UNIVERSITY OF TWENTE.

Finding central nodes

 in large networks

Nelly Litvak
University of Twente
Eindhoven University of Technology,
The Netherlands
Woudschoten Conference 2017

Complex networks

- Networks: Internet, WWW, social networks, neural networks,...

Complex networks

- Networks: Internet, WWW, social networks, neural networks,...
- Many nodes connected by edges

Complex networks

- Networks: Internet, WWW, social networks, neural networks,...
- Many nodes connected by edges
- Physics, computer science, sociology, biology, art

The Internet

www.opte.org

Examples of networks

Euromaidan Retweets

Examples of networks

Euromaidan Retweets

Bank transactions in Australia.

Centrality in networks

- Network as a graph $G=(V, E)$

Centrality in networks

- Network as a graph $G=(V, E)$
- Undirected:

Centrality in networks

- Network as a graph $G=(V, E)$
- Undirected: Facebook, roads networks, airline networks, power grids, co-authorship networks

Centrality in networks

- Network as a graph $G=(V, E)$
- Undirected: Facebook, roads networks, airline networks, power grids, co-authorship networks
- Directed:

Centrality in networks

- Network as a graph $G=(V, E)$
- Undirected: Facebook, roads networks, airline networks, power grids, co-authorship networks
- Directed: Twitter, bank transactions, food webs, WWW, scientific citations

Centrality in networks

- Network as a graph $G=(V, E)$
- Undirected: Facebook, roads networks, airline networks, power grids, co-authorship networks
- Directed: Twitter, bank transactions, food webs, WWW, scientific citations
- V set of vertices, E set of edges

Centrality in networks

- Network as a graph $G=(V, E)$
- Undirected: Facebook, roads networks, airline networks, power grids, co-authorship networks
- Directed: Twitter, bank transactions, food webs, WWW, scientific citations
- V set of vertices, E set of edges
- $|V|=n$, we can let $n \rightarrow \infty$

Centrality in networks

- Network as a graph $G=(V, E)$
- Undirected: Facebook, roads networks, airline networks, power grids, co-authorship networks
- Directed: Twitter, bank transactions, food webs, WWW, scientific citations
- V set of vertices, E set of edges
- $|V|=n$, we can let $n \rightarrow \infty$
- Which nodes are most 'central' in a network?

Google search

Brin and Page 1998 The anatomy of a large-scale hypertextual web search engine.
Page, Brin, Motwani and Winograd 1999 The PageRank Citation Ranking: Bringing Order to the Web.

Google search

Brin and Page 1998 The anatomy of a large-scale hypertextual web search engine.
Page, Brin, Motwani and Winograd 1999 The PageRank Citation Ranking: Bringing Order to the Web.

- Yahoo, AltaVista,...

Google search

Brin and Page 1998 The anatomy of a large-scale hypertextual web search engine.
Page, Brin, Motwani and Winograd 1999 The PageRank Citation Ranking: Bringing Order to the Web.

- Yahoo, AltaVista,...
- Directory-based, comparable to telephone books

Google search

Brin and Page 1998 The anatomy of a large-scale hypertextual web search engine.
Page, Brin, Motwani and Winograd 1999 The PageRank Citation Ranking: Bringing Order to the Web.

- Yahoo, AltaVista,...
- Directory-based, comparable to telephone books

Google PageRank

- PageRank r_{i} of page $i=1, \ldots, n$ is defined as:

$$
r_{i}=\sum_{j: j \rightarrow i} \frac{\alpha}{d_{j}} r_{j}+(1-\alpha) q_{i}, \quad i=1, \ldots, n
$$

- $d_{j}=\#$ out-links of page j
- $\alpha \in(0,1)$, damping factor originally 0.85
- $q_{i} \geqslant 0, \sum_{i} q_{i}=1$, originally, $q_{i}=1 / n$.

Easily bored surfer model

$$
r_{i}=\sum_{j: j \rightarrow i} \frac{\alpha}{d_{j}} r_{j}+(1-\alpha) q_{i}, \quad i=1, \ldots, n
$$

- r_{i} is a stationary distribution of a Markov chain

Easily bored surfer model

$$
r_{i}=\sum_{j: j \rightarrow i} \frac{\alpha}{d_{j}} r_{j}+(1-\alpha) q_{i}, \quad i=1, \ldots, n
$$

- r_{i} is a stationary distribution of a Markov chain
- with probability α follow a randomly chosen outgoing link
- with probability $1-\alpha$ random jump (to page i w.p. q_{i})

Easily bored surfer model

$$
r_{i}=\sum_{j: j \rightarrow i} \frac{\alpha}{d_{j}} r_{j}+(1-\alpha) q_{i}, \quad i=1, \ldots, n
$$

- r_{i} is a stationary distribution of a Markov chain
- with probability α follow a randomly chosen outgoing link
- with probability $1-\alpha$ random jump (to page i w.p. q_{i})
- Dangling nodes, $d_{j}=0$:
- Random jump from dangling nodes

Easily bored surfer model

$$
r_{i}=\sum_{j: j \rightarrow i} \frac{\alpha}{d_{j}} r_{j}+(1-\alpha) q_{i}, \quad i=1, \ldots, n
$$

- r_{i} is a stationary distribution of a Markov chain
- with probability α follow a randomly chosen outgoing link
- with probability $1-\alpha$ random jump (to page i w.p. q_{i})
- Dangling nodes, $d_{j}=0$:
- Random jump from dangling nodes
- Stationary distribution $\pi=\mathbf{r} /\|\mathbf{r}\|_{1}$

Easily bored surfer model

$$
r_{i}=\sum_{j: j \rightarrow i} \frac{\alpha}{d_{j}} r_{j}+(1-\alpha) q_{i}, \quad i=1, \ldots, n
$$

- r_{i} is a stationary distribution of a Markov chain
- with probability α follow a randomly chosen outgoing link
- with probability $1-\alpha$ random jump (to page i w.p. q_{i})
- Dangling nodes, $d_{j}=0$:
- Random jump from dangling nodes
- Stationary distribution $\pi=\mathbf{r} /\|\mathbf{r}\|_{1}$
- The page is important if many important pages link to it!

PageRank beyond web search

- Applications:
- Topic-sensitive search (Haveliwala 2002);
- Spam detection (Gyöngyi et al. 2004)
- Finding related entities (Chakrabarti 2007);
- Link prediction (Liben-Nowell and Kleinberg 2003; Voevodski, Teng, Xia 2009);
- Finding local cuts (Andersen, Chung, Lang 2006);
- Graph clustering (Tsiatas, Chung 2010);
- Person name disambiguation (Smirnova, Avrachenkov, Trousse 2010);
- Finding most influential people in Wikipedia (Shepelyansky et al 2010, 2013)

PageRank beyond web search

- Applications:
- Topic-sensitive search (Haveliwala 2002);
- Spam detection (Gyöngyi et al. 2004)
- Finding related entities (Chakrabarti 2007);
- Link prediction (Liben-Nowell and Kleinberg 2003; Voevodski, Teng, Xia 2009);
- Finding local cuts (Andersen, Chung, Lang 2006);
- Graph clustering (Tsiatas, Chung 2010);
- Person name disambiguation (Smirnova, Avrachenkov, Trousse 2010);
- Finding most influential people in Wikipedia (Shepelyansky et al 2010, 2013)
- Global characteristic of the graph

Example: food web

Example: food web

Allesina and Pascual 2009

Matrix form

$$
\begin{gathered}
r_{i}=\sum_{j: j \rightarrow i} \frac{\alpha}{d_{j}} r_{j}+(1-\alpha) q_{i}, \quad i=1, \ldots, n \\
P= \begin{cases}\frac{1}{d_{j}}, & j \rightarrow i \\
0, & \text { otherwise } .\end{cases}
\end{gathered}
$$

$$
\begin{aligned}
& \mathbf{r}=\left(r_{1}, r_{2}, \ldots, r_{n}\right) \\
& \mathbf{q}=\left(q_{1}, q_{2}, \ldots, q_{n}\right)
\end{aligned}
$$

$$
\mathbf{r}=\alpha \mathbf{r} P+(1-\alpha) \mathbf{q}
$$

Matrix form

$$
\begin{gathered}
r_{i}=\sum_{j: j \rightarrow i} \frac{\alpha}{d_{j}} r_{j}+(1-\alpha) q_{i}, \quad i=1, \ldots, n \\
P= \begin{cases}\frac{1}{d_{j}}, & j \rightarrow i \\
0, & \text { otherwise } .\end{cases}
\end{gathered}
$$

$$
\begin{aligned}
& \mathbf{r}=\left(r_{1}, r_{2}, \ldots, r_{n}\right) \\
& \mathbf{q}=\left(q_{1}, q_{2}, \ldots, q_{n}\right)
\end{aligned}
$$

$$
\mathbf{r}=\alpha \mathbf{r} P+(1-\alpha) \mathbf{q}
$$

Linear equation and eigenvector problem

$$
\begin{aligned}
& \mathbf{r}=\alpha \mathbf{r} P+(1-\alpha) \mathbf{q} \\
& \mathbf{r}=\mathbf{r}\left[\alpha P+\frac{1-\alpha}{n} \mathbf{1}^{t} \mathbf{q}\right] \quad \text { eigenvector problem } \\
& \mathbf{r}=(1-\alpha) \mathbf{q}[I-\alpha P]^{-1}=(1-\alpha) \mathbf{q} \sum_{t=0}^{\infty} \alpha^{t} P^{t} .
\end{aligned}
$$

Matrix expansion

$$
\begin{aligned}
& \mathbf{r}=\alpha \mathbf{r} P+(1-\alpha) \mathbf{q} \\
& \mathbf{r}=(1-\alpha) \mathbf{q}[I-\alpha P]^{-1}=(1-\alpha) \mathbf{q} \sum_{t=0}^{\infty} \alpha^{t} P^{t} .
\end{aligned}
$$

- Computation by matrix iterations:

$$
\begin{aligned}
\mathbf{r}^{(0)} & =(1 / n, \ldots, 1 / n) \\
\mathbf{r}^{(k)} & =\alpha \mathbf{r}^{(k-1)} P+(1-\alpha) \mathbf{q} \\
& =\mathbf{r}^{(0)} \alpha^{k} P^{k}+(1-\alpha) \mathbf{q} \sum_{t=0}^{k-1} \alpha^{t} P^{t}
\end{aligned}
$$

Matrix expansion

$$
\begin{aligned}
& \mathbf{r}=\alpha \mathbf{r} P+(1-\alpha) \mathbf{q} \\
& \mathbf{r}=(1-\alpha) \mathbf{q}[I-\alpha P]^{-1}=(1-\alpha) \mathbf{q} \sum_{t=0}^{\infty} \alpha^{t} P^{t} .
\end{aligned}
$$

- Computation by matrix iterations:

$$
\begin{aligned}
\mathbf{r}^{(0)} & =(1 / n, \ldots, 1 / n) \\
\mathbf{r}^{(k)} & =\alpha \mathbf{r}^{(k-1)} P+(1-\alpha) \mathbf{q} \\
& =\mathbf{r}^{(0)} \alpha^{k} P^{k}+(1-\alpha) \mathbf{q} \sum_{t=0}^{k-1} \alpha^{t} P^{t}
\end{aligned}
$$

- Exponentially fast convergence due to $\alpha \in(0,1)$

Matrix expansion

$$
\begin{aligned}
& \mathbf{r}=\alpha \mathbf{r} P+(1-\alpha) \mathbf{q} \\
& \mathbf{r}=(1-\alpha) \mathbf{q}[I-\alpha P]^{-1}=(1-\alpha) \mathbf{q} \sum_{t=0}^{\infty} \alpha^{t} P^{t} .
\end{aligned}
$$

- Computation by matrix iterations:

$$
\begin{aligned}
\mathbf{r}^{(0)} & =(1 / n, \ldots, 1 / n) \\
\mathbf{r}^{(k)} & =\alpha \mathbf{r}^{(k-1)} P+(1-\alpha) \mathbf{q} \\
& =\mathbf{r}^{(0)} \alpha^{k} P^{k}+(1-\alpha) \mathbf{q} \sum_{t=0}^{k-1} \alpha^{t} P^{t}
\end{aligned}
$$

- Exponentially fast convergence due to $\alpha \in(0,1)$
- Matrix iterations are used to compute PageRank in practice Langville\&Meyer 2004, Berkhin 2005

Ranking algorithms/Centrality measures

Recent review: (Boldi and Vigna 2014)

- Based on distances:
- (in-)degree: number of nodes on distance 1
- Closeness centrality (Bavelas 1950)
- Harmonic centrality (Boldi and Vigna 2014)
- Based on paths:
- Betweenness centrality (Anthonisse 1971)
- Katz's index (Katz 1953)
- Based ob spectrum:
- Seeley index (Seeley 1949)
- HITS (Kleinberg 1997)
- PageRank (Brin, Page, Motwani and Vinograd 1999)

Plan

- Part I: Centrality \& computaitonal aspects
- Part II: PageRank

Degree

- The degree of a node is a number of edges attached to it

Degree

- The degree of a node is a number of edges attached to it
- Directed graph: in- and out-degree

Degree

- The degree of a node is a number of edges attached to it
- Directed graph: in- and out-degree
- Is (in-)degree a good centrality measure?

Degree

- The degree of a node is a number of edges attached to it
- Directed graph: in- and out-degree
- Is (in-)degree a good centrality measure?
- Easy to compute?

Finding top- k most followed users on Twitter

- Problem: Find top-k network nodes with most number of connections

Finding top- k most followed users on Twitter

- Problem: Find top- k network nodes with most number of connections
- Some applications:
- Routing via large degree nodes
- Proxy for various centrality measures
- Node clustering and classification
- Epidemic processes on networks
- Finding most popular entities (e.g. interest groups)

Finding top- k most followed users on Twitter

- Problem: Find top- k network nodes with most number of connections
- Some applications:
- Routing via large degree nodes
- Proxy for various centrality measures
- Node clustering and classification
- Epidemic processes on networks
- Finding most popular entities (e.g. interest groups)
- Many companies maintain network statistics (twittercounter.com, followerwonk.com, twitaholic.com, www.insidefacebook.com, yavkontakte.ru)

Finding top- k largest degree nodes

- If the information about a complete network is available, complexity $O(n)$

Finding top- k largest degree nodes

- If the information about a complete network is available, complexity $O(n)$
- Twitter has one billion accounts

Finding top- k largest degree nodes

- If the information about a complete network is available, complexity $O(n)$
- Twitter has one billion accounts
- The network can be accessed only via API, one access per minute. It will take 900 years to crawl Twitter!

Finding top- k largest degree nodes

- If the information about a complete network is available, complexity $O(n)$
- Twitter has one billion accounts
- The network can be accessed only via API, one access per minute. It will take 900 years to crawl Twitter!
- Randomized algorithms: Find a 'good enough' answer with a small number of API requests.

Known algorithms

- Random-walk based. Cooper, Radzik, Siantos 2012 Transitions probabilities along undirected edges (i, j) are proportional to $(d(i) d(j))^{b}$, where $d(i)$ is the degree of a vertex x and $b>0$ is some parameter.
- Random Walk Avrachenkov, L, Sokol, Towsley 2012 Random walk with uniform jumps. In an undirected graphs the stationary distribution is a linear function of degrees.
- Crawl-AI and Crawl-GAI. Kumar, Lang, Marlow, Tomkins 2008 At every step all nodes have their apparent in-degrees $S_{j}, j=1, \ldots, n$: the number of discovered edges pointing to this node. Designed for WWW crawl.
- HighestDegree. Borgs, Brautbar, Chayes, Khanna, Lucier 2012 Retrieve a random node, check in-degrees of its out-neighbors. Proceed while resources are available
- Two-stage algorithm. Avrachenkov,L,Ostroumova 2014

The Friendship Paradox

- Feld, 1991

Fig. 1.-Friendships among eight girls at Marketville High School

The Friendship Paradox

- Feld, 1991

Fig. 1.-Friendships among eight girls at Marketville High School

- In the figure: \# friends (average number of friends' friends)

The Friendship Paradox

- Feld, 1991

Fig. 1.-Friendships among eight girls at Marketville High School

- In the figure: \# friends (average number of friends' friends)
- More popular than her friends: Sue, Alice
- As popular as her friends: Carol
- Less popular than her friends: Betty, Pam, Tina, Dale, Jane

Friendship paradox

Fig. 1.-Friendships among eight girls at Marketville High School

- People with may connections are more likely to be your friend

Friendship paradox

Fig. 1.-Friendships among eight girls at Marketville High School

- People with may connections are more likely to be your friend
- Sampling by edge is biased towards nodes with high degrees

Friendship paradox

Fig. 1.-Friendships among eight girls at Marketville High School

- People with may connections are more likely to be your friend
- Sampling by edge is biased towards nodes with high degrees

Friendship paradox: star graph

Friendship paradox: consequences

- Friendship paradox can lead to wrong sampling

Friendship paradox: consequences

- Friendship paradox can lead to wrong sampling
- But it can be also exploited!

Friendship paradox: consequences

- Friendship paradox can lead to wrong sampling
- But it can be also exploited!
- Neighbor vaccinations

Friendship paradox: consequences

- Friendship paradox can lead to wrong sampling
- But it can be also exploited!
- Neighbor vaccinations
- Most followed Twitter users

Friendship paradox: consequences

- Friendship paradox can lead to wrong sampling
- But it can be also exploited!
- Neighbor vaccinations
- Most followed Twitter users

Followers	Following	Tweets
$95,607,996$	190	7,608
$91,539,626$	300,977	30,645
$84,088,937$	631,665	15,434
$83,302,469$	244	4,161
$69,480,199$	1,134	9,898
$66,399,134$	986	18,768

Exploiting the Friendship Paradox

Exploiting the Friendship Paradox

- Step 1: Select N_{1} random users, see whom they follow (N_{1} API requests)
- Friendship paradox: the people that a random user follows are often the most popular users in the network

Exploiting the Friendship Paradox

- Step 1: Select N_{1} random users, see whom they follow (N_{1} API requests)
- Friendship paradox: the people that a random user follows are often the most popular users in the network
- Step 2: Check, say, N_{2} accounts, most followed by the group of N_{1} random users chosen in Step 1. Top- k accounts should be there with high probability!

In total, we use $N_{1}+N_{2}=N$ requests to API

Results on Twitter

The fraction of correctly identified top- k most followed Twitter users. Horisonal axis: number of requests in Step 2. Total number of requests is $N=1000$.

Comparison to known algorithms

Figure: The fraction of correctly identified top-100 most followed Twitter users as a function of the number of API averaged over 10 experiments.

Advantages of the two-stage algorithm

- Does not waste resources
- Obtains exact degrees of the N_{2} 'most promising' nodes

Hubs in complex networks

- D is (in-)degree of a random node
- Regular varying distribution:

$$
\begin{equation*}
P(D>x)=L(x) x^{-\gamma} \tag{1}
\end{equation*}
$$

$L(x)$ is slowly varying, i.e. $\lim _{t \rightarrow \infty} L(t x) / L(t)=1, x \geqslant 0$

Hubs in complex networks

- D is (in-)degree of a random node
- Regular varying distribution:

$$
\begin{equation*}
P(D>x)=L(x) x^{-\gamma} \tag{1}
\end{equation*}
$$

$L(x)$ is slowly varying, i.e. $\lim _{t \rightarrow \infty} L(t x) / L(t)=1, x \geqslant 0$

- 'Scale-free' distribution
- Some nodes (hubs) have really high degrees

Hubs in complex networks

- D is (in-)degree of a random node
- Regular varying distribution:

$$
\begin{equation*}
P(D>x)=L(x) x^{-\gamma} \tag{1}
\end{equation*}
$$

$L(x)$ is slowly varying, i.e. $\lim _{t \rightarrow \infty} L(t x) / L(t)=1, x \geqslant 0$

- 'Scale-free' distribution
- Some nodes (hubs) have really high degrees
- Top-degrees are top order statistics

Hubs in complex networks

- D is (in-)degree of a random node
- Regular varying distribution:

$$
\begin{equation*}
P(D>x)=L(x) x^{-\gamma} \tag{1}
\end{equation*}
$$

$L(x)$ is slowly varying, i.e. $\lim _{t \rightarrow \infty} L(t x) / L(t)=1, x \geqslant 0$

- 'Scale-free' distribution
- Some nodes (hubs) have really high degrees
- Top-degrees are top order statistics
- Extreme value theory
- Top- k order degrees 'of the order' $n^{1 / \gamma} k^{1 / \gamma}$

Hubs in complex networks

- D is (in-)degree of a random node
- Regular varying distribution:

$$
\begin{equation*}
P(D>x)=L(x) x^{-\gamma} \tag{1}
\end{equation*}
$$

$L(x)$ is slowly varying, i.e. $\lim _{t \rightarrow \infty} L(t x) / L(t)=1, x \geqslant 0$

- 'Scale-free' distribution
- Some nodes (hubs) have really high degrees
- Top-degrees are top order statistics
- Extreme value theory
- Top- k order degrees 'of the order' $n^{1 / \gamma} k^{1 / \gamma}$
- Heurostic 'proof': $P(D>x) \approx k / n$

Performance evaluation

- Sublinear complexity $N=O\left(n^{1-1 / \gamma}\right)$
- Prediction of the performance of the algorithm

Performance evaluation

- Sublinear complexity $N=O\left(n^{1-1 / \gamma}\right)$
- Prediction of the performance of the algorithm

- Network sampling
- vaccinations (L\&Holme 2017), marketing, P2P

Katz's index

Katz (1953)
1 - vector of ones

- Classical version of PageRank

$$
n \mathbf{r}=(1-\alpha) \mathbf{1}[I-\alpha P]^{-1}
$$

P is a matrix of a simple random walk on the graph

- Katz's index

$$
\mathbf{k}=(1-\beta) \mathbf{1}[I-\beta A]^{-1}
$$

A - adjacency matrix of the graph

- $\beta<1 / \lambda$, where λ is the dominant eigenvalue of A

Closeness centrality

- $d(i, j)$ - graph distance between i and j
- no path, then $d(i, j)=\infty$
- Closeness centrality of node i

$$
\frac{1}{\sum_{j: d(i, j)<\infty} d(i, j)}
$$

- Problem?

Closeness centrality

- $d(i, j)$ - graph distance between i and j
- no path, then $d(i, j)=\infty$
- Closeness centrality of node i

$$
1
$$

$$
\sum_{j: d(i, j)<\infty} d(i, j)
$$

- Problem?

- Maximal closeness for two disconnected vertices
- How do we compute distances?

Harmonic centrality

Boldi\& Vigna (2014)

- Closeness centrality $\frac{1}{\sum_{j: d(i, j)<\infty} d(i, j)}$
- Harmonic centrality

$$
\sum_{j \neq i} \frac{1}{d(i, j)}
$$

- Maximal for central nodes in large components

Harmonic centrality

Boldi\& Vigna (2014)

- Closeness centrality $\frac{1}{\sum_{j: d(i, j)<\infty} d(i, j)}$
- Harmonic centrality

$$
\sum_{j \neq i} \frac{1}{d(i, j)}
$$

- Maximal for central nodes in large components

- HyperLogLog-type algorithm to compute distances

Betweenness centrality

- $\sigma_{s t}$ - number of shortest paths from s to t
- $\sigma_{s t}(i)$ - number of shortest paths from s to t through i

Betweenness centrality

- $\sigma_{s t}$ - number of shortest paths from s to t
- $\sigma_{s t}(i)$ - number of shortest paths from s to t through i
- Betweenness centrality of i

$$
\sum_{s, t \neq i, \sigma_{s, t} \neq 0} \frac{\sigma_{s t}(i)}{\sigma_{s t}} .
$$

- Fraction of shortest paths through i

Current flow betweenness centrality

Newman (2005)

- $V_{i}(s, t)-\#$ visits to i of a random walk from s to t
- $\left|V_{j}(s, t)-V_{i}(s, t)\right|$ - centrality of edge $\{i, j\}$
- Current through $\{i, j\}$ when 1 unit current goes from s to t
- Complexity $O((I(n 1)+n \log n|E|)$

Current flow betweenness centrality

Newman (2005)

- $V_{i}(s, t)-\#$ visits to i of a random walk from s to t
- $\left|V_{j}(s, t)-V_{i}(s, t)\right|$ - centrality of edge $\{i, j\}$
- Current through $\{i, j\}$ when 1 unit current goes from s to t
- Complexity $O((I(n 1)+n \log n|E|)$
- Avrachenkov, L, Medyanikov, Sokol (2013) α-current flow betweenness centrality
- At each step the random walk continues with probability α
- Similar to PageRank

Open Wikipedia ranking

http://wikirank.di.unimi.it/

