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Google PageRank

» PageRank rj of page i =1, ..., n is defined as:

= ) grj +(1—o)gq, i=1,...,

_j _]4)/

» d; = # out-links of page j
» « € (0,1), damping factor originally 0.85
» g >0, ) ;qi =1, originally, g; = 1/n.
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Easily bored surfer model

a -
i = Z J’J'Jf(lfoc)q,n i=1,...,n
jij—id

ri is a stationary distribution of a Markov chain

with probability « follow a randomly chosen outgoing link
with probability 1 — o« random jump (to page i w.p. g;)
Dangling nodes, d; = 0:

vy VvVvyy

» Random jump from dangling nodes
» Stationary distribution 7t = r/||r|;

v

The page is important if many important pages link to it!



Linear equation and eigenvector problem

r=orP+ (1— «)q

1—«
r=r [ocP + ltq} eigenvector problem
n

r=(1—x)ql/l —aP] ! =(1—a)q Z ot Pt
t=0
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Matrix expansion

r=orP+(1—a)q
r=(1—o)qll —aP] ! =(1—a)q Z ot Pt
t=0

» Computation by matrix iterations:
r® =(1/n,..., 1/n)

» Exponentially fast convergence due to o € (0, 1)
» Matrix iterations are used to compute PageRank in practice
Langville&Meyer 2004, Berkhin 2005



Plan

» Part I: Centrality & computaitonal aspects
» Part Il: PageRank



Effect of adding or removing links

o]

=1—-—ao)g +(1— ) ZqJZcx

The influence of the nodes on the PageRank of node / decreases
exponentially with the distance from i.
(X¢) — Markov chain with transition matrix P.

Z «f(P)ji = Z o' Ej1[X; = i] = Ej[# visits to i before a jump]
t=1
= Pj(reach i before a jump)E;[1 + (# returns to i before a jump)]

» Influence of out-degrees is very limited (Avrachenkov&L 2006)



Effect of adding or removing links

o]

=1—-—ao)g +(1— ) ZqJZcx

The influence of the nodes on the PageRank of node / decreases
exponentially with the distance from i.
(X¢) — Markov chain with transition matrix P.

Z «f(PY)ji = Z o' Ej1[X; = i] = Ej[# visits to i before a jump]
t=1
= Pj(reach i before a jump)E;[1 + (# returns to i before a jump)]

» Influence of out-degrees is very limited (Avrachenkov&L 2006)
» Your best PageRank boosting strategy?



Monte-Carlo computations

» Random walk from each node, length Geometric(1 — )
» Compute the average number of visits to /

x10”°
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Avrachenkov, L, Nemirovsky, Osipova 2007



The influence of «

Figure: —log(PageRank) for top-20 Dutch Wiki pages
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The influence of «

r=(1—a)ql/l—aPl ' =(1-—x)q Z ot Pt
=0

PageRank greately depends on «:

« ~ 0 — ranking by in-degree

>

» o ~ 1 — ranking by random walk

>

» Langville & Meyer 2004, Baeza-Yates, Boldi & Castillo 2006
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How large « should be?

» Initial value 0.85 was found by trial and error
» Convergence rate of power method is «
(Haveliwala & Kamvar 2003)
» PageRank is more stable with smaller «
» Ranking by a random-walk is not necessarily a good thing

Figure: Broder et al. 2000

» Choose o« = 1/2 to balance the components
(Avrachenkov, L & Kim 2006)



Power laws in complex networks

» Power laws: Internet, WWW, social networks, biological
networks, etc...



Power laws in complex networks

vV v.v Yy

Power laws: Internet, WWW, social networks, biological
networks, etc...

degree of the node = # (in-/out-) links
[fraction nodes degree at least k] = py,
Power law: px ~ const - kY71, « > 0.

Power law is the model for high variability: some nodes (hubs)
have extremely many connections



Power laws in complex networks

vV v.v Yy

Power laws: Internet, WWW, social networks, biological
networks, etc...

degree of the node = # (in-/out-) links
[fraction nodes degree at least k] = py,
Power law: px ~ const - kY71, « > 0.

Power law is the model for high variability: some nodes (hubs)
have extremely many connections

log px = log(const) — (y + 1) log k



Power laws in complex networks

vV v.v Yy

v

Power laws: Internet, WWW, social networks, biological
networks, etc...

degree of the node = # (in-/out-) links
[fraction nodes degree at least k] = py,
Power law: px ~ const - kY71, « > 0.

Power law is the model for high variability: some nodes (hubs)
have extremely many connections

log px = log(const) — (y + 1) log k

» Straight line on the log-log scale



Power law of PageRank

Pandurangan, Raghavan, Upfal 2002.
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r = Z %err(l—oc)q;, i=1,...,n
jij—i?
» Rescale: R; = nrj, Q; — n(1 — a)q; so that E(R) =1

» Idea: model R as a solution of stochastic equation
(Volkovich&L 2010):
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» R; is distributed as R; N, D, R; are independent

» Denote ; = /D;.



Stochastic model for PageRank

r = Z %err(l—oc)q;, i=1,...,n
jij—i?
» Rescale: R; = nrj, Q; — n(1 — a)q; so that E(R) =1

» Idea: model R as a solution of stochastic equation
(Volkovich&L 2010):

N
RE Y GR+Q
j=1

» N: in-degree of the randomly chosen page

» D: out-degree of page that links to the randomly chosen page
» R; is distributed as R; N, D, R; are independent

» Denote ; = «/D;.



Results for stochastic recursion

N
REY GR+Q

j=1

Theorem (Volkovich&L 2010)

If P(Q > x) =o0o(P(N > x)), then the following are equivalent:
» P(N > x) ~L(x)x Y as x — oo,

» P(R>x)~aL(x)x™Y asx — oo,
where a = (E[C])Y (1~ EINIE[CY])!

» Here a ~ b means a/b — 1
» Note that E[C] = 1/E(N), the role of out-degrees is minimal!
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Results for stochastic recursion

N
REY GR+Q

j=1

» Olvera-Cravioto, Jelenkovic 2010, 2012 analyzed the recursion
under most general assumptions on C;'s. For example, R can
be heavy-tailed even when N is light-tailed.

» However, this does not completely explain the behavior of
PageRank in networks because the recursion implicitly
assumes an underlying tree structure.

» We now want to extend the result to random graphs!



Bi-directed degree sequence

» Directed graph on n nodes V ={vq,..., vy}
» Extended bi-degree sequence
(Nnx Dnv Cnv Qn) :{(va DI! Clr QI) : 1 < I < n}
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Bi-directed degree sequence

» Directed graph on n nodes V ={vq,..., vy}
» Extended bi-degree sequence
(Nnx Dnv Cnv Qn) :{(va DI! Clr QI) : 1 < I < n}

n n
Ly=) Nj=> D
i=1 i=1

» Assumption 1. Existence of certain limits in the spirit of the
weak law of large numbers, including %Zf':l D,-2 to be
bounded in probability (finite variance of the out-degrees).

» Assumption 2. In a sequence of random graphs of growing
size, the empirical probabilities P(D; = k) converge to certain
distributions.

» Example: Chen&Olvera-Cravioto 2013
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Directed Configuration Model (DCM)

F* F~
%1 Vi

V2

V2

Vn

Vn




Directed Configuration Model (DCM)

F +
Vi Vi
V2 V2
Vn Vn

We keep self-loops and double edges.
The result is a multi-graph



PageRank in the DCM

Chen, L, Olvera-Cravioto 2014
» M = M(n) € R"™" is related to the adjacency matrix of the
graph:

M {s,-jC,-, if there are s;; edges from i to j,
ij=

0, otherwise.

» Q € R" is a personalization vector
» We are interested in the distribution of one coordinate, Rl("),
of the vector R(") € R” defined by

R(M — R M + Q



Original and size-biased distribution

» Given the extended bi-degree sequence (N,, D,, C,, Q,):
» Empirical distribution for the root node's parameters:

F*(m,q): Zl <m, Q< q),

converges to F*(m, q) := P(N <m,Q <q)



Original and size-biased distribution

» Given the extended bi-degree sequence (N,, D,, C,, Q,):
» Empirical distribution for the root node's parameters:

F*(m,q): Zl <m, Q< q),

converges to F*(m, q) := P(No <m, Q9 <q)

» Empirical distribution for a node that has a out-link to any
arbitrary node (size-biased by out-degree)

n(m, q,x) Zl k<m Q< q G <X)

converges to F(m, q, x) =PN<m Q< qg)P(C < x).



Main result

Chen, L, Olvera-Cravioto 2016

N
R 2 Z eijj + Q,
j=1
» Let R denote the endogenous solution to the SFPE above.
» The endogenous solution is the limit of iterations of the
recursion starting, say, from Ry = 1.

» Main result:
Rl(") = R*, n— oo,

where = denotes weak convergence and R* is given by

No
R* = Z ijzj + Qp,
j=1
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Methodology

» Three steps, three entirely different techniques.

» 1. Finite approximation. PageRank is accurately approximated
by a finite number of matrix iterations.

» 2. Coupling with a tree. Construct a coupling of the DCM
graph and a “thorny branching tree” (TBT). The coupling
between the graph and the TBT will hold for a number of
generations in the tree that is logarithmic in n.

» 3. Convergence to a weighted branching process. Show that
the rank of the root node of the TBT converges weakly to the
stated limit. Chen and Olvera-Cravioto (2014)



Matrix iterations

Under event B, = {maxlgign IGID; < «, %27:1 0 < H}

k

11—

0
RO RO < lrollod +3 QI = rolnoc+1QU
i=0

» We want to bound IRl(”'OO) — Rl(”’k)\

» The standard results on mixing times do not help to get rid of
the factor n



Convergence for matrix iterations

» All nodes are symmetric!
: k
> E(IR() — R = 1E, |[R4) — Rines) ||



Convergence for matrix iterations

vvy VYy

All nodes are symmetric!
, K
En(‘Rl(n ) Rl(n )U _ %En HR(n,k) o R(n,oo)H1
00 k k
En(IR{"™™ — RI™)) < Inolodk + -y 311
Markov inequality:

P([RI"™ = RI™| > x| By) = O (xn")

It is a weaker result than bounding IRl("'OO) — Rl("’k)l, but it is
good enough

» Approximation of Rl("'oo) by Rl(”'k)
» Next, approximate Rl("'k) by the PageRank of a root of a tree

with depth k



Coupling with branching tree

» We start with random node (node 1) and explore its
neighbours, labeling the stubs that we have already seen

» T — the number of generations of WBP completed before
coupling breaks



Coupling with branching tree

Lemma (The Coupling Lemma)

Suppose (N,,D,,, C,,, Q) satisfies WLLN, w = E(ND)/E(D).
Then,

» forany 1 < k < hlogn with0< h<1/(2logw), ifu>1,
> foranylgkénb with b<1/2, ifu <1,
we have
O ((n/u?)=12), u>1,
Pt<KQn)={0((n/k)2), u=1,
O(nfl/z), pn <1,
as n — oo.

Remark: 1 corresponds to the average number of offspring of a
node in TBT.
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The Coupling Lemma: idea of the proof

individuals in generation s of the tree
outbound stubs of all nodes in generation s
are not much larger than their means:

YyVvyYy
lh<>
<k

S
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probability not larger than
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» {T = r} is equivalent to the event that Binomial(Z,, P,) r.v. is
greater or equal than 1.



The Coupling Lemma: idea of the proof

individuals in generation s of the tree
outbound stubs of all nodes in generation s
are not much larger than their means:

YyVvyYy
lh<>
<k

S

E, [Z} ~ ot E, [v} ~ AR, A= E[D?Y/u.

» An inbound stub of a node in the rth generation will be the
first one to be paired with a labeled outbound stub with a
probability not larger than

1 « Ap”
Pri=— Ve ———.
' Ln Z ° "(H* 1)

» {T = r} is equivalent to the event that Binomial(Z,, P,) r.v. is

greater or equal than 1.
» Markov's inequality: P(t=r) < Z,P, =0 (pzrnfl), r < k.



Main result

N
R 2 Z GJ-DQJ- + Q,
j=1

» Let R denote the endogenous solution to the SFPE above.
» The endogenous solution is the limit of iterations of the
recursion starting, say, from Ry = 1.
» Main result:
Rl(n) = R*, n — oo,
where =- denotes weak convergence and R* is given by
No
R* =) CRj+
j=1



Numerical results-1
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Figure: The empirical CDFs of 1000 samples of R*, R."*) R!™*) and
R(#) for n = 10000 and k, = 9.



Numerical results-2
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Figure: The empirical CDFs of 1000 samples of R* and Rl(n'oo) for
n =10, 100 and 10000.
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» Local weak convergence (Benjamini& Schramm 2001)



Graph limits

» Local weak convergence (Benjamini& Schramm 2001)
» Ongoing work vdHofstad, Garavaglia, L (2017)



Thank you!



