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Complex networks

» Networks: Internet, WWW, social networks, neural
networks, ...

» Many nodes connected by edges

» Physics, computer science, sociology, biology, art
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Examples of networks

Bank transactions
in Australia.

Euromaidan Retweets
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Network as a graph G = (V, E)
Undirected: Facebook, roads networks, airline networks,
power grids, co-authorship networks

Directed: Twitter, bank transactions, food webs, WWW,
scientific citations

v

v

v

V set of vertices, E set of edges

v

|V| = n, we can let n — oo

Which nodes are most ‘central’ in a network?
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Google PageRank

» PageRank rj of page i =1, ..., n is defined as:

= ) grj +(1—o)gq, i=1,...,

_j _]4)/

» d; = # out-links of page j
» « € (0,1), damping factor originally 0.85
» g >0, ) ;qi =1, originally, g; = 1/n.
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Easily bored surfer model

a -
i = Z J’J'Jf(lfoc)q,n i=1,...,n
jij—id

ri is a stationary distribution of a Markov chain

with probability « follow a randomly chosen outgoing link
with probability 1 — o« random jump (to page i w.p. g;)
Dangling nodes, d; = 0:

vy VvVvyy

» Random jump from dangling nodes
» Stationary distribution 7t = r/||r|;

v

The page is important if many important pages link to it!



PageRank beyond web search

» Applications:
Topic-sensitive search (Haveliwala 2002);
Spam detection (Gyongyi et al. 2004)
Finding related entities (Chakrabarti 2007);
Link prediction (Liben-Nowell and Kleinberg 2003;
Voevodski, Teng, Xia 2009);
Finding local cuts (Andersen, Chung, Lang 2006);
» Graph clustering (Tsiatas, Chung 2010);
» Person name disambiguation
(Smirnova, Avrachenkov, Trousse 2010);
» Finding most influential people in Wikipedia
(Shepelyansky et al 2010, 2013)
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PageRank beyond web search

» Applications:
Topic-sensitive search (Haveliwala 2002);
Spam detection (Gyongyi et al. 2004)
Finding related entities (Chakrabarti 2007);
Link prediction (Liben-Nowell and Kleinberg 2003;
Voevodski, Teng, Xia 2009);
Finding local cuts (Andersen, Chung, Lang 2006);
» Graph clustering (Tsiatas, Chung 2010);
» Person name disambiguation
(Smirnova, Avrachenkov, Trousse 2010);
» Finding most influential people in Wikipedia
(Shepelyansky et al 2010, 2013)

» Global characteristic of the graph

vV vy Vvyy
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Example: food web




Example: food web

Allesina and Pascual 2009
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Linear equation and eigenvector problem

r=orP+ (1— «)q

1—«
r=r [ocP + ltq} eigenvector problem
n

r=(1—x)ql/l —aP] ! =(1—a)q Z ot Pt
t=0
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Matrix expansion

r=orP+(1—a)q
r=(1—o)qll —aP] ! =(1—a)q Z ot Pt
t=0

» Computation by matrix iterations:
r® =(1/n,..., 1/n)

» Exponentially fast convergence due to o € (0, 1)
» Matrix iterations are used to compute PageRank in practice
Langville&Meyer 2004, Berkhin 2005



Ranking algorithms/Centrality measures

Recent review: (Boldi and Vigna 2014)

» Based on distances:
» (in-)degree: number of nodes on distance 1
» Closeness centrality (Bavelas 1950)
» Harmonic centrality (Boldi and Vigna 2014)
» Based on paths:
» Betweenness centrality (Anthonisse 1971)
» Katz's index (Katz 1953)
» Based ob spectrum:
» Seeley index (Seeley 1949)
» HITS (Kleinberg 1997)
» PageRank (Brin, Page, Motwani and Vinograd 1999)



Plan

» Part I: Centrality & computaitonal aspects
» Part Il: PageRank
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Degree

The degree of a node is a number of edges attached to it
Directed graph: in- and out-degree

Is (in-)degree a good centrality measure?

vV v.vyYy

Easy to compute?
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Finding top-k most followed users on Twitter

» Problem: Find top-k network nodes with most number of
connections

» Some applications:

Routing via large degree nodes

Proxy for various centrality measures

Node clustering and classification

Epidemic processes on networks

Finding most popular entities (e.g. interest groups)
Many companies maintain network statistics
(twittercounter.com, followerwonk.com, twitaholic.com,
www.insidefacebook.com, yavkontakte.ru)

vV vy VY VY VvYYy



Finding top-k largest degree nodes

» If the information about a complete network is available,
complexity O(n)



Finding top-k largest degree nodes

» If the information about a complete network is available,
complexity O(n)

» Twitter has one billion accounts



Finding top-k largest degree nodes

» If the information about a complete network is available,
complexity O(n)

» Twitter has one billion accounts

» The network can be accessed only via API, one access per
minute. It will take 900 years to crawl Twitter!



Finding top-k largest degree nodes

» If the information about a complete network is available,
complexity O(n)

» Twitter has one billion accounts

» The network can be accessed only via API, one access per
minute. It will take 900 years to crawl Twitter!

» Randomized algorithms: Find a ‘good enough’ answer with a
small number of API requests.



Known algorithms

» Random-walk based. Cooper, Radzik, Siantos 2012
Transitions probabilities along undirected edges (i, j) are
proportional to (d(i)d(j))?, where d(i) is the degree of a
vertex x and b > 0 is some parameter.

» Random Walk Avrachenkov, L, Sokol, Towsley 2012 Random
walk with uniform jumps. In an undirected graphs the
stationary distribution is a linear function of degrees.

» Crawl-Al and Crawl-GAl. Kumar, Lang, Marlow, Tomkins
2008 At every step all nodes have their apparent in-degrees
Sj, j=1,...,n: the number of discovered edges pointing to
this node. Designed for WWW crawl.

» HighestDegree. Borgs, Brautbar, Chayes, Khanna, Lucier
2012 Retrieve a random node, check in-degrees of its
out-neighbors. Proceed while resources are available

» Two-stage algorithm. Avrachenkov,L,Ostroumova 2014



The Friendship Paradox

» Feld, 1991
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The Friendship Paradox

» Feld, 1991

1(4) 4(2.75) 4(3) 2(3.5)
Betty Sue Alice Jane

3(3.3)Pam 3(3.3) Dale
2(2) Carol

1(2) Tina

‘The number beside each name is her number of friends. The number in
parentheses beside each name is the mean number of friends of her friends.

F1G. 1.—Friendships among eight girls at Marketville High School

In the figure: # friends (average number of friends’ friends)
More popular than her friends: Sue, Alice

As popular as her friends: Carol

Less popular than her friends: Betty, Pam, Tina, Dale, Jane

vvyyy
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» People with may connections are more likely to be your friend
» Sampling by edge is biased towards nodes with high degrees



Friendship paradox: star graph
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Friendship paradox: consequences

>
>
>
>

Friendship paradox can lead to wrong sampling

But it can be also exploited!
Neighbor vaccinations
Most followed Twitter users

Twitter users

i Barack Obama

¢
‘¥
Q

KATY PERRY

Taylor Swift

Rihanna

YouTube

Followers

95,607,996

91,539,626

84,088,937

83,302,469

69,480,199

66,399,134

Following

190

300,977

631,665

1,134

986

Tweets

7,608

30,645

15,434

4,161

9,898

18,768
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Exploiting the Friendship Paradox

» Step 1: Select N; random users, see whom they follow (N;
API requests)

» Friendship paradox: the people that a random user follows are
often the most popular users in the network

» Step 2: Check, say, N, accounts, most followed by the group
of Ny random users chosen in Step 1. Top-k accounts should
be there with high probability!

In total, we use Ny + N = N requests to API



Results on Twitter
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The fraction of correctly identified top-k most followed Twitter
users. Horisonal axis: number of requests in Step 2. Total number
of requests is NN = 1000.



Comparison to known algorithms
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Figure: The fraction of correctly identified top-100 most followed Twitter
users as a function of the number of API averaged over 10 experiments.



Advantages of the two-stage algorithm

» Does not waste resources

» Obtains exact degrees of the Ny ‘most promising’ nodes
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Hubs in complex networks

» D is (in-)degree of a random node
» Regular varying distribution:

P(D > x) =L(x)x"Y (1)

L(x) is slowly varying, i.e. lim; .o L(tx)/L(t) =1, x>0
‘Scale-free’ distribution

Some nodes (hubs) have really high degrees

Top-degrees are top order statistics

Extreme value theory

» Top-k order degrees ‘of the order’ n'/Y k'/Y
» Heurostic ‘proof’: P(D > x) ~ k/n

vvyyVvyy



Performance evaluation

» Sublinear complexity N = O(n'~1/7)
» Prediction of the performance of the algorithm
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Performance evaluation

» Sublinear complexity N = O(n'~1/7)
» Prediction of the performance of the algorithm
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» Network sampling
» vaccinations (L&Holme 2017), marketing, P2P



Katz's index

Katz (1953)
1 — vector of ones

» Classical version of PageRank
nr=(1—a)1[l —a«P] 1,

P is a matrix of a simple random walk on the graph
» Katz's index
k=(1—B)1I —BAIY,
A - adjacency matrix of the graph
» (3 < 1/A, where A is the dominant eigenvalue of A



Closeness centrality
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d(i,j) — graph distance between i and j
no path, then d(/,j) = oo
Closeness centrality of node i
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Closeness centrality

v

d(i,j) — graph distance between i and j
no path, then d(/,j) = oo
Closeness centrality of node i

1

Zj:d(i,j)<oo d(i,j)

Problem?

Maximal closeness for two disconnected vertices
How do we compute distances?



Harmonic centrality

Boldi& Vigna (2014)

» Closeness centrality ﬁ
j:d(i,j)<oo .

1
2 d(i,j)

J#i

» Harmonic centrality

» Maximal for central nodes in large components



Harmonic centrality

Boldi& Vigna (2014)

» Closeness centrality ﬁ
j:d(i,j)<oo .

1
2 d(i,j)

J#i

» Harmonic centrality

» Maximal for central nodes in large components

» HyperLoglog-type algorithm to compute distances



Betweenness centrality

» 05 — number of shortest paths from s to t
» 0 (/) — number of shortest paths from s to t through i



Betweenness centrality

» 05 — number of shortest paths from s to t
0st(i) — number of shortest paths from s to t through i
Betweenness centrality of /

o5t (1)
Z Ost

s,t#1,05+7#0

vy

v

Fraction of shortest paths through i



Current flow betweenness centrality

Newman (2005)

Vi(s, t) — # visits to / of a random walk from s to t

|Vj(s, t) — Vi(s, t)| — centrality of edge {/, j}

Current through {/, j} when 1 unit current goes from s to t
Complexity O((/(nl1) + nlogn|E|)
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Current flow betweenness centrality

Newman (2005)

Vi(s, t) — # visits to / of a random walk from s to t

|Vj(s, t) — Vi(s, t)| — centrality of edge {/, j}

Current through {/, j} when 1 unit current goes from s to t
Complexity O((/(nl1) + nlogn|E|)

Avrachenkov, L, Medyanikov, Sokol (2013) o-current flow
betweenness centrality

At each step the random walk continues with probability «
Similar to PageRank

vVvyyvyVvyy
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Open Wikipedia ranking

http://wikirank.di.unimi.it/


http://wikirank.di.unimi.it/

