## UNIVERSITY OF TWENTE.

## Finding central nodes

 in large networks

Nelly Litvak
University of Twente
Eindhoven University of Technology,
The Netherlands
Woudschoten Conference 2017


## Google PageRank

- PageRank $r_{i}$ of page $i=1, \ldots, n$ is defined as:

$$
r_{i}=\sum_{j: j \rightarrow i} \frac{\alpha}{d_{j}} r_{j}+(1-\alpha) q_{i}, \quad i=1, \ldots, n
$$

- $d_{j}=\#$ out-links of page $j$
- $\alpha \in(0,1)$, damping factor originally 0.85
- $q_{i} \geqslant 0, \sum_{i} q_{i}=1$, originally, $q_{i}=1 / n$.


## Easily bored surfer model

$$
r_{i}=\sum_{j: j \rightarrow i} \frac{\alpha}{d_{j}} r_{j}+(1-\alpha) q_{i}, \quad i=1, \ldots, n
$$

- $r_{i}$ is a stationary distribution of a Markov chain


## Easily bored surfer model

$$
r_{i}=\sum_{j: j \rightarrow i} \frac{\alpha}{d_{j}} r_{j}+(1-\alpha) q_{i}, \quad i=1, \ldots, n
$$

- $r_{i}$ is a stationary distribution of a Markov chain
- with probability $\alpha$ follow a randomly chosen outgoing link
- with probability $1-\alpha$ random jump (to page $i$ w.p. $q_{i}$ )


## Easily bored surfer model

$$
r_{i}=\sum_{j: j \rightarrow i} \frac{\alpha}{d_{j}} r_{j}+(1-\alpha) q_{i}, \quad i=1, \ldots, n
$$

- $r_{i}$ is a stationary distribution of a Markov chain
- with probability $\alpha$ follow a randomly chosen outgoing link
- with probability $1-\alpha$ random jump (to page $i$ w.p. $q_{i}$ )
- Dangling nodes, $d_{j}=0$ :
- Random jump from dangling nodes


## Easily bored surfer model

$$
r_{i}=\sum_{j: j \rightarrow i} \frac{\alpha}{d_{j}} r_{j}+(1-\alpha) q_{i}, \quad i=1, \ldots, n
$$

- $r_{i}$ is a stationary distribution of a Markov chain
- with probability $\alpha$ follow a randomly chosen outgoing link
- with probability $1-\alpha$ random jump (to page $i$ w.p. $q_{i}$ )
- Dangling nodes, $d_{j}=0$ :
- Random jump from dangling nodes
- Stationary distribution $\pi=\mathbf{r} /\|\mathbf{r}\|_{1}$


## Easily bored surfer model

$$
r_{i}=\sum_{j: j \rightarrow i} \frac{\alpha}{d_{j}} r_{j}+(1-\alpha) q_{i}, \quad i=1, \ldots, n
$$

- $r_{i}$ is a stationary distribution of a Markov chain
- with probability $\alpha$ follow a randomly chosen outgoing link
- with probability $1-\alpha$ random jump (to page $i$ w.p. $q_{i}$ )
- Dangling nodes, $d_{j}=0$ :
- Random jump from dangling nodes
- Stationary distribution $\pi=\mathbf{r} /\|\mathbf{r}\|_{1}$
- The page is important if many important pages link to it!


## Linear equation and eigenvector problem

$$
\begin{aligned}
& \mathbf{r}=\alpha \mathbf{r} P+(1-\alpha) \mathbf{q} \\
& \mathbf{r}=\mathbf{r}\left[\alpha P+\frac{1-\alpha}{n} \mathbf{1}^{t} \mathbf{q}\right] \quad \text { eigenvector problem } \\
& \mathbf{r}=(1-\alpha) \mathbf{q}[I-\alpha P]^{-1}=(1-\alpha) \mathbf{q} \sum_{t=0}^{\infty} \alpha^{t} P^{t} .
\end{aligned}
$$

## Matrix expansion

$$
\begin{aligned}
& \mathbf{r}=\alpha \mathbf{r} P+(1-\alpha) \mathbf{q} \\
& \mathbf{r}=(1-\alpha) \mathbf{q}[I-\alpha P]^{-1}=(1-\alpha) \mathbf{q} \sum_{t=0}^{\infty} \alpha^{t} P^{t} .
\end{aligned}
$$

- Computation by matrix iterations:

$$
\begin{aligned}
\mathbf{r}^{(0)} & =(1 / n, \ldots, 1 / n) \\
\mathbf{r}^{(k)} & =\alpha \mathbf{r}^{(k-1)} P+(1-\alpha) \mathbf{q} \\
& =\mathbf{r}^{(0)} \alpha^{k} P^{k}+(1-\alpha) \mathbf{q} \sum_{t=0}^{k-1} \alpha^{t} P^{t}
\end{aligned}
$$

## Matrix expansion

$$
\begin{aligned}
& \mathbf{r}=\alpha \mathbf{r} P+(1-\alpha) \mathbf{q} \\
& \mathbf{r}=(1-\alpha) \mathbf{q}[I-\alpha P]^{-1}=(1-\alpha) \mathbf{q} \sum_{t=0}^{\infty} \alpha^{t} P^{t} .
\end{aligned}
$$

- Computation by matrix iterations:

$$
\begin{aligned}
\mathbf{r}^{(0)} & =(1 / n, \ldots, 1 / n) \\
\mathbf{r}^{(k)} & =\alpha \mathbf{r}^{(k-1)} P+(1-\alpha) \mathbf{q} \\
& =\mathbf{r}^{(0)} \alpha^{k} P^{k}+(1-\alpha) \mathbf{q} \sum_{t=0}^{k-1} \alpha^{t} P^{t}
\end{aligned}
$$

- Exponentially fast convergence due to $\alpha \in(0,1)$


## Matrix expansion

$$
\begin{aligned}
& \mathbf{r}=\alpha \mathbf{r} P+(1-\alpha) \mathbf{q} \\
& \mathbf{r}=(1-\alpha) \mathbf{q}[I-\alpha P]^{-1}=(1-\alpha) \mathbf{q} \sum_{t=0}^{\infty} \alpha^{t} P^{t} .
\end{aligned}
$$

- Computation by matrix iterations:

$$
\begin{aligned}
\mathbf{r}^{(0)} & =(1 / n, \ldots, 1 / n) \\
\mathbf{r}^{(k)} & =\alpha \mathbf{r}^{(k-1)} P+(1-\alpha) \mathbf{q} \\
& =\mathbf{r}^{(0)} \alpha^{k} P^{k}+(1-\alpha) \mathbf{q} \sum_{t=0}^{k-1} \alpha^{t} P^{t}
\end{aligned}
$$

- Exponentially fast convergence due to $\alpha \in(0,1)$
- Matrix iterations are used to compute PageRank in practice Langville\&Meyer 2004, Berkhin 2005

Plan

- Part I: Centrality \& computaitonal aspects
- Part II: PageRank


## Effect of adding or removing links

$$
r_{i}=(1-\alpha) q_{i}+(1-\alpha) \sum_{j=1}^{n} q_{j} \sum_{t=1}^{\infty} \alpha^{t}\left(P^{t}\right)_{j i}
$$

The influence of the nodes on the PageRank of node $i$ decreases exponentially with the distance from $i$.
$\left(X_{t}\right)$ - Markov chain with transition matrix $P$.
$\sum_{t=1}^{\infty} \alpha^{t}\left(P^{t}\right)_{j i}=\sum_{t=1}^{\infty} \alpha^{t} E_{j} 1\left[X_{t}=i\right]=E_{j}[\#$ visits to $i$ before a jump $]$
$=P_{j}($ reach $i$ before a jump $) E_{i}[1+(\#$ returns to $i$ before a jump $)]$

- Influence of out-degrees is very limited (Avrachenkov\&L 2006)


## Effect of adding or removing links

$$
r_{i}=(1-\alpha) q_{i}+(1-\alpha) \sum_{j=1}^{n} q_{j} \sum_{t=1}^{\infty} \alpha^{t}\left(P^{t}\right)_{j i}
$$

The influence of the nodes on the PageRank of node $i$ decreases exponentially with the distance from $i$.
$\left(X_{t}\right)$ - Markov chain with transition matrix $P$.
$\sum_{t=1}^{\infty} \alpha^{t}\left(P^{t}\right)_{j i}=\sum_{t=1}^{\infty} \alpha^{t} E_{j} \mathbf{1}\left[X_{t}=i\right]=E_{j}[\#$ visits to $i$ before a jump $]$
$=P_{j}($ reach $i$ before a jump $) E_{i}[1+(\#$ returns to $i$ before a jump $)]$

- Influence of out-degrees is very limited (Avrachenkov\&L 2006)
- Your best PageRank boosting strategy?


## Monte-Carlo computations

- Random walk from each node, length Geometric $(1-\alpha)$
- Compute the average number of visits to $i$


Avrachenkov, L, Nemirovsky, Osipova 2007

The influence of $\alpha$

$$
\mathbf{r}=(1-\alpha) \mathbf{q} \sum_{t=0}^{\infty} \alpha^{t} P^{t}
$$

Figure: $-\log ($ PageRank $)$ for top-20 Dutch Wiki pages

The influence of $\alpha$

$$
\mathbf{r}=(1-\alpha) \mathbf{q}[/-\alpha P]^{-1}=(1-\alpha) \mathbf{q} \sum_{t=0}^{\infty} \alpha^{t} P^{t}
$$

- PageRank greately depends on $\alpha$ :
- $\alpha \approx 1$


## The influence of $\alpha$

$$
\mathbf{r}=(1-\alpha) \mathbf{q}[l-\alpha P]^{-1}=(1-\alpha) \mathbf{q} \sum_{t=0}^{\infty} \alpha^{t} P^{t}
$$

- PageRank greately depends on $\alpha$ :
- $\alpha \approx 1$ - ranking by random walk

The influence of $\alpha$

$$
\mathbf{r}=(1-\alpha) \mathbf{q}[l-\alpha P]^{-1}=(1-\alpha) \mathbf{q} \sum_{t=0}^{\infty} \alpha^{t} P^{t}
$$

- PageRank greately depends on $\alpha$ :
- $\alpha \approx 1$ - ranking by random walk
- $\alpha \approx 0$


## The influence of $\alpha$

$$
\mathbf{r}=(1-\alpha) \mathbf{q}[l-\alpha P]^{-1}=(1-\alpha) \mathbf{q} \sum_{t=0}^{\infty} \alpha^{t} P^{t}
$$

- PageRank greately depends on $\alpha$ :
- $\alpha \approx 1$ - ranking by random walk
- $\alpha \approx 0$ - ranking by in-degree

The influence of $\alpha$

$$
\mathbf{r}=(1-\alpha) \mathbf{q}[I-\alpha P]^{-1}=(1-\alpha) \mathbf{q} \sum_{t=0}^{\infty} \alpha^{t} P^{t}
$$

- PageRank greately depends on $\alpha$ :
- $\alpha \approx 1$ - ranking by random walk
- $\alpha \approx 0$ - ranking by in-degree
- Langville \& Meyer 2004, Baeza-Yates, Boldi \& Castillo 2006


## How large $\alpha$ should be?

- Initial value 0.85 was found by trial and error


## How large $\alpha$ should be?

- Initial value 0.85 was found by trial and error
- Convergence rate of power method is $\alpha$ (Haveliwala \& Kamvar 2003)


## How large $\alpha$ should be?

- Initial value 0.85 was found by trial and error
- Convergence rate of power method is $\alpha$ (Haveliwala \& Kamvar 2003)
- PageRank is more stable with smaller $\alpha$


## How large $\alpha$ should be?

- Initial value 0.85 was found by trial and error
- Convergence rate of power method is $\alpha$ (Haveliwala \& Kamvar 2003)
- PageRank is more stable with smaller $\alpha$
- Ranking by a random-walk is not necessarily a good thing


## How large $\alpha$ should be?

- Initial value 0.85 was found by trial and error
- Convergence rate of power method is $\alpha$ (Haveliwala \& Kamvar 2003)
- PageRank is more stable with smaller $\alpha$
- Ranking by a random-walk is not necessarily a good thing


Figure: Broder et al. 2000

## How large $\alpha$ should be?

- Initial value 0.85 was found by trial and error
- Convergence rate of power method is $\alpha$ (Haveliwala \& Kamvar 2003)
- PageRank is more stable with smaller $\alpha$
- Ranking by a random-walk is not necessarily a good thing


Figure: Broder et al. 2000

- Choose $\alpha=1 / 2$ to balance the components (Avrachenkov, L \& Kim 2006)


## Power laws in complex networks

- Power laws: Internet, WWW, social networks, biological networks, etc...


## Power laws in complex networks

- Power laws: Internet, WWW, social networks, biological networks, etc...
- degree of the node $=$ \# (in-/out-) links
- [fraction nodes degree at least $k]=p_{k}$,
- Power law: $p_{k} \approx$ const $\cdot k^{-\gamma-1}, \alpha>0$.
- Power law is the model for high variability: some nodes (hubs) have extremely many connections


## Power laws in complex networks

- Power laws: Internet, WWW, social networks, biological networks, etc...
- degree of the node $=$ \# (in-/out-) links
- [fraction nodes degree at least $k]=p_{k}$,
- Power law: $p_{k} \approx$ const $\cdot k^{-\gamma-1}, \alpha>0$.
- Power law is the model for high variability: some nodes (hubs) have extremely many connections
- $\log p_{k}=\log ($ const $)-(\gamma+1) \log k$


## Power laws in complex networks

- Power laws: Internet, WWW, social networks, biological networks, etc...
- degree of the node $=$ \# (in-/out-) links
- [fraction nodes degree at least $k]=p_{k}$,
- Power law: $p_{k} \approx$ const $\cdot k^{-\gamma-1}, \alpha>0$.
- Power law is the model for high variability: some nodes (hubs) have extremely many connections
- $\log p_{k}=\log ($ const $)-(\gamma+1) \log k$
- Straight line on the log-log scale


## Power law of PageRank

Pandurangan, Raghavan, Upfal 2002.



## Stochastic model for PageRank

$$
r_{i}=\sum_{j: j \rightarrow i} \frac{\alpha}{d_{j}} r_{j}+(1-\alpha) q_{i}, \quad i=1, \ldots, n
$$

## Stochastic model for PageRank

$$
r_{i}=\sum_{j: j \rightarrow i} \frac{\alpha}{d_{j}} r_{j}+(1-\alpha) q_{i}, \quad i=1, \ldots, n
$$

- Rescale: $R_{i}=n r_{i}, Q_{i} \rightarrow n(1-\alpha) q_{i}$ so that $E(R)=1$
- Idea: model $R$ as a solution of stochastic equation (Volkovich\&L 2010):

$$
R \stackrel{d}{=} \alpha \sum_{j=1}^{N} \frac{1}{D_{j}} R_{j}+Q
$$

- $N$ : in-degree of the randomly chosen page
- D: out-degree of page that links to the randomly chosen page
- $R_{j}$ is distributed as $R ; N, D, R_{j}$ are independent
- Denote $C_{j}=\alpha / D_{j}$.


## Stochastic model for PageRank

$$
r_{i}=\sum_{j: j \rightarrow i} \frac{\alpha}{d_{j}} r_{j}+(1-\alpha) q_{i}, \quad i=1, \ldots, n
$$

- Rescale: $R_{i}=n r_{i}, Q_{i} \rightarrow n(1-\alpha) q_{i}$ so that $E(R)=1$
- Idea: model $R$ as a solution of stochastic equation (Volkovich\&L 2010):

$$
R \stackrel{d}{=} \sum_{j=1}^{N} C_{j} R_{j}+Q
$$

- $N$ : in-degree of the randomly chosen page
- D: out-degree of page that links to the randomly chosen page
- $R_{j}$ is distributed as $R ; N, D, R_{j}$ are independent
- Denote $C_{j}=\alpha / D_{j}$.


## Results for stochastic recursion

$$
R \stackrel{d}{=} \sum_{j=1}^{N} C_{j} R_{j}+Q
$$

Theorem (Volkovich\&L 2010)
If $P(Q>x)=o(P(N>x))$, then the following are equivalent:

- $P(N>x) \sim L(x) x^{-\gamma}$ as $x \rightarrow \infty$,
- $P(R>x) \sim a L(x) x^{-\gamma}$ as $x \rightarrow \infty$, where $a=(E[C])^{\gamma}\left(1-\mathbb{E}[N] \mathbb{E}\left[C^{\gamma}\right]\right)^{-1}$
- Here $a \sim b$ means $a / b \rightarrow 1$
- Note that $E[C]=1 / E(N)$, the role of out-degrees is minimal!


## Results for stochastic recursion

$$
R \stackrel{d}{=} \sum_{j=1}^{N} C_{j} R_{j}+Q
$$

- Olvera-Cravioto, Jelenkovic 2010, 2012 analyzed the recursion under most general assumptions on $C_{j}$ 's. For example, $R$ can be heavy-tailed even when $N$ is light-tailed.


## Results for stochastic recursion

$$
R \stackrel{d}{=} \sum_{j=1}^{N} C_{j} R_{j}+Q
$$

- Olvera-Cravioto, Jelenkovic 2010, 2012 analyzed the recursion under most general assumptions on $C_{j}$ 's. For example, $R$ can be heavy-tailed even when $N$ is light-tailed.
- However, this does not completely explain the behavior of PageRank in networks because the recursion implicitly assumes an underlying tree structure.


## Results for stochastic recursion

$$
R \stackrel{d}{=} \sum_{j=1}^{N} C_{j} R_{j}+Q
$$

- Olvera-Cravioto, Jelenkovic 2010, 2012 analyzed the recursion under most general assumptions on $C_{j}$ 's. For example, $R$ can be heavy-tailed even when $N$ is light-tailed.
- However, this does not completely explain the behavior of PageRank in networks because the recursion implicitly assumes an underlying tree structure.
- We now want to extend the result to random graphs!


## Bi-directed degree sequence

- Directed graph on $n$ nodes $V=\left\{v_{1}, \ldots, v_{n}\right\}$.
- Extended bi-degree sequence

$$
\left(\mathbf{N}_{n}, \mathbf{D}_{n}, \mathbf{C}_{n}, \mathbf{Q}_{n}\right)=\left\{\left(N_{i}, D_{i}, C_{i}, Q_{i}\right): 1 \leqslant i \leqslant n\right\}
$$

$$
L_{n}=\sum_{i=1}^{n} N_{i}=\sum_{i=1}^{n} D_{i}
$$

## Bi-directed degree sequence

- Directed graph on $n$ nodes $V=\left\{v_{1}, \ldots, v_{n}\right\}$.
- Extended bi-degree sequence

$$
\left(\mathbf{N}_{n}, \mathbf{D}_{n}, \mathbf{C}_{n}, \mathbf{Q}_{n}\right)=\left\{\left(N_{i}, D_{i}, C_{i}, Q_{i}\right): 1 \leqslant i \leqslant n\right\}
$$

$$
L_{n}=\sum_{i=1}^{n} N_{i}=\sum_{i=1}^{n} D_{i}
$$

- Assumption 1. Existence of certain limits in the spirit of the weak law of large numbers, including $\frac{1}{n} \sum_{i=1}^{n} D_{i}^{2}$ to be bounded in probability (finite variance of the out-degrees).
- Assumption 2. In a sequence of random graphs of growing size, the empirical probabilities $P\left(D_{i}=k\right)$ converge to certain distributions.
- Example: Chen\&Olvera-Cravioto 2013

Directed Configuration Model (DCM)

Directed Configuration Model (DCM)

## Directed Configuration Model (DCM)



## Directed Configuration Model (DCM)



## Directed Configuration Model (DCM)



## Directed Configuration Model (DCM)



## Directed Configuration Model (DCM)



We keep self-loops and double edges.
The result is a multi-graph

## PageRank in the DCM

## Chen, L, Olvera-Cravioto 2014

- $M=M(n) \in \mathbb{R}^{n \times n}$ is related to the adjacency matrix of the graph:

$$
M_{i, j}= \begin{cases}s_{i j} C_{i}, & \text { if there are } s_{i j} \text { edges from } i \text { to } j \\ 0, & \text { otherwise. }\end{cases}
$$

- $Q \in \mathbb{R}^{n}$ is a personalization vector
- We are interested in the distribution of one coordinate, $R_{1}^{(n)}$, of the vector $\mathbf{R}^{(n)} \in \mathbb{R}^{n}$ defined by

$$
\mathbf{R}^{(n)}=\mathbf{R}^{(n)} M+Q
$$

## Original and size-biased distribution

- Given the extended bi-degree sequence ( $\mathbf{N}_{n}, \mathbf{D}_{n}, \mathbf{C}_{n}, \mathbf{Q}_{n}$ ):
- Empirical distribution for the root node's parameters:

$$
F_{n}^{*}(m, q):=\frac{1}{n} \sum_{k=1}^{n} 1\left(N_{k} \leqslant m, Q_{k} \leqslant q\right)
$$

converges to $F^{*}(m, q):=P\left(\mathcal{N}_{0} \leqslant m, Q_{0} \leqslant q\right)$

## Original and size-biased distribution

- Given the extended bi-degree sequence ( $\mathbf{N}_{n}, \mathbf{D}_{n}, \mathbf{C}_{n}, \mathbf{Q}_{n}$ ):
- Empirical distribution for the root node's parameters:

$$
F_{n}^{*}(m, q):=\frac{1}{n} \sum_{k=1}^{n} 1\left(N_{k} \leqslant m, Q_{k} \leqslant q\right)
$$

converges to $F^{*}(m, q):=P\left(\mathcal{N}_{0} \leqslant m, Q_{0} \leqslant q\right)$

- Empirical distribution for a node that has a out-link to any arbitrary node (size-biased by out-degree)

$$
F_{n}(m, q, x):=\sum_{k=1}^{n} 1\left(N_{k} \leqslant m, Q_{k} \leqslant q, C_{k} \leqslant x\right) \frac{D_{k}}{L_{n}}
$$

converges to $F(m, q, x):=P(\mathcal{N} \leqslant m, Q \leqslant q) P(\mathcal{C} \leqslant x)$.

## Main result

Chen, L, Olvera-Cravioto 2016

$$
\mathcal{R} \stackrel{\mathcal{D}}{=} \sum_{j=1}^{\mathcal{N}} \mathcal{C}_{j} \mathcal{R}_{j}+\mathcal{Q}
$$

- Let $\mathcal{R}$ denote the endogenous solution to the SFPE above.
- The endogenous solution is the limit of iterations of the recursion starting, say, from $R_{0}=\mathbf{1}$.
- Main result:

$$
R_{1}^{(n)} \Rightarrow \mathcal{R}^{*}, \quad n \rightarrow \infty
$$

where $\Rightarrow$ denotes weak convergence and $\mathcal{R}^{*}$ is given by

$$
\mathcal{R}^{*}:=\sum_{j=1}^{\mathcal{N}_{0}} \mathcal{C}_{j} \mathcal{R}_{j}+\mathcal{Q}_{0}
$$

## Methodology

- Three steps, three entirely different techniques.


## Methodology

- Three steps, three entirely different techniques.
- 1. Finite approximation. PageRank is accurately approximated by a finite number of matrix iterations.


## Methodology

- Three steps, three entirely different techniques.
- 1. Finite approximation. PageRank is accurately approximated by a finite number of matrix iterations.
- 2. Coupling with a tree. Construct a coupling of the DCM graph and a "thorny branching tree" (TBT). The coupling between the graph and the TBT will hold for a number of generations in the tree that is logarithmic in $n$.


## Methodology

- Three steps, three entirely different techniques.
- 1. Finite approximation. PageRank is accurately approximated by a finite number of matrix iterations.
- 2. Coupling with a tree. Construct a coupling of the DCM graph and a "thorny branching tree" (TBT). The coupling between the graph and the TBT will hold for a number of generations in the tree that is logarithmic in $n$.
- 3. Convergence to a weighted branching process. Show that the rank of the root node of the TBT converges weakly to the stated limit. Chen and Olvera-Cravioto (2014)


## Matrix iterations

Under event $B_{n}=\left\{\max _{1 \leqslant i \leqslant n}\left|C_{i}\right| D_{i} \leqslant \alpha, \frac{1}{n} \sum_{i=1}^{n}\left|Q_{i}\right| \leqslant H\right\}$

$$
\left\|\mathbf{R}^{(n, k)}-\mathbf{R}^{(n, \infty)}\right\|_{1} \leqslant\left\|\mathbf{r}_{0}\right\|_{1} \alpha^{k}+\sum_{i=0}^{\infty}\|\mathbf{Q}\|_{1} \alpha^{k+i}=\left|r_{0}\right| n \alpha^{k}+\|\mathbf{Q}\|_{1} \frac{\alpha^{k}}{1-\alpha}
$$

- We want to bound $\left|R_{1}^{(n, \infty)}-R_{1}^{(n, k)}\right|$
- The standard results on mixing times do not help to get rid of the factor $n$


## Convergence for matrix iterations

- All nodes are symmetric!
- $E_{n}\left(\left|R_{1}^{(n, \infty)}-R_{1}^{(n, k)}\right|\right)=\frac{1}{n} E_{n}\left\|\mathbf{R}^{(n, k)}-\mathbf{R}^{(n, \infty)}\right\|_{1}$


## Convergence for matrix iterations

- All nodes are symmetric!
- $E_{n}\left(\left|R_{1}^{(n, \infty)}-R_{1}^{(n, k)}\right|\right)=\frac{1}{n} E_{n}\left\|\mathbf{R}^{(n, k)}-\mathbf{R}^{(n, \infty)}\right\|_{1}$
- $E_{n}\left(\left|R_{1}^{(n, \infty)}-R_{1}^{(n, k)}\right|\right) \leqslant\left|r_{0}\right| \alpha^{k}+\frac{\alpha^{k}}{n(1-\alpha)} \sum_{i}\left|Q_{i}\right|$
- Markov inequality:

$$
P\left(\left|R_{1}^{(n, \infty)}-R_{1}^{(n, k)}\right|>x_{n}^{-1} \mid B_{n}\right)=O\left(x_{n} \alpha^{k}\right)
$$

- It is a weaker result than bounding $\left|R_{1}^{(n, \infty)}-R_{1}^{(n, k)}\right|$, but it is good enough
- Approximation of $R_{1}^{(n, \infty)}$ by $R_{1}^{(n, k)}$
- Next, approximate $R_{1}^{(n, k)}$ by the PageRank of a root of a tree with depth $k$


## Coupling with branching tree

- We start with random node (node 1) and explore its neighbours, labeling the stubs that we have already seen
- $\tau$ - the number of generations of WBP completed before coupling breaks



## Coupling with branching tree

## Lemma (The Coupling Lemma)

Suppose ( $\mathbf{N}_{n}, \mathbf{D}_{n}, \mathbf{C}_{n}, \mathbf{Q}_{n}$ ) satisfies WLLN, $\mu=E(\mathcal{N D}) / E(\mathcal{D})$. Then,

- for any $1 \leqslant k \leqslant h \log n$ with $0<h<1 /(2 \log \mu)$, if $\mu>1$,
- for any $1 \leqslant k \leqslant n^{b}$ with $b<1 / 2$, if $\mu \leqslant 1$,
we have

$$
P\left(\tau \leqslant k \mid \Omega_{n}\right)= \begin{cases}O\left(\left(n / \mu^{2 k}\right)^{-1 / 2}\right), & \mu>1 \\ O\left(\left(n / k^{2}\right)^{-1 / 2}\right), & \mu=1 \\ O\left(n^{-1 / 2}\right), & \mu<1\end{cases}
$$

as $n \rightarrow \infty$.
Remark: $\mu$ corresponds to the average number of offspring of a node in TBT.

## The Coupling Lemma: idea of the proof

- $\hat{Z}_{s} \#$ individuals in generation $s$ of the tree
- $\hat{V}_{s}$ \# outbound stubs of all nodes in generation $s$


## The Coupling Lemma: idea of the proof

- $\hat{Z}_{s} \#$ individuals in generation $s$ of the tree
- $\hat{V}_{s}$ \# outbound stubs of all nodes in generation $s$
- $\hat{Z}_{s}, \hat{V}_{s}$ are not much larger than their means:

$$
E_{n}\left[\hat{Z}_{s}\right] \approx \mu^{s+1}, \quad E_{n}\left[\hat{V}_{s}\right] \approx \lambda \mu^{s}, \quad \lambda=E\left[D^{2}\right] / \mu
$$

## The Coupling Lemma: idea of the proof

- $\hat{Z}_{s} \#$ individuals in generation $s$ of the tree
- $\hat{V}_{s} \#$ outbound stubs of all nodes in generation $s$
- $\hat{Z}_{s}, \hat{V}_{s}$ are not much larger than their means:

$$
E_{n}\left[\hat{Z}_{s}\right] \approx \mu^{s+1}, \quad E_{n}\left[\hat{V}_{s}\right] \approx \lambda \mu^{s}, \quad \lambda=E\left[D^{2}\right] / \mu .
$$

- An inbound stub of a node in the $r$ th generation will be the first one to be paired with a labeled outbound stub with a probability not larger than

$$
P_{r}:=\frac{1}{L_{n}} \sum_{s=0}^{r} \hat{V}_{s} \approx \frac{\lambda \mu^{r}}{n(\mu-1)} .
$$

## The Coupling Lemma: idea of the proof

- $\hat{Z}_{s} \#$ individuals in generation $s$ of the tree
- $\hat{V}_{s}$ \# outbound stubs of all nodes in generation $s$
- $\hat{Z}_{s}, \hat{V}_{s}$ are not much larger than their means:

$$
E_{n}\left[\hat{Z}_{s}\right] \approx \mu^{s+1}, \quad E_{n}\left[\hat{V}_{s}\right] \approx \lambda \mu^{s}, \quad \lambda=E\left[D^{2}\right] / \mu
$$

- An inbound stub of a node in the $r$ th generation will be the first one to be paired with a labeled outbound stub with a probability not larger than

$$
P_{r}:=\frac{1}{L_{n}} \sum_{s=0}^{r} \hat{V}_{s} \approx \frac{\lambda \mu^{r}}{n(\mu-1)}
$$

- $\{\tau=r\}$ is equivalent to the event that Binomial $\left(\hat{Z}_{r}, P_{r}\right)$ r.v. is greater or equal than 1.


## The Coupling Lemma: idea of the proof

- $\hat{Z}_{s} \#$ individuals in generation $s$ of the tree
- $\hat{V}_{s}$ \# outbound stubs of all nodes in generation $s$
- $\hat{Z}_{s}, \hat{V}_{s}$ are not much larger than their means:

$$
E_{n}\left[\hat{Z}_{s}\right] \approx \mu^{s+1}, \quad E_{n}\left[\hat{V}_{s}\right] \approx \lambda \mu^{s}, \quad \lambda=E\left[D^{2}\right] / \mu
$$

- An inbound stub of a node in the $r$ th generation will be the first one to be paired with a labeled outbound stub with a probability not larger than

$$
P_{r}:=\frac{1}{L_{n}} \sum_{s=0}^{r} \hat{V}_{s} \approx \frac{\lambda \mu^{r}}{n(\mu-1)} .
$$

- $\{\tau=r\}$ is equivalent to the event that Binomial $\left(\hat{Z}_{r}, P_{r}\right)$ r.v. is greater or equal than 1.
- Markov's inequality: $P(\tau=r) \leqslant \hat{Z}_{r} P_{r}=O\left(\mu^{2 r} n^{-1}\right), r \leqslant k$.


## Main result

$$
\mathcal{R} \stackrel{\mathcal{D}}{=} \sum_{j=1}^{\mathcal{N}} \mathcal{C}_{j} \mathcal{R}_{j}+\mathcal{Q},
$$

- Let $\mathcal{R}$ denote the endogenous solution to the SFPE above.
- The endogenous solution is the limit of iterations of the recursion starting, say, from $R_{0}=\mathbf{1}$.
- Main result:

$$
R_{1}^{(n)} \Rightarrow \mathcal{R}^{*}, \quad n \rightarrow \infty
$$

where $\Rightarrow$ denotes weak convergence and $\mathcal{R}^{*}$ is given by

$$
\mathcal{R}^{*}:=\sum_{j=1}^{\mathcal{N}_{0}} \mathcal{C}_{j} \mathcal{R}_{j}+\mathcal{Q}_{0}
$$

## Numerical results-1



Figure: The empirical CDFs of 1000 samples of $\mathcal{R}^{*}, R_{1}^{(n, \infty)}, R_{1}^{\left(n, k_{n}\right)}$ and $\hat{R}^{\left(n, k_{n}\right)}$ for $n=10000$ and $k_{n}=9$.

## Numerical results-2



Figure: The empirical CDFs of 1000 samples of $\mathcal{R}^{*}$ and $R_{1}^{(n, \infty)}$ for $n=10,100$ and 10000 .

Graph limits


Graph limits


## Graph limits



## Graph limits



- Local weak convergence (Benjamini\& Schramm 2001)


## Graph limits



- Local weak convergence (Benjamini\& Schramm 2001)
- Ongoing work vdHofstad, Garavaglia, L (2017)


## Thank you!

