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Centrality in networks

I Network as a graph G = (V ,E )

I Undirected: Facebook, roads networks, airline networks,
power grids, co-authorship networks

I Directed: Twitter, bank transactions, food webs, WWW,
scientific citations

I V set of vertices, E set of edges

I |V | = n, we can let n→∞
I Which nodes are most ‘central’ in a network?
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Google search

Brin and Page 1998 The anatomy of a large-scale hypertextual
web search engine.

Page, Brin, Motwani and Winograd 1999 The PageRank Citation
Ranking: Bringing Order to the Web.

I Yahoo, AltaVista,...
I Directory-based, comparable to telephone books
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Google PageRank

I PageRank ri of page i = 1, . . . , n is defined as:

ri =
∑

j : j → i

α

dj
rj + (1 − α)qi , i = 1, . . . , n

I dj = # out-links of page j

I α ∈ (0, 1), damping factor originally 0.85

I qi > 0,
∑

i qi = 1, originally, qi = 1/n.



Easily bored surfer model

ri =
∑

j : j → i

α

dj
rj + (1 − α)qi , i = 1, . . . , n

I ri is a stationary distribution of a Markov chain

I with probability α follow a randomly chosen outgoing link

I with probability 1 − α random jump (to page i w.p. qi )
I Dangling nodes, dj = 0:

I Random jump from dangling nodes
I Stationary distribution π = r/||r||1

I The page is important if many important pages link to it!



Easily bored surfer model

ri =
∑

j : j → i

α

dj
rj + (1 − α)qi , i = 1, . . . , n

I ri is a stationary distribution of a Markov chain

I with probability α follow a randomly chosen outgoing link

I with probability 1 − α random jump (to page i w.p. qi )

I Dangling nodes, dj = 0:
I Random jump from dangling nodes
I Stationary distribution π = r/||r||1

I The page is important if many important pages link to it!



Easily bored surfer model

ri =
∑

j : j → i

α

dj
rj + (1 − α)qi , i = 1, . . . , n

I ri is a stationary distribution of a Markov chain

I with probability α follow a randomly chosen outgoing link

I with probability 1 − α random jump (to page i w.p. qi )
I Dangling nodes, dj = 0:

I Random jump from dangling nodes

I Stationary distribution π = r/||r||1

I The page is important if many important pages link to it!



Easily bored surfer model

ri =
∑

j : j → i

α

dj
rj + (1 − α)qi , i = 1, . . . , n

I ri is a stationary distribution of a Markov chain

I with probability α follow a randomly chosen outgoing link

I with probability 1 − α random jump (to page i w.p. qi )
I Dangling nodes, dj = 0:

I Random jump from dangling nodes
I Stationary distribution π = r/||r||1

I The page is important if many important pages link to it!



Easily bored surfer model

ri =
∑

j : j → i

α

dj
rj + (1 − α)qi , i = 1, . . . , n

I ri is a stationary distribution of a Markov chain

I with probability α follow a randomly chosen outgoing link

I with probability 1 − α random jump (to page i w.p. qi )
I Dangling nodes, dj = 0:

I Random jump from dangling nodes
I Stationary distribution π = r/||r||1

I The page is important if many important pages link to it!



PageRank beyond web search

I Applications:
I Topic-sensitive search (Haveliwala 2002);
I Spam detection (Gyöngyi et al. 2004)
I Finding related entities (Chakrabarti 2007);
I Link prediction (Liben-Nowell and Kleinberg 2003;

Voevodski, Teng, Xia 2009);
I Finding local cuts (Andersen, Chung, Lang 2006);
I Graph clustering (Tsiatas, Chung 2010);
I Person name disambiguation

(Smirnova, Avrachenkov, Trousse 2010);
I Finding most influential people in Wikipedia

(Shepelyansky et al 2010, 2013)

I Global characteristic of the graph
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Example: food web

Allesina and Pascual 2009
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Matrix form

ri =
∑

j : j → i

α

dj
rj + (1 − α)qi , i = 1, . . . , n

P =

{
1
dj

, j → i

0, otherwise.

r = (r1, r2, . . . , rn)
q = (q1, q2, . . . , qn)

r = αrP + (1 − α)q
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Linear equation and eigenvector problem

r = αrP + (1 − α)q

r = r

[
αP +

1 − α

n
1tq

]
eigenvector problem

r = (1 − α)q[I − αP]−1 = (1 − α)q
∞∑
t=0

αtPt .



Matrix expansion

r = αrP + (1 − α)q

r = (1 − α)q[I − αP]−1 = (1 − α)q
∞∑
t=0

αtPt .

I Computation by matrix iterations:

r(0) = (1/n, . . . , 1/n)

r(k) = αr(k−1)P + (1 − α)q

= r(0)αkPk + (1 − α)q
k−1∑
t=0

αtPt

I Exponentially fast convergence due to α ∈ (0, 1)
I Matrix iterations are used to compute PageRank in practice

Langville&Meyer 2004, Berkhin 2005
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Ranking algorithms/Centrality measures

Recent review: (Boldi and Vigna 2014)

I Based on distances:
I (in-)degree: number of nodes on distance 1
I Closeness centrality (Bavelas 1950)
I Harmonic centrality (Boldi and Vigna 2014)

I Based on paths:
I Betweenness centrality (Anthonisse 1971)
I Katz’s index (Katz 1953)

I Based ob spectrum:
I Seeley index (Seeley 1949)
I HITS (Kleinberg 1997)
I PageRank (Brin, Page, Motwani and Vinograd 1999)



Plan

I Part I: Centrality & computaitonal aspects

I Part II: PageRank



Degree

I The degree of a node is a number of edges attached to it

I Directed graph: in- and out-degree

I Is (in-)degree a good centrality measure?

I Easy to compute?
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Finding top-k most followed users on Twitter

I Problem: Find top-k network nodes with most number of
connections

I Some applications:

I Routing via large degree nodes
I Proxy for various centrality measures
I Node clustering and classification
I Epidemic processes on networks
I Finding most popular entities (e.g. interest groups)
I Many companies maintain network statistics

(twittercounter.com, followerwonk.com, twitaholic.com,
www.insidefacebook.com, yavkontakte.ru)
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Finding top-k largest degree nodes

I If the information about a complete network is available,
complexity O(n)

I Twitter has one billion accounts

I The network can be accessed only via API, one access per
minute. It will take 900 years to crawl Twitter!

I Randomized algorithms: Find a ‘good enough’ answer with a
small number of API requests.
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Known algorithms

I Random-walk based. Cooper, Radzik, Siantos 2012
Transitions probabilities along undirected edges (i , j) are
proportional to (d(i)d(j))b, where d(i) is the degree of a
vertex x and b > 0 is some parameter.

I Random Walk Avrachenkov, L, Sokol, Towsley 2012 Random
walk with uniform jumps. In an undirected graphs the
stationary distribution is a linear function of degrees.

I Crawl-Al and Crawl-GAI. Kumar, Lang, Marlow, Tomkins
2008 At every step all nodes have their apparent in-degrees
Sj , j = 1, . . . , n: the number of discovered edges pointing to
this node. Designed for WWW crawl.

I HighestDegree. Borgs, Brautbar, Chayes, Khanna, Lucier
2012 Retrieve a random node, check in-degrees of its
out-neighbors. Proceed while resources are available

I Two-stage algorithm. Avrachenkov,L,Ostroumova 2014



The Friendship Paradox

I Feld, 1991

I In the figure: # friends (average number of friends’ friends)
I More popular than her friends: Sue, Alice
I As popular as her friends: Carol
I Less popular than her friends: Betty, Pam, Tina, Dale, Jane
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I People with may connections are more likely to be your friend

I Sampling by edge is biased towards nodes with high degrees
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Friendship paradox: star graph



Friendship paradox: consequences

I Friendship paradox can lead to wrong sampling

I But it can be also exploited!
I Neighbor vaccinations
I Most followed Twitter users
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Exploiting the Friendship Paradox

I Step 1: Select N1 random users, see whom they follow (N1

API requests)

I Friendship paradox: the people that a random user follows are
often the most popular users in the network

I Step 2: Check, say, N2 accounts, most followed by the group
of N1 random users chosen in Step 1. Top-k accounts should
be there with high probability!

In total, we use N1 + N2 = N requests to API
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Results on Twitter
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Comparison to known algorithms
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Advantages of the two-stage algorithm

I Does not waste resources

I Obtains exact degrees of the N2 ‘most promising’ nodes



Hubs in complex networks

I D is (in-)degree of a random node

I Regular varying distribution:

P(D > x) = L(x)x−γ (1)

L(x) is slowly varying, i.e. limt→∞ L(tx)/L(t) = 1, x > 0

I ‘Scale-free’ distribution

I Some nodes (hubs) have really high degrees

I Top-degrees are top order statistics
I Extreme value theory

I Top-k order degrees ‘of the order’ n1/γk1/γ

I Heurostic ‘proof’: P(D > x) ≈ k/n
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Performance evaluation

I Sublinear complexity N = O(n1−1/γ)
I Prediction of the performance of the algorithm
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Katz’s index

Katz (1953)

1 – vector of ones

I Classical version of PageRank

nr = (1 − α)1[I − αP]−1,

P is a matrix of a simple random walk on the graph

I Katz’s index
k = (1 − β)1[I − βA]−1,

A - adjacency matrix of the graph

I β < 1/λ, where λ is the dominant eigenvalue of A



Closeness centrality

I d(i , j) – graph distance between i and j
I no path, then d(i , j) =∞
I Closeness centrality of node i

1∑
j :d(i ,j)<∞ d(i , j)

I Problem?

I Maximal closeness for two disconnected vertices
I How do we compute distances?
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Harmonic centrality

Boldi& Vigna (2014)

I Closeness centrality 1∑
j :d(i ,j)<∞ d(i ,j)

I Harmonic centrality ∑
j 6=i

1

d(i , j)

I Maximal for central nodes in large components

I HyperLogLog-type algorithm to compute distances
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Betweenness centrality

I σst – number of shortest paths from s to t
I σst(i) – number of shortest paths from s to t through i

I Betweenness centrality of i∑
s,t 6=i ,σs,t 6=0
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I Fraction of shortest paths through i
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Current flow betweenness centrality

Newman (2005)

I Vi (s, t) – # visits to i of a random walk from s to t
I |Vj(s, t) − Vi (s, t)| – centrality of edge {i , j}
I Current through {i , j} when 1 unit current goes from s to t
I Complexity O((I (n1) + n log n |E |)

I Avrachenkov, L, Medyanikov, Sokol (2013) α-current flow
betweenness centrality

I At each step the random walk continues with probability α
I Similar to PageRank
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Open Wikipedia ranking

http://wikirank.di.unimi.it/

http://wikirank.di.unimi.it/

