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sources (background on network science, SIR disease propagation, ...)

= http://barabasi.com/networksciencebook/ = book by Kiss, Miller and Simon (2017)
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Virus genomes reveal factors that spread and
motivation: spread of 2013-2016 Ebola epidemic sustained the Ebola epidemic

Gytis Dudas, Luiz Max Carvalho, Trevor Bedford, Andrew J. Tatem, Guy Baele,

= Guinea, Sierra Leone, Liberia Nature 544, 309-315 (20 April 2017) | doi:10.1038/nature22040

= goal: develop modeling
framework

=  random networks

= spatial structure!

= disease propagation
(stochastic, DEs for
insight)

@ Un|ver8|ty




two parts of my presentation

= part A: models and algorithms for networks
— “introduction to network science”
— random spatial networks
— algorithms for efficient network generation
— application: small worlds with spatial structure

» part B: disease propagation on networks
— propagation of Susceptible-Infectious-Recovered (SIR) disease
— stochastic simulation algorithms
— exact analytic models, and simulations
— applications
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random spatial networks (RSNs)
Sy 22 ek, rrdenly dlsen in 2

desired degree sequence {K1,...,K,}

observed degrees
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FIG. 1. An example RSN and its properties. The distance kernel is a Gaussian, f(d) = exp(—d*/20°)/2r0” with ¢ = 0.03.
The imposed distribution of expected degrees is P(2) = P(15) = 0.5. The density is p = 10000. One node and its neighbors
are highlighted. A random network without spatial structure would exhibit neighbors throughout the domain.
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B1: Susceptible-Infectious-Recovered (SIR) models

= SIR compartmental model — well-mixed populations

S(t)+ I(t) + R(t) = 1

S =—BIS

[ =BIS —~I

R:'yl
@;Ww
5 raconeny nake

MONASH
‘@ University

Proportion

1.0

0.8 |

0.6 |

04 F

0.2

0.0

S/N
— [/.\’ |
R/N
4
A
0 3 6 9 12 15

t [Kiss, Miller, Simon]











[Kiss, Miller, Simon]


Susceptible-Infectious-Recovered (SIR) models

=  SIR model on networks

— infection transmission processes

3: infection rate per edge

— recovery processes
7. recovery rate

= each process is modeled as a Poisson process (Markovian, independent):
events occur continuously and independently at a constant (average) rate ’

— e
o ( €
= for a given state of the network: / processes, each is a Poisson process g4, = 3
number of occurrences ()); is Poisson distributed
=32\
( /
Qi ~ Pois(\;) (1<)
R~ Pois (3-1)
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Susceptible-Infectious-Recovered (SIR) models

= SIRmodel on networks © ek ek Modde of  mekiiwod
Q; ~ Pois()\;) (1<2<)

@‘/\/ Egz/s(%.l)

=  Poisson distribution:

P(Q = q) = P(q events occur in interval [0,1])
\d
= ? exp(—A)

A: number of occurrences per unit time

E(Q) =X  Var(Q) = A
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= Poisson process:

— first arrival time i tially distributed, with rate : 3 :
irst arrival time is exponentially distributed, with rate Q ~ fein (2 l)
'T:@ (or: waiting time) .
T ~ Exp(A) M{-’P
o ( €
p(t) # Xexp(=At)  (t>0) L
1 N =20
E(T) = - Var(T) = 2
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B2: stochastic simulation algorithms for SIR propagation on networks

TWM”W’W WWWW el

(1) Gillespie algorithm:

Q; ~ Pois(\;)

Q=) Q
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Gillespie algorithm

Input: Network G, per-edge transmission rate @, recovery ratexf set of index node(s)
initial infecteds, maximum time 7,y
Output: Lists times, S, /, and R giving number in each state at each time.

function Gillespie network epidemic(G, \9,‘3{, initial infections, 7;,,,x)
times, S, /, R < [0], [|G|-len(initial _infections)], [len(initial infections)], [0]
infected nodes < initial infections
at risk nodes < uninfected nodes with infected neighbours
for each node u in at risk nodes do
infection rate[«] = Bx number of infected neighbours

total_infection rate «— 3,4 risk nodes infection rate[u],
W «— Y x len(infected nodes)

—19 total rate < total_transmission rate + total recovery rate
time < exponential variate(total rate)
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function Gillespie network epidemic(G, t, v, initial infections, 7.y )
times, S, 7, R < [0], [|G|-len(initial_infections)], [len(initial infections)], [0]
infected nodes < initial infections
at risk nodes < uninfected nodes with infected neighbours
for each node  in at risk nodes do
infection rate[«#] = T X number of infected neighbours

total_infection_rate «— ¥,y risk nodes infection rate[u],
total_recovery rate < y x len(infected nodes) b/

total rate < total transmission rate + total recovery rate
time < exponential variate(total rate)
while time< 7,.x and total rate> 0 do
r = uniform random(0,total rate)
if  <total recovery rate then
u = random.choice(infected nodes) Wﬁkzi
remove u from infected nodes
reduce infection rate[v] for «’s susceptible neighbours v
else -
choose u from at risk nodes with probability f-eeniell
remove u from at risk nodes -
add « to infected nodes m W
for susceptible neighbours v of # do
if v not in at risk nodes then
add v to at risk nodes

update infection rate[v]
update times, S, /, and R
update total recovery rate, total infection rate, and total rate
MONASH tifne — time + expc?xll_ential vari_alte(total r_ate) _
University - -
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return times, S, /, R [Kiss, Miller, Simon]



































[Kiss, Miller, Simon]


stochastic simulation algorithms for SIR propagation on networks T 5

» Gillespie can be slow when there are many “active” processes in a large network

><§

(2) event-driven simulation method ot 1
-1

(21- ~ POiS(/\l') (]. S 2 S ]) W Wé‘"ﬂy’“?’e“ 6

— observation: when a node gets infected, times for further infection transmission events and the
recovery event can be computed independent from anything else that will happen in the
network

— compute these times, and store them in a priority queue (heap) (unless an event won’t have an

effect) -

— process events in the priority queue in order (generating more events as needed)

- when an event happens, we know immediately what kind of event it is (and which
node)

g MONASH
University 14




































max-heap: adding an element
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max-heap: removing the largest element f
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Input: Network G, per-edge transmission rate t, recovery rate y, set of index node(s)
initial infecteds, and maximum time 7,y .
Output: Lists times, S, /, and R giving number in each state at each time.
function fast SIR(G,t, v, initial infecteds, 7,y ) __;D E/U%JC — MZQL’
times, S, 1, R — [0], [|G]], [0], [0]
QO «— empty priority queue

for « in G.nodes do - - 8 E
u.status < susceptible 6 ; @g/LQLMé W &WQ (& ’DJ’:’QQ
u.pred_inf time «— oo — [A\d/fe(/é@(

for « in initial infecteds do AV
Event <— {node: u, time: 0, action: transmit} LD W"”ﬁ o
u.pred_inf time < 0
add Event to O > ordered by time

while Q is not empty do
Event < earliest remaining event in Q
if Event.action is transmit then
if Event.node. status is susceptible then
process_trans SIR(G, Event.node, Event.time, t, v, times, S, /, R, O, fmax)

else
process rec_SIR(Event.node, Event.time, times, S, /, R)

return times, S, /, R
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function process trans SIR(G, u, t, t, v, times, S, I, R, O, tyax)
append times, S, /, and R with 7, S.last—1, /.last+1, and R.last
u.status < infected
u.rec_time < t+exponential variate(y)
if u.rec time< f,,,,x then
newEvent < {node: u, time: u.rec time, action: recover }
add newEvent to Q
for v in G.neighbours(«) do
find trans SIR(Q, 1, T, u, v, tjax)
function find trans SIR(Q, 7, t, source, target, #;,,ax)
if target.status is susceptible then
inf time < 7+exponential variate(t)
if inf time < minimum(source.rec time, target.pred_inf time, 7,y ) then
newEvent < {node: target, time: inf time, action: transmit}
add newEvent to Q
target.pred_inf time < inf time
function process rec SIR(u, 7, times, S, /, R)
append times, S, /, and R with 7, S.last, /.last—1, and R.last+1

u.status < recovered [Kiss, Miller, Simon]
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B3: SIR spread on RSNs: simulations /%(QL)

= small-world Random Spatial Network L« \ / €
— most connections are local — T ',zo E@(
— small fraction of long-range connections P
. 1'vy
Dij = min f(dij); 1

p< kK>

— MOVIE

_obse_rveq deg_rees_
— observe: small-world effects

— oObserve: traveling waves!

0 5 10 15 20 25 30

obsgrvec_i edge lengths

% MONASH
‘@ University 19













SIR spread on RSNs: simulations

» |ocal connections only:

i
3
24
. RiR; ¢
S = min d;i), 1
pu ,0 < K >f( J)a

FIG. 2. Disease spread in spatial networks with only short range connections [f(d) = 1/0.05°7 for d < 0.05 and 0 otherwise]
and varying values of p. Top: p = 10000, Middle: p = 50000, and Bottom: p = 250000. Disease is introduced to all nodes
in a small region in the center, with 5 = 1/3 and v = 1. We plot the status of all nodes at time ¢t = 3, including a detailed .
As p increases, the spread is more coherent and we expect a deterministic model to be more accurate.
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B4: exact analytic PIDE models for SIR propagation on RSNs

» RSNs are “locally tree-like”: probability a node is in a cycle of length D vanishes as n increases

= |et’s derive an exact SIR differential equation model in the limit of high node density!

= consider a random node u ﬂﬂ /hD’C
_
@(X, t) : probability a random Wr of u has not transmitted infecm

— probability a node with K j

- . xL /{;
— | : | _ _ % MM/@JZ

R mema Ku S = S(x,0) ¥(O(x,1))

susceptible (has not been transmitted to):

X0

8 MONASH = 5(x,0) [ e 00 P
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evolution equation for @(X, t) W W

(v1°)
0
2 0(x,1) = ~H0(x,1) +7(1 - O(x,1) (
oSG 0)W/(O(5, 1) f (% — x]) dk | T 1oE?
+ 5
(k)
U(O) = fooo_e_"“_(l_@)P(n) dk
O = &g+ P; + Pp "

(I)S:/ S()A(O)/ ,{P(K)fﬂf(—X|)€_N(1_@(§(’t))d/{d§(
% K <KJ>

BPr

1-0
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evolution equation for O (x, 1)
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(%@(x,t) = —BO(x,t) +v(1 — O(x,1))
N 6fv S(x,0)¥(O(x,1)) f(|x — x[) dx
(K)
S(x,t) = S(x,0)¥(O(x,1)). W(O) = [ e O P () dr
%R(x t) = y(1 - S(x,t) — R(x,1))
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B5: traveling wave properties

O(x,t) =0(&(x,t)) E(x,t) =x—ct

O, t) = 6(¢(x, 1) = 1 — eh(€(x,1)) () m e

Jooem f(u)du L[f](e) Ro=B(x*)/(B+7) (k)

@f(lxl)](a) + L[f|(e) = Rio |
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|| — numerical solution
- stochastic simulation
|| — asymptotic slope

I(x,t)

0.0 0.2 0.4 0.6 0.8 1.0



B6: numerical experiments — “small worlds” with spatial structure
= MOVIES ‘ Kikj
pij = min | ——— f(d;;), 1
— local connections p<k >

— local + global connections: small worlds, also without clustering (with “proximity”)

— random connections

MONASH
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small world networks with spatial structure (RSNs)

» recall: Watts-Strogatz “small world” networks

Regular Small-world Random 1T T

08

06

02

p=0 > p=1 ol

Increasing randomness 0.0001

= small world:
— large average local clustering coefficient
— small average (shortest) path length
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small world networks with spatial structure (RSNs)

» RSNs: define local proximity coefficient

— first normalize all distances: ~ d;; normalized to [0, 1]

— define local proximity coefficient:
pi=1-— avg(a,j of graph neighbors j of 7)
p; =~ 1: graph neighbors of ¢ are located close

p; =~ 0: graph neighbors of ¢ are located far
— average local proximity coefficient:

<p>

2 MONASH
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small worlds with spatial structure

0.6 ¥
1]
0.4 *x :
***

0.2 Kk x

ok Kk
0 1 1 1
10710 108 100 107

* low density, N=N,: small world

— high clustering, high proximity

— low (average) shortest path
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* O
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*x
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............. **********T
0 .
10710 10°8 107 107

high density, N>>N,: unclustered small world

— low clustering
— high proximity
— low (average) shortest path

still small world! (local, and global, structure)
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small-world effect:

» |ocal propagation
(traveling wave) due
to local structure
(proximity, not
clustering)

» |ong-range jumps
due to small-world
property

for spatial networks,
proximity is important in
determining whether
small-world effects occur,

0 rather than clustering
big world: local small world: local and uniform world: only

propagation global propagation global propagation
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B7: summary and conclusions

= random networks with spatial structure (RSN)
» efficient network generation algorithms
» efficient stochastic simulation algorithms

»= analytical equations may be derived, may provide insight (traveling waves, parameter regimes, ...)

= applications: spreading processes on spatial networks

— realistic spatial connectivity patterns, degree distributions

— Ebola, plague, ...
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. Spread of Bubonic Plague
summary and conclusions in Europe

i v 1350
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some final words ...

= network science is
— interesting (also algorithmically)
— potentially powerful, for broad applications
— links with P(I)DEs, waves, ...

— potential applications in computational social science

= thank you!
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