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Google PageRank

I PageRank ri of page i = 1, . . . , n is defined as:

ri =
∑

j : j → i

α

dj
rj + (1 − α)qi , i = 1, . . . , n

I dj = # out-links of page j

I α ∈ (0, 1), damping factor originally 0.85

I qi > 0,
∑

i qi = 1, originally, qi = 1/n.



Easily bored surfer model

ri =
∑

j : j → i

α

dj
rj + (1 − α)qi , i = 1, . . . , n

I ri is a stationary distribution of a Markov chain

I with probability α follow a randomly chosen outgoing link

I with probability 1 − α random jump (to page i w.p. qi )
I Dangling nodes, dj = 0:

I Random jump from dangling nodes
I Stationary distribution π = r/||r||1

I The page is important if many important pages link to it!
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Linear equation and eigenvector problem

r = αrP + (1 − α)q

r = r

[
αP +

1 − α

n
1tq

]
eigenvector problem

r = (1 − α)q[I − αP]−1 = (1 − α)q
∞∑
t=0

αtPt .



Matrix expansion

r = αrP + (1 − α)q

r = (1 − α)q[I − αP]−1 = (1 − α)q
∞∑
t=0

αtPt .

I Computation by matrix iterations:

r(0) = (1/n, . . . , 1/n)

r(k) = αr(k−1)P + (1 − α)q

= r(0)αkPk + (1 − α)q
k−1∑
t=0

αtPt

I Exponentially fast convergence due to α ∈ (0, 1)
I Matrix iterations are used to compute PageRank in practice

Langville&Meyer 2004, Berkhin 2005
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Plan

I Part I: Centrality & computaitonal aspects

I Part II: PageRank



Effect of adding or removing links

ri = (1 − α)qi + (1 − α)

n∑
j=1

qj

∞∑
t=1

αt(Pt)ji

The influence of the nodes on the PageRank of node i decreases
exponentially with the distance from i .
(Xt) – Markov chain with transition matrix P.∞∑
t=1

αt(Pt)ji =

∞∑
t=1

αtEj1[Xt = i ] = Ej [# visits to i before a jump]

= Pj(reach i before a jump)Ei [1 + (# returns to i before a jump)]

I Influence of out-degrees is very limited (Avrachenkov&L 2006)

I Your best PageRank boosting strategy?
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Monte-Carlo computations

I Random walk from each node, length Geometric(1 − α)
I Compute the average number of visits to i
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Avrachenkov, L, Nemirovsky, Osipova 2007



The influence of α

r = (1 − α)q
∞∑
t=0

αtPt
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Figure: − log(PageRank) for top-20 Dutch Wiki pages



The influence of α

r = (1 − α)q[I − αP]−1 = (1 − α)q
∞∑
t=0

αtPt

I PageRank greately depends on α:

I α ≈ 1

– ranking by random walk

I α ≈ 0 – ranking by in-degree

I Langville & Meyer 2004, Baeza-Yates, Boldi & Castillo 2006
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How large α should be?

I Initial value 0.85 was found by trial and error

I Convergence rate of power method is α
(Haveliwala & Kamvar 2003)

I PageRank is more stable with smaller α
I Ranking by a random-walk is not necessarily a good thing

Figure: Broder et al. 2000
I Choose α = 1/2 to balance the components

(Avrachenkov, L & Kim 2006)
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Power laws in complex networks

I Power laws: Internet, WWW, social networks, biological
networks, etc...

I degree of the node = # (in-/out-) links

I [fraction nodes degree at least k] = pk ,

I Power law: pk ≈ const · k−γ−1, α > 0.

I Power law is the model for high variability: some nodes (hubs)
have extremely many connections

I log pk = log(const) − (γ+ 1) log k

I Straight line on the log-log scale
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Power law of PageRank

Pandurangan, Raghavan, Upfal 2002.



Stochastic model for PageRank

ri =
∑

j : j → i

α

dj
rj + (1 − α)qi , i = 1, . . . , n

I Rescale: Ri = nri , Qi → n(1 − α)qi so that E (R) = 1
I Idea: model R as a solution of stochastic equation

(Volkovich&L 2010):

R
d
=

N∑
j=1

Rj + Q

I N: in-degree of the randomly chosen page
I D: out-degree of page that links to the randomly chosen page
I Rj is distributed as R; N,D,Rj are independent
I Denote Cj = α/Dj .



Stochastic model for PageRank

ri =
∑

j : j → i

α

dj
rj + (1 − α)qi , i = 1, . . . , n

I Rescale: Ri = nri , Qi → n(1 − α)qi so that E (R) = 1
I Idea: model R as a solution of stochastic equation

(Volkovich&L 2010):

R
d
= α

N∑
j=1

1

Dj
Rj + Q

I N: in-degree of the randomly chosen page
I D: out-degree of page that links to the randomly chosen page
I Rj is distributed as R; N,D,Rj are independent
I Denote Cj = α/Dj .



Stochastic model for PageRank

ri =
∑

j : j → i

α

dj
rj + (1 − α)qi , i = 1, . . . , n

I Rescale: Ri = nri , Qi → n(1 − α)qi so that E (R) = 1
I Idea: model R as a solution of stochastic equation

(Volkovich&L 2010):

R
d
=

N∑
j=1

CjRj + Q

I N: in-degree of the randomly chosen page
I D: out-degree of page that links to the randomly chosen page
I Rj is distributed as R; N,D,Rj are independent
I Denote Cj = α/Dj .



Results for stochastic recursion

R
d
=

N∑
j=1

CjRj + Q

Theorem (Volkovich&L 2010)

If P(Q > x) = o(P(N > x)), then the following are equivalent:

I P(N > x) ∼ L(x)x−γ as x →∞,

I P(R > x) ∼ aL(x)x−γ as x →∞,
where a = (E [C ])γ(1 − E[N]E[Cγ])−1

I Here a ∼ b means a/b → 1
I Note that E [C ] = 1/E (N), the role of out-degrees is minimal!



Results for stochastic recursion

R
d
=

N∑
j=1

CjRj + Q

I Olvera-Cravioto, Jelenkovic 2010, 2012 analyzed the recursion
under most general assumptions on Cj ’s. For example, R can
be heavy-tailed even when N is light-tailed.

I However, this does not completely explain the behavior of
PageRank in networks because the recursion implicitly
assumes an underlying tree structure.

I We now want to extend the result to random graphs!
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Bi-directed degree sequence

I Directed graph on n nodes V = {v1, . . . , vn}.
I Extended bi-degree sequence

(Nn,Dn,Cn,Qn) = {(Ni ,Di ,Ci ,Qi ) : 1 6 i 6 n}

Ln =

n∑
i=1

Ni =

n∑
i=1

Di

I Assumption 1. Existence of certain limits in the spirit of the
weak law of large numbers, including 1

n

∑n
i=1D

2
i to be

bounded in probability (finite variance of the out-degrees).
I Assumption 2. In a sequence of random graphs of growing

size, the empirical probabilities P(Di = k) converge to certain
distributions.

I Example: Chen&Olvera-Cravioto 2013
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Directed Configuration Model (DCM)
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We keep self-loops and double edges.
The result is a multi-graph
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PageRank in the DCM

Chen, L, Olvera-Cravioto 2014

I M = M(n) ∈ Rn×n is related to the adjacency matrix of the
graph:

Mi ,j =

{
sijCi , if there are sij edges from i to j ,

0, otherwise.

I Q ∈ Rn is a personalization vector
I We are interested in the distribution of one coordinate, R

(n)
1 ,

of the vector R(n) ∈ Rn defined by

R(n) = R(n)M + Q



Original and size-biased distribution

I Given the extended bi-degree sequence (Nn,Dn,Cn,Qn):
I Empirical distribution for the root node’s parameters:

F ∗
n (m, q) :=

1

n

n∑
k=1

1(Nk 6 m,Qk 6 q),

converges to F ∗(m, q) := P(N0 6 m,Q0 6 q)

I Empirical distribution for a node that has a out-link to any
arbitrary node (size-biased by out-degree)

Fn(m, q, x) :=
n∑

k=1

1(Nk 6 m,Qk 6 q,Ck 6 x)
Dk

Ln

converges to F (m, q, x) := P(N 6 m,Q 6 q)P(C 6 x).
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Main result

Chen, L, Olvera-Cravioto 2016

R
D
=

N∑
j=1

CjRj + Q,

I Let R denote the endogenous solution to the SFPE above.
I The endogenous solution is the limit of iterations of the

recursion starting, say, from R0 = 1.
I Main result:

R
(n)
1 ⇒ R∗, n→∞,

where ⇒ denotes weak convergence and R∗ is given by

R∗ :=

N0∑
j=1

CjRj + Q0,



Methodology

I Three steps, three entirely different techniques.

I 1. Finite approximation. PageRank is accurately approximated
by a finite number of matrix iterations.

I 2. Coupling with a tree. Construct a coupling of the DCM
graph and a “thorny branching tree” (TBT). The coupling
between the graph and the TBT will hold for a number of
generations in the tree that is logarithmic in n.

I 3. Convergence to a weighted branching process. Show that
the rank of the root node of the TBT converges weakly to the
stated limit. Chen and Olvera-Cravioto (2014)
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Matrix iterations

Under event Bn =
{

max16i6n |Ci |Di 6 α, 1
n

∑n
i=1 |Qi | 6 H

}
∣∣∣∣∣∣R(n,k) − R(n,∞)

∣∣∣∣∣∣
1
6 ||r0||1α

k+

∞∑
i=0

||Q||1α
k+i = |r0|nα

k+||Q||1
αk

1 − α
.

I We want to bound |R
(n,∞)
1 − R

(n,k)
1 |

I The standard results on mixing times do not help to get rid of
the factor n



Convergence for matrix iterations

I All nodes are symmetric!
I En(|R

(n,∞)
1 − R

(n,k)
1 |) = 1

nEn

∣∣∣∣R(n,k) − R(n,∞)
∣∣∣∣
1

I En(|R
(n,∞)
1 − R

(n,k)
1 |) 6 |r0|α

k + αk

n(1−α)

∑
i |Qi |

I Markov inequality:

P
(∣∣∣R(n,∞)

1 − R
(n,k)
1

∣∣∣ > x−1
n

∣∣∣Bn

)
= O

(
xnα

k
)

I It is a weaker result than bounding |R
(n,∞)
1 − R

(n,k)
1 |, but it is

good enough
I Approximation of R

(n,∞)
1 by R

(n,k)
1

I Next, approximate R
(n,k)
1 by the PageRank of a root of a tree

with depth k
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Coupling with branching tree

I We start with random node (node 1) and explore its
neighbours, labeling the stubs that we have already seen

I τ – the number of generations of WBP completed before
coupling breaks



Coupling with branching tree

Lemma (The Coupling Lemma)

Suppose (Nn,Dn,Cn,Qn) satisfies WLLN, µ = E (ND)/E (D).
Then,

I for any 1 6 k 6 h log n with 0 < h < 1/(2 logµ), if µ > 1,

I for any 1 6 k 6 nb with b < 1/2, if µ 6 1,

we have

P (τ 6 k |Ωn) =


O
(
(n/µ2k)−1/2

)
, µ > 1,

O
(
(n/k2)−1/2

)
, µ = 1,

O
(
n−1/2

)
, µ < 1,

as n→∞.

Remark: µ corresponds to the average number of offspring of a
node in TBT.



The Coupling Lemma: idea of the proof

I Ẑs # individuals in generation s of the tree
I V̂s # outbound stubs of all nodes in generation s

I Ẑs , V̂s are not much larger than their means:

En

[
Ẑs

]
≈ µs+1, En

[
V̂s

]
≈ λµs , λ = E [D2]/µ.

I An inbound stub of a node in the rth generation will be the
first one to be paired with a labeled outbound stub with a
probability not larger than

Pr :=
1

Ln

r∑
s=0

V̂s ≈
λµr

n(µ− 1)
.

I {τ = r } is equivalent to the event that Binomial(Ẑr ,Pr ) r.v. is
greater or equal than 1.

I Markov’s inequality: P(τ = r) 6 ẐrPr = O
(
µ2rn−1

)
, r 6 k.
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Main result

R
D
=

N∑
j=1

CjRj + Q,

I Let R denote the endogenous solution to the SFPE above.
I The endogenous solution is the limit of iterations of the

recursion starting, say, from R0 = 1.
I Main result:

R
(n)
1 ⇒ R∗, n→∞,

where ⇒ denotes weak convergence and R∗ is given by

R∗ :=

N0∑
j=1

CjRj + Q0,



Numerical results-1
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Figure: The empirical CDFs of 1000 samples of R∗, R
(n,∞)
1 , R

(n,kn)
1 and

R̂(n,kn) for n = 10000 and kn = 9.



Numerical results-2
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Figure: The empirical CDFs of 1000 samples of R∗ and R
(n,∞)
1 for

n = 10, 100 and 10000.



Graph limits

I Local weak convergence (Benjamini& Schramm 2001)

I Ongoing work vdHofstad, Garavaglia, L (2017)
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Thank you!


