \quad \text { with } \quad \Sigma_{k}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{k}\right)
$$

Ritz values by Galerkin projection of $\left(A-\sigma_{k} l\right)^{-1}$ on Range $\left(V_{k}\right)$:

$$
K_{k} z=\lambda H_{k} z \quad, \quad x=V_{k} H_{k} z
$$

Residual

$$
A x-\lambda x=\left(A-\sigma_{k} I\right) f_{k}\left(e_{k}^{T} z\right)
$$

Rational Krylov sequences

Example 1: rational Krylov as a Newton method for finding eigenvalue with largest real part:

1: Given v_{1} with $\left\|v_{1}\right\|_{2}=1$.

Be careful: Newton steps may introduce large errors in the recurrence relation.

Rational Krylov sequences

Implementation issues:

- Linear systems have to be solved accurately

$$
A V_{k} H_{k}-B V_{k} K_{k}=\left(A-\sigma_{k} I\right) f_{k} e_{k}^{T}+R_{k}
$$

with $\left\|R_{k}\right\| \approx\left\|\left(A-\sigma_{j}\right) w_{j}-v_{j}\right\|_{2}$.

- Linear solver is usually a direct method.
- Matrix factorization is often most expensive operation: reuse shifts σ_{j}.

Rational Krylov sequences

Slicing for symmetric eigenvalue problem (structural dynamics/acoustics)

Rational Krylov: Implicit restarting

- Restart with filtered starting vector/subspace:

$$
v_{1}^{+}=\phi_{k-p}(A) v_{1} \quad \text { with } \quad \phi_{k-p}(z)=\frac{z-\mu_{1}}{z-\sigma_{1}} \cdots \frac{z-\mu_{k-p}}{z-\sigma_{k-p}}
$$

$\operatorname{Range}\left(V_{p}^{+}\right)=\operatorname{Range}\left(\phi_{k-p}(A) V_{p}\right)$

- QZ step on H_{k}, K_{k} :

$$
\begin{aligned}
H_{p}^{+} & =Q^{*} H_{k} Z \\
K_{p}^{+} & =Q^{*} K_{k} Z \\
V_{p}^{+} & =V_{k} Q
\end{aligned}
$$

- Recurrence relation:

$$
A V_{p}^{+} H_{p}^{+}-V_{p}^{+} K_{p}^{+}=\left(A-\sigma_{k} I\right) f_{p}^{+} e_{p}^{T}
$$

The first p poles are $\sigma_{k-p+1}, \ldots, \sigma_{k}$.

- Implementation:
- Naive [De Samblanx, M. \& Bultheel, 1997] (including Krylov-Schur)
- Bulge chasing (QZ method) [Camps, M. \& Vandebril, 2017]

Rational Krylov: Implicit restart with zero shift

- Shift-and-invert transform has

Without filter a cluster of eigenvalues near zero.

- This sometimes leads to spurious eigenvalues.
- The use harmonic Ritz values may help [Morgan, 1991] [Paige, Parlett, van der Vorst, 1995].
- Another way is to filter away the eigenvalues near zero [M.
 \& Spence 1997]:

$$
\operatorname{Range}\left(V_{k-1}^{+}\right)=\operatorname{Range}\left(\left(A-\sigma_{k} I\right)^{-1} V_{k-1}\right)
$$

Rational Krylov: Implicit restart with zero shift

- Shift-and-invert transform has a cluster of eigenvalues near zero.
- This sometimes leads to spurious eigenvalues.
- The use harmonic Ritz values may help [Morgan, 1991] [Paige, Parlett, van der Vorst, 1995].
- Another way is to filter away the eigenvalues near zero [M.

With filter

$$
\operatorname{Range}\left(V_{k-1}^{+}\right)=\operatorname{Range}\left(\left(A-\sigma_{k} I\right)^{-1} V_{k-1}\right)
$$

Generalized eigenvalue problems

Given matrices $A, B \in \mathbb{C}^{n \times n}$:

$$
A x=\lambda B x
$$

Regular eigenvalue problem: A and B do not have a common nullspace, i.e., there are α, β so that $\alpha A+\beta B$ is non-singular. Shift-and-invert operator:

$$
\begin{aligned}
A x & =\lambda B x \\
(A-\sigma B) x & =(\lambda-\sigma) B x \\
(\lambda-\sigma)^{-1} x & =(A-\sigma B)^{-1} B x
\end{aligned}
$$

Apply Arnoldi on $(A-\sigma B)^{-1} B$ or use rational Krylov.

Generalized eigenvalue problems

Symmetric positive definite A and B.
[Grimes, Lewis, Simon, 1994]

- Choose shifts σ_{j} in between clusters of eigenvalues
- $(A-\sigma B)^{-1} B$ is nonsymmetric:
- Use B inner product: $V_{k}^{*} B V_{k}=I$.
- $(A-\sigma B)^{-1} B$ is self adjoint with the B-inner product:

$$
y^{*} B\left((A-\sigma B)^{-1} B x\right)=\left((A-\sigma B)^{-1} B y\right) B x
$$

Generalized eigenvalue problems

Let B be singular and $A-\sigma B$ be nonsingular for some σ, then
(1) for all $x: B x=0$, we have $(A-\sigma B)^{-1} B x=0$
(2) which corresponds to $A x=\infty B x$.

Such problems arise from DAEs (differential algebraic equations).
The infinite eigenvalue is usually undesired, but it may hinder create spurious eigenvalues.
Tilted plane benchmark from rational Krylov [De Samblanx, M. \& Bultheel, 1997]:

Iteration	Without filter	With filter
3	8.432	-8.4677
6	19.751	-9.4833
9	74.83	-9.48831

Implicit filtering: multiply the Krylov space with $(A-\sigma B)^{-1} B$

Other methods

- For both right and left eigenvectors:
- One Krylov space with A for right eigenvectors
- One Krylov space with A^{*} for left eigenvectors
- Lanczos method, two-sided Arnoldi method
- Higher risk for spurious eigenvalues \rightarrow stabilize by an implicit restart with zero shift
- Linear systems with iterative solvers:
- Jacobi-Davidson [Sleijpen \& van der Vorst]
- LOBPCG [Knyazev]
- Tuned preconditioner [Spence \& Freitag]
- Contour integral methods

Block Arnoldi method

Arnoldi's method applied to a block of b vectors $V_{1} \in \mathbb{C}^{n \times b}$ with $b>1$:

$$
\left\{V_{1}, A V_{1}, A^{2} V_{1}, \ldots A^{k-1} V_{1}\right\}
$$

Arnoldi algorithm produces orthonormal basis $V_{k}=\left[V_{1}, \ldots, V_{k}\right]$:
Given V_{1} with $\left\|V_{1}\right\|_{2}=1$
for $j=1, \ldots, k$ do
$W_{j}=A \cdot V_{j}$
Block Gram-Schmidt for $i=1, \ldots, b$ do
$V_{j+1}=$ []
Orthogonalize $w_{j, i}=W_{j} e_{i}$ against $\left[V_{1}, \ldots, V_{j+1}\right]$
$V_{j+1}=\left[V_{j+1} w_{j, i} /\left\|w_{j, i}\right\|_{2}\right]$
end for
end block
end for
This is like subspace iteration, where the iterations are accumulated in a subspace.

Two-sided Krylov methods

For computing eigenvalues, right and left eigenvectors:

$$
A x=\lambda B x \quad y^{*} A=\lambda y^{*} B
$$

Two Krylov spaces

- $(A-\sigma B)^{-1} B \Rightarrow V_{k} \Rightarrow x$
- $\left(A^{*}-\sigma B^{*}\right)^{-1} B^{*} \Rightarrow W_{k} \Rightarrow y$

Compute Ritz triples from reduced problem:

$$
W^{*} A V z=\lambda W^{*} B V z
$$

- Lanczos method: use B bi-othogonalization: $W^{*} B V=I$. [Bai \& Ye 2001]
- Two-sided Arnoldi method: compute projection explicitly [Ruhe ...]
- Implicit restarting [De Samblanx \& Bultheel, 1998] for Lanczos, [Hochstenbach \& Zwaan, 2017] for Arnoldi

Statistical approaches

Jacobi-Davidson method

- Shift-and-invert with iterative solver
- In order to avoid the need for 'exact' solves, JD solves the correction equation iteratively:

$$
\begin{gathered}
\left(I-y x^{*} /\left(x^{*} y\right)\right)(A-\lambda I)\left(I-x x^{*} /\left(x^{*}\right)\right) z=-(A-\lambda I) x \\
\text { with } \lambda=x^{*} A x /\left(x^{*} x\right)
\end{gathered}
$$

- Preconditioning possible, but hard
- I prefer to solve a shifted system inexactly:

$$
(A-\sigma I) z=-(A-\lambda I) x
$$

with σ the 'target'. The preconditioiner can be reused as long as σ is not changed.

Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG)

- For symmetric $A x=\lambda B x$ with positive definite B
- the Rayleigh quotient

$$
\frac{x^{\top} A x}{x^{\top} B x}
$$

is maximum for the largest eigenvalue $\lambda_{\max }$ and minimum for the smallest eigenvalue $\lambda_{\text {min }}$

- LOBPCG is the conjugate gradient method applied to this optimization problem

Contour integral methods

- Let $\Gamma \subset \mathbb{C}$ be a closed contour in the complex plane.
- Define

$$
C_{i}=\int_{\Gamma} z^{i}(z l-A)^{-1} \mathrm{~d} z \in \mathbb{C}^{n \times n}
$$

- The rank of C_{0} is the number of eigenvalues of A inside Γ.
- Eigenvalue problem:

$$
C_{1} x=\lambda x \quad \text { with } \quad C_{0} x=x
$$

if λ lies inside the contour.

- Two Methods:
- Subspace iteration
- Arnoldi

Contour integral methods

- Basis operation: let $V \in \mathbb{C}^{n \times m}$.

$$
\begin{aligned}
C_{i} V & =\int_{\Gamma} z^{i}(z l-A)^{-1} V d z \\
& \approx \sum_{j=1}^{N} w_{j} z_{j}^{i}\left(z_{j} l-A\right)^{-1} V
\end{aligned}
$$

- Solution of N linear systems. Can be done in parallel.
- Subspace iteration.
- Compute $V_{0}=C_{0} V$ and orthonormalize (rank revealing QR or SVD)
- The rank of V_{0} is the number of eigenvalues in the contour
- Compute the eigenvalues of $V_{0}^{*} C_{1} V_{0}$.
- (Block) Arnoldi:
- Starting vector $v_{1}=C_{0} v$ and normalize
- Perform Arnoldi with C_{1} with starting vector v_{1}.
- Expensive methods!
- Contour integration leads to rational filter methods, which need significantly less points (smaller N)

