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“numerical techniques for(social medig)and(network problemss

‘computational social science”:
large-scale data is being collected on complex social systems

online social networks (Facebook, Twitter, ...)

email (gmail, ...)

travel patterns (public transportation, google maps, ...)
mobile phone connections, locations

shopping patterns

it is now possible to build, analyze, and simulate computational models of these systems

research is possible that applies successful methods from the natural sciences, e.g.
mathematical modelling and statistical mechanics, to produce novel insights in the social
sciences —o eytlly Cscantfe gt o pociol setora

some of this can be high-performance computing / high-end computing (big data,
combinatorial, ...), efficient algorithms, methods
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“numerical techniques for social media and network problems”

= | have started to set some steps in computational social science / network problems / social media
(numerical PDEs, numerical linear algebra, numerical optimization, HPC)
— multigrid methods for computing stationary vectors of Markov chains — random walks on
graphs (Google PageRank) =
— multilevel co-clustering for social networks
— location tagging for Twitter messages
— optimization methods for tensor decomposition, matrix completion, recommendation
— ODE and network models for social uprisings (Arab Spring)
— dynamical models for smoking epidemic and obesity epidemic

— propagation of Susceptible-Infectious-Recovered (SIR) disease on random networks with
spatial structure
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“numerical techniques for social media and network problems”

“propagation of Susceptible-Infectious-Recovered (SIR) disease on random networks with spatial structure”
— “introduction to network science”
— some new results on SIR propagation on random spatial networks

— Spreading Processes on Networks:
= Models
= Techniques
» Algorithms (random network generation, stochastic simulation algorithms)
=  Applications

Random Spatial Networks: Small Worlds without Clustering, | arXiv:1702.01252v1
Traveling Waves, and Hop-and-Spread Disease Dynamics

John Lang, Hans De Sterck, Jamieson L. Kaiser, Joel C. Miller
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collaborators

» Joel Miller, Institute for Disease Modeling, Seattle, USA

= John Lang, UCLA, Communications Studies (PhD Waterloo, July 2016)
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sources (background on network science, SIR disease propagation, ...)

= http://barabasi.com/networksciencebook/ = book by Kiss, Miller and Simon (2017)
Y AR NN AT X
NETWORK SCIENCE

Interdisciplinary Applied Mathematics 46

CLASS 3: RANDOM NETWORKS ) :
(CHAPTER 3 IN TEXTBOOK) Istvan Z. Kiss

3 ¥ Joel C. Miller
S “‘m 9,'2“ Péter L. Simon
Albert-Laszl6 Barabasi .
ith
Rober’cv.'\;I Sinatra MathemathS
s, e of Epidemics

on Networks

From Exact to Approximate Models

arXiv:1702.01252v1

Random Spatial Networks: Small Worlds without Clustering,
% MONASH Traveling Waves, and Hop-and-Spread Disease Dynamics
UHIVGI’SIW John Lang, Hans De Sterck, Jamieson L. Kaiser, Joel C. Miller @ Springer




Virus genomes reveal factors that spread and
motivation: spread of 2013-2016 Ebola epidemic sustained the Ebola epidemic

Gytis Dudas, Luiz Max Carvalho, Trevor Bedford, Andrew J. Tatem, Guy Baele,

= Guinea, Sierra Leone, Liberia Nature 544, 309-315 (20 April 2017) | doi:10.1038/nature22040

= goal: develop modeling
framework

=  random networks

= spatial structure!

= disease propagation
(stochastic, DEs for
insight)
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two parts of my presentation

= part A: models and algorithms for networks
— “introduction to network science”
— random spatial networks
— algorithms for efficient network generation
— application: small worlds with spatial structure

» part B: disease propagation on networks
— propagation of Susceptible-Infectious-Recovered (SIR) disease
— stochastic simulation algorithms
— exact analytic models, and simulations
— applications
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A1: a brief overview of graphs and networks

« graph G = (V,E) (undirected, simple (no loops, no multiple edges))

— vertices/nodes V' = {vy,va,...,0,} n=|V|
- edges E = {{!Uh’ {Ujl }? et {{U'L‘m’, “Ujm }} m = |E|
= recall binomial coefficients ( n

R ( n ) _n(n—1)
a 5 —

IL\J’IONASH =6 ("\‘Lf) £ = § {ondn), Lo v, A0 U5,
B University 9 L 03, 0Y {r\r}{d‘q“ﬂ


































nodal degrees

= degree k; = number of edges incident on node v; 05
U3
_ N7
-
2 iz ki
= average degree < k >= ='=—
n -
n b =2
n<k> ‘
. property: kz =2m m = —
L.z:; 2 Bo=
/) B> = 2.5
S= - 25
2
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degree distribution te } V3
U3

™

Internet

= degree distribution

pr = fraction of nodes with degree k

102 F

107 F

Pk

» degree distribution for random graph model

104 |

P(K = k) = P(a node in the random network has degree k) : 1w}

e !

10 6

10°

» many “real-world” networks approximately have power law degree distribution
pr = ck™? 2<y<3
Dn PQ = C — S onbe
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[Barabasi]   


counting triangles - clustering coefficient U5
» |ocal clustering coefficient of node v;
. 0 Uq
# of triangles node v; forms with its neighbors ,
Ci = : : . : X : : —
" # of possible triangles node v; can form with its neighbors - £
= neighbor set of node v; /@k W c.o= L
N; =Av, ..., ’U-L'k.} Ey, = {edges between neighbors of node v, } |
Vs 42/
— el s
then o |En,| B 2| Ey, R I, £C7 .
5 \Z ¢
Vi,
n
G -
» average clustering coefficient < ¢ >= L 1):3
n
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average shortest path

d;; = # of edges between nodes v; and v;, in a shortest path

U2
U3
= average (shortest) path length (in a connected graph) ol
4 oe iz b .
| nn —1)/2
(-2 (
-
“real-world networks” h N
* many “real-world networks” have
Y - @
— large clustering < ¢ >: 2-3 \
—¢ {
— small average path length < d > 7 - \
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Collective dynamics of
‘small-world’ networks

Duncan J. Watts* & Steven H. Strogatz

example: Watts-Strogatz “small world” networks

=  ring, each node connected to four nearest neighbors; randomly rewire with probability p  ( Netwwe)

C1998)
Regular Small-world Random

Increasing randomness

LX)
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Regular Small-world

example: Watts-Strogatz “small world” networks

= small world:
— high clustering <cC>
(local structure) (unlike

random graph) TEETETTE O g o g
— small average (shortest) Ay i ]
path length £ &.> oslL ° C(p) / C(0) ]
(good connectivity) (like - . /> .
random graph) . I ]
' 6 o((z%@/) 93 /)va?/ui/?g':@% 0.6 - . -
* many “real-world” graphs are - 1
ll-world I O -
small-wor . 0.4 2 d> . -
i A N ST VITO R :
"/QBCCLQ W‘-"- 0.2 |- ° -
;! 7@1,% L ®
— berge (MW> I e o, .
Ry MONASH <> = O (™) 0.0001 0001 0.01 017 1
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A2: some random network models

= | Erdos-Renyi networksin nodes, and assign edges randomly with probability p

pij = P(edge {v;,v;} exists)

.
— degrees and edges: /<.

ki~ (n—1)p

E(k)=(n—1)p

E(<k>)=Mn-1)p

Py MONASH
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n(n —1)

P
























Erdos-Renyi networks: degree distribution

=  binomial degree distribution T
— S o— ) — n—1 k1 o N\(n—1)—k
pr=P(K =k)= 1 p"(1—p)

Ek)=(n—-1)p Var(k) = o*(k) = p(1 —p)(n — 1)

= peaked distribution! o(k) _0 1 “
E( A) o /n — 1 [Barabasi]
» forlarge n, small k: approximately Poisson distributed
/\k
Pr % exp(—)) E(k) = A A= (n—1)p

T

X0
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degree distributions of “real” networks: power law graphs — scale-free networks

Internet Science Collaboration
10% oy MERAALLL s e B L 10° YT T
h -
a b N 4
pad ] 101 ¢ " .
7 1 '-.{ 1
104 F 7 ; 4
[ 102 F 7 X .
e - i s L 1% )
S 107 F = X ' &
L 102 F : 7
1049 ] F 1
: 104 F L eme -
100 F = PR
[ { l‘- ) asrmTvee. o 1
10_4': i " il i . 105 il .&l ..... | . " )
10° 10! 102 103 10° 10} 102 10?
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Protein Interactions

1011- T
i ] 2 < Y <3
' 1
10! F o E
- I\
o
P
S 107 F ie E
- ..\
' e
‘l -- 4
10] 'E— . -3
o : ; - - s L
::lll';:'
10° 10! 102

[Barabasi]
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“real world” networks with power law distribution (approximately)

Network
Internet

M WWW
Power Grid
Mobile-Phone Calls
Email

)ja‘;_u& Science Collaboration

Actor Network
Citation Network
E. Coli Metabolism

o

Protein Interactions

Table 4.1

P4 MONASH
University

N

192,244

325,729

4,941

36,595

57,194

23,133

702,388

449,673

1,039

2,018

609,066

1,497,134

6,594

91,826

103,731

93,437

29,397,908

4,689,479

5,802

2,930

k)

6.34

4.60

2.67

2.51

1.81

8.08

83.71

10.43

5.58

2.90

(kinz)

1546.0

12.0

94.7

971.5

535.7

kout®)

482.4

198.8

396.7

19

k2)

240.1

10.3

178.2

47,353.7

32.3

4.69*

3.43*

3.03*

2.43*

Vout

2.31

5.01*

2.03*

4.00*

2.90*

3.42*

Exp.

3.35*

2.12*

2.89*-

[Barabasi]
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degree distributions of “real” networks: power law graphs — scale-free networks

pr = ck™’ 2<v<3

p
’ [ -
E(k") [ >~ — @(,m/\%e))
vy<3:1=2,3,... diverge
k
Random Networl .
Randomly chosen node: k = (k) + (k}"’ 5

Scale: (k) E(AH) W

Scale-Free Network .
Randomly chosen node: k = (k) t e
Scale: none

[Barabasi]
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[Barabasi]   


P . POISSON 10

0.05 ~ . 104
POISSON —

1 A - A
0 10 20 Kk 30 40 50 10° 10" K 10? 10°






[Barabasi]   


9]
< b Most nodes have
- X the same number
£ of links
: e No hight
i 0 highty
o +
° ted nod
E :ELZ\ connected nodes
o
g ‘}\'{"XX
° s
§ LA
Number of links (k)
(c) POWERLAW (d)

Number of nodes with k links

(a) POISSON

(b)

Many nodes
with only a few links

/N A few hubs with
i i large number of links

InX AT

Arr X

Number of links (k)
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Erdos-Renyi networks: average shortest path

= small-world network!

ij

_ log(n) Ry  E@LY) = O(Qﬁ{'”)/
Bld) ~ 5 Ew) 8 pest o Alowen

" compare

— 1D lattice: E(d) = O(n) ] W (we’tgﬁb)
d) = O(y/n)

— 2D lattice;  E(

= # of edges between nodes v; and v;, in a shortest path

Py MONASH
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“real-world” networks: average shortest path M

=  small worlds! Network N L o (@ dax  InN/Indko
Internet 192,244 609,066 6.34 6.98 26 6.58
log(n)
E(d) ~ WWW 325,729 1,497,134 4.60 1n.27 93 8.31
log(E(k))
Power Grid 4,941 6,594 2.67 18.99 46 8.66
E/\QLO’S _ (QM“‘XL- Mobile-Phone Calls 36,595 91,826 2.51 n72| 39 11.42
Email 57,194 103,731 1.81 5.88 18 18.4
Science Collaboration 23,133 93,437 8.08 5.35 15 4.81
Actor Network 702,388 29,397,908 83.71 3.91 14 3.04
Citation Network 449,673 4,707,958 10.43 11.21 42 5.55
E. Coli Metabolism 1,039 5,802 5.58 2.98 8 4.04
Protein Interactions 2,018 2,930 2.90 5.61 14 7.14
Table 3.2
[Barabasi]
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Erdos-Renyi networks: clustering coefficient

2|1En,| E(k)
ki(k; — l)Np_n—l
(el poigdlor Pt

» Jow clustering as n grows

C; =

»  but: many “real-world” networks have high average clustering coefficients

Network C | Erdds-Rényi

Web [2] 0.081 7.71

Flickr 0.313 47,200

LiveJournal | 0.330 119,000

Orkut 0.171 7,240

YouTube 0.136 36,900 (A. Bonato)

74 MONASH
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random networks with more realistic degree distributions?‘rChung-Lu networksj

. n nodes, desired degree sequence {K1,..., Ky}

= add edges randomly according to pi; = P(edge {v;,v;} exists)

Zﬁlzl Ri

n

< R >=

K; HJ

—J 1)
n<<kK?>

pi; = max(

(advantage: edges assigned independently, which keeps the model “analyzable” ... see later)

74 MONASH
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Chung-Lu networks: expected degree

iR
= assume <1 = Chung-Lu as a model for “real-
n<kK> world” networks:
. — pathlength < d >
. . OK!
E(k)= ) py dearee distribution
Myl — degree distribution Pk
o OK!
= Z — — clustering coefficient < ¢ >
L~ N < K>
j=1,j#i too low ...
o - R; K j /‘{,.?
N —n < K > n<kK?>
7=1
K2
n<k>
=~ HL

g MONASH
University

S

27



Chung-Lu networks: choose desired degrees from distribution

= note: desired degree sequence {f{,h el an} can be chosen from (continuous) distribution

p(k)
N\ > L RiK;j
E(k) = /0 kp(k)dk Pij = ——
E(k;) / i np(k)dk = K;
o n [, kp(k)dk

L%Mwwwmvﬁwm
()@erpfaﬁ.@gww%u

N4 MONASH
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Random Spatial Networks: Small Worlds without Clustering,
A3: random Spatia| networks (RSNS) Traveling Waves, and Hop-and-Spread Disease Dynamics

John Lang, Hans De Sterck, Jamieson L. Kaiser, Joel C. Miller

*  Chung-Lu: RiKj
Dij = ———
n<<kK?> 0O
= with spatial structure: in domain () / Vo
R;K; . - — 4@05 AN
Dij = —— | f(d;;) dij = ||Z; — Tl
n<rk> M
. 7
- M S
/ Fl|Zo — Z||2)di = 1 Vi € Q 710/ =1
Q
§)
* more generally: ,
: RiK; ]‘(d ) 1 p = o )
)i, = min | ———— i) = '
Pij p< K> 7 €2 d

74 MONASH
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random spatial networks (RSNs)

RiR;
p<kK>

f(dij), 1

portion of network

Pij = min

observed degrees

'@. - s ™
W e | |

A Y ke XX A |
0.3 0.5 0.7 000 0.02 004 006 008 010 012 014

FIG. 1. An example RSN and its properties. The distance kernel is a Gaussian, f(d) = exp(—d*/20°)/2r0” with ¢ = 0.03.
The imposed distribution of expected degrees is P(2) = P(15) = 0.5. The density is p = 10000. One node and its neighbors
are highlighted. A random network without spatial structure would exhibit neighbors throughout the domain.
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random spatial networks (RSNs): expected degree

/ kp(k)dk - E/g ,”dQM.?JQJA}ZJ%CﬁWQ
= K T p /f(Hfi—f’b)df doyee 1 oS
KPR )AK L_Q/——//———\ y
/O p(k) = onpecl. o
ok N Ko
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A4: efficient algorithms for network generation

- [ErdosRenyi: [ G(n, p)

Pij =P

* paive algorithm
_—
— for each possible edge {'Ug_, ”l"’j} , draw a random number

. o n B M
nz‘max - 2 —_— 2

complexity () (nfz)

7 MONASH
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Efficient Generation of Large Random Networks*

efficient algorithms for network generation Viadimir Batagelj'

Department of Mathematics, University of Ljubljana, Slovenia.

Ulrik Brandes?

Department of Computer € Information Science, Uniwversity of Konstanz, Germany.

. 1Erdos-Renyi:[O(n+m) algorithm Pij =D

— naive algorithm has many failures (when p is small)

idea: we know the distribution of successes and failures! (geometric); so sample the number of
failures according to the appropriate distribution

0 = number of failures before success

(6) = P(first success happens at trial § + 1) §=0,1,2,...
= (1-p)'p

P(D < 9) = P(first success happens in trial 1,2,..., or d + 1)

= 1 — P(no success in first § + 1 trials)

=1—(1-p)°*

e

N4 MONASH
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efficient algorithms for network generation

=  Erdos-Renyi: O(n+m) algorithm Pij =D q=1—7p

0 = number of failures before success

P(D < §) = P(first success happens in trial 1,2,..., or d + 1)
= 1 — P(no success in first 6 + 1 trials)
=1—(1—-p)’"
= choose 7 € [0, 1] 0.0 choose 6 if 1 — (1 —p)° <r<1—(1-p)H
£ te & 5 o 5+1
S0 &7y $52 1=p)"21-r=>1-p)"
b qp %P , _.
S " s<ml=r) 5.
[-C1-pf - (1-p) = rn(l _ r)J
0= | ——=
MONASH 4 —
University 34 ln(l p)
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Algorithm 1. G(N,p) Graph

Input: number of nodes N, and probability 0 < p <1
Output: G(N,p) graph G(V, E) with V ={0,...,N — 1}
E—0
foru=0to N —-2do
ve—u+1
while v < N do

choose r € (0,1) uniformly at random

, log(r)
vevT [mg(l_p)J

if v < N then
E — Eu{u,v} —b» o HIuceide)
ve—uv+1 a0 ,
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Efficient Generation of Networks with Given

efficient algorithms for network generation

Expected Degrees

Joel C. Miller!*? and Aric Hagberg®

* | Chung-Lu:]O(n+m) algorithm KiK
D pij = 033 rany odgp)

1=1 M

'\Tl ’l V-' M 1
\yl — ordaer nodes v; 11 order ol decreasing desired degree K,
— for fixed i:

» Uj+146 Is a potential neighbor: accept with probability

q
(then p 4 = q = Py ) (“rejection sampling”)

s set p=q, Lol sork s ook )

, = fix P = Piit+1
= determine number of failures ¢ as before (using p)
[ S awey W@Q/ Oozoure  p w3

N MONASH
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q
P

|

Large

&

=<1 where q=pii <p

[=14+1+90

acceptance remains high! (increasingly large jumps) ()('n, + 'm) con. Be  Aovon
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Algorithm 2. Chung-Lu Graph

Input: list of N weights, W = wo,...,wn_1, sorted in decreasing order
Output: Chung-Lu graph G(V, E) with V = {0,...,N — 1}

E—§0

S Wy

foru=0to N —2do

ve—u+1
p < min(w,w, /S, 1) \l

while v < Nandp > 0 do _ o
if p # 1 then _% - U >=0 ( o
choose r € (0,1) uniformly at random )

log(T)
vevt [wg(l—p)J

if v < N then
q «— min(w,w, /S, 1)
choose r € (0,1) uniformly at random
if r < q/p then

E — EU{u,v} @(fv\‘%”“> Com. e M
5<—g+1 CW&%MMM
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efficient algorithms for network generation

" I—Random Spatial Networks (RS@O(mm) algorithm

pi; = min (L]‘(du) 1)

p< K>

M%UWJM@@(

— divide () into€subdomains €2; (1 <7 <¢)

— order nodes in each subdomain by decreasing desired degree

R;KR j

P = mfmax Meshe g P A
determine number of failures § as before (using p) ek aﬁ@HﬂWw
o lophk Bogk
(e p coie & e

4 MONASH
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efficient algorithms for network generation Py
Pij = min

#]{(du)* 1)

p< k>

» Random Spatial Networks (RSNs): O(n+m) algorithm

P = p <k >f1nax —0
determine number of failures 0 as before (using p)
node u in region {2

» edges within region 1:
fmax — f(o)

» edges to region (),

find point # in {25 nearest to node u in region {24
' = = chosen. Sudll, Buk
fuax = FUIT = Zulla) = 372% 2 / P2 Py

— acceptance remains high! (increasingly large jumps) O(n +m)

Y4 MONASH
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A5: small world networks with spatial structure (RSNs)

» recall: Watts-Strogatz “small world” networks

Regular Small-world Random T TO @8 o g g o
e a
I C
os | cprco 8 <7
- [ ]
i s
0.6
i ®
w4l &> o .
i ®
ool LP)/LO) .
L o o
p=0 » p=1 0_ Ll | Ll L
Increasing randomness 0.0001 0.001 0.01 0.1
=  small world: p

— large average local clustering coefficient < < >
— small average (shortest) path length < 4 >

g MONASH
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small world networks with spatial structure (RSNs)

» RSNs: define local proximity coefficient

— first normalize all distances: ~ d;; normalized to [0, 1]

— define local proximity coefficient:

pi=1-— avg(a,'j of graph neighbors j of 7) p; €0,1]

p; ~ 1: graph neighbors of i are located close ?/0
L
(-

p; =~ 0: graph neighbors of ¢ are located far
— average local proximity coefficient:

<p>

74 MONASH
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small worlds with spatial structure

a specific class of RSNs: mostly local connections, few global connections

k,

= 1| choose 7o compute Ny = —

/ QL (d oy k
pi; = min ( % ) D = min (k-f (A;u..) | 1) f(c (Nm)

2 No (1 _ Jl=mrg :
F(du) EAQ [1 — el_T:rz'—u] dyw < To Py = { N (1 €2 ) ey < To
Ayp ) = ' 0 . ) No .
%6 Illl 2 o WG du.v Z 7o
Lg(eLTk_ LWMQ(WW—’-—/J
?, <L @
MONASH o
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small worlds with spatial structure % %

» a specific class of RSNs: mostly local connections, few global connections
.2 N, _ 1—m _Z\/Y —
f(] ) EAQ [1 — 6%’4] (l,”,,, < Tp Py = { o (1 mgu) du_,l, < To 0 ’/TT%
yv) = "o ) uv N
‘ A'A[()G d’u'u Z To T;)f duq = ro
case n = Ny, € =0 ko g < ¢ >~ 0.59
gt No 1 )l @ Aagdlesd
[ crdom gpordrie g " 8% b o
7 : i wﬁiﬁk % «
- case n = Ny, € # () : some long-range connections
- casen=N> Ny e#0 < c>=O0(1/N)
= |ow density, low clustering, but proximity remains the same
N MONASH
43
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small worlds with spatial structure

low density, N=N,:/small world

— high clustering, high proximity

— low (average) shortest path

Py MONASH
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University

¥

- /87
O
DD
O
|
* //¢£6(>
*
¥ [l
0.4 r *BK £ C‘> |
*x

*** 7
............. **********

0 ' ' —
10710 108 107 10

0.6 L
0.4

02l

r .
0.8 |-

L(p) 7 L(0)

o

8 ]
C(p) / C(0) 5LC7 ]

- 24>

1E BT O R — T

0.0001

I
0.001

= high density, N>>N0:@clustered small world

— Iowclustering
— high proximity . e

— low (average) shortest path

still small world! (local, and global, structure)
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small-world effect:

» |ocal propagation
(traveling wave) due
to local structure
(proximity, not
clustering)

» |ong-range jumps
due to small-world
property

for spatial networks,
proximity is important in
determining whether
small-world effects occur,
rather than clustering

big world: local small world: local and uniform world: only
propagation global propagation global propagation
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