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!  “computational social science”: 
–   large-scale data is being collected on complex social systems 

!  online social networks (Facebook, Twitter, ...) 
!  email (gmail, ...) 
!  travel patterns (public transportation, google maps, ...) 
!  mobile phone connections, locations 
!  shopping patterns 
!  ... 

–  it is now possible to build, analyze, and simulate computational models of these systems 
–  research is possible that applies successful methods from the natural sciences, e.g. 

mathematical modelling and statistical mechanics, to produce novel insights in the social 
sciences 

–  some of this can be high-performance computing / high-end computing (big data, 
combinatorial, ...), efficient algorithms, methods 

“numerical techniques for social media and network problems” 
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!  I have started to set some steps in computational social science / network problems / social media 
(numerical PDEs, numerical linear algebra, numerical optimization, HPC) 
–   multigrid methods for computing stationary vectors of Markov chains – random walks on 

graphs (Google PageRank) " Nelly Litvak 
–   multilevel co-clustering for social networks 
–   location tagging for Twitter messages 
–   optimization methods for tensor decomposition, matrix completion, recommendation 
–   ODE and network models for social uprisings (Arab Spring) 
–   dynamical models for smoking epidemic and obesity epidemic 
–   propagation of Susceptible-Infectious-Recovered (SIR) disease on random networks with 

spatial structure 

“numerical techniques for social media and network problems” 
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“propagation of Susceptible-Infectious-Recovered (SIR) disease on random networks with spatial structure” 
–  “introduction to network science” 
–  some new results on SIR propagation on random spatial networks 

–  Spreading Processes on Networks: 
!  Models 
!  Techniques 
!  Algorithms (random network generation, stochastic simulation algorithms) 
!  Applications 

“numerical techniques for social media and network problems” 
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!  Joel Miller, Institute for Disease Modeling, Seattle, USA 

!  John Lang, UCLA, Communications Studies (PhD Waterloo, July 2016) 

collaborators 
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!  http://barabasi.com/networksciencebook/ 

sources (background on network science, SIR disease propagation, ...) 
 
!  book by Kiss, Miller and Simon (2017) 
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motivation: spread of 2013-2016 Ebola epidemic 

!  Guinea, Sierra Leone, Liberia 

!  goal: develop modeling 
framework 

!  random networks 

!  spatial structure! 

!  disease propagation 
(stochastic, DEs for 
insight) 
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!  part A: models and algorithms for networks 
–  “introduction to network science” 
–  random spatial networks 
–  algorithms for efficient network generation 
–  application: small worlds with spatial structure 

!  part B: disease propagation on networks 
–  propagation of Susceptible-Infectious-Recovered (SIR) disease 
–  stochastic simulation algorithms 
–  exact analytic models, and simulations 
–  applications 

two parts of my presentation 
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!  graph                             (undirected, simple (no loops, no multiple edges)) 

–  vertices/nodes 

–  edges 

!  recall binomial coefficients 

!    

A1: a brief overview of graphs and networks 
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!  degree 

!  average degree 

!  property:  

nodal degrees 
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!  degree distribution 

!  degree distribution for random graph model 

!  many “real-world” networks approximately have power law degree distribution 

degree distribution 




























[Barabasi]   
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!  local clustering coefficient of node 

!  neighbor set of node 

 
then 
 
 
 
 
!  average clustering coefficient   

counting triangles - clustering coefficient 
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!    

!  average (shortest) path length (in a connected graph) 

!  many “real-world networks” have 

–  large clustering 

–  small average path length 

average shortest path 
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!  ring, each node connected to four nearest neighbors; randomly rewire with probability p  

example: Watts-Strogatz “small world” networks 
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!  small world: 
–  high clustering 

(local structure) (unlike 
random graph) 

–  small average (shortest) 
path length 

(good connectivity) (like 
random graph) 
 

!  many “real-world” graphs are 
small-world  

example: Watts-Strogatz “small world” networks 
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!  Erdos-Renyi networks: n nodes, and assign edges randomly with probability p 

–  degrees and edges: 

A2: some random network models 
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!  binomial degree distribution 

!  peaked distribution! 

!  for large n, small k: approximately Poisson distributed 

Erdos-Renyi networks: degree distribution 













[Barabasi]   
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degree distributions of “real” networks: power law graphs – scale-free networks 




[Barabasi]   
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“real world” networks with power law distribution (approximately) 










[Barabasi]   
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degree distributions of “real” networks: power law graphs – scale-free networks 










[Barabasi]   
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[Barabasi]   
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[Barabasi]   
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!  small-world network! 

!  compare 
–  1D lattice:  

–  2D lattice; 

Erdos-Renyi networks: average shortest path 
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!  small worlds! 

“real-world” networks: average shortest path 










[Barabasi]   
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!  low clustering as n grows 

!  but: many “real-world” networks have high average clustering coefficients 

Erdos-Renyi networks: clustering coefficient 

(A.$Bonato)$
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!    

!  add edges randomly according to 

 (advantage: edges assigned independently, which keeps the model “analyzable” ... see later) 

random networks with more realistic degree distributions: Chung-Lu networks 
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!  assume 

Chung-Lu networks: expected degree 

!  Chung-Lu as a model for “real-
world” networks: 

–  path length 
 OK! 

–  degree distribution 
 OK! 

–  clustering coefficient 
 too low ... 
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!  note:                                                                             can be chosen from (continuous) distribution   

Chung-Lu networks: choose desired degrees from distribution 
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!  Chung-Lu: 

!  with spatial structure: in domain 

!  more generally:  

A3: random spatial networks (RSNs)  
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random spatial networks (RSNs)  
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random spatial networks (RSNs): expected degree 
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!  Erdos-Renyi:  

!  naive algorithm 
–  for each possible edge                 , draw a random number  

–  complexity 

A4: efficient algorithms for network generation  
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!  Erdos-Renyi: O(n+m) algorithm 

–  naive algorithm has many failures (when p is small) 

–  idea: we know the distribution of successes and failures! (geometric); so sample the number of 
failures according to the appropriate distribution 

efficient algorithms for network generation  
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!  Erdos-Renyi: O(n+m) algorithm 

!  choose  

efficient algorithms for network generation  
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!  Chung-Lu: O(n+m) algorithm 

–    
–  for fixed i:  

!  fix 

!  determine  number of failures         as before (using p) 

!                   is a potential neighbor: accept with probability                 , where  

 (then                                )   (“rejection sampling”) 
!  set  

–  acceptance remains high! (increasingly large jumps) 

efficient algorithms for network generation 
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!  Random Spatial Networks (RSNs): O(n+m) algorithm 

–  divide        into l subdomains  

–  order nodes in each subdomain by decreasing desired degree 

               determine  number of failures         as before (using p) 
 
 

efficient algorithms for network generation 
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!  Random Spatial Networks (RSNs): O(n+m) algorithm 

               determine  number of failures         as before (using p) 

»  edges within region 1:  

»     

–  acceptance remains high! (increasingly large jumps) 
 
 

efficient algorithms for network generation 
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!  recall: Watts-Strogatz “small world” networks 

!  small world: 
–  large average local clustering coefficient 
–  small average (shortest) path length 

A5: small world networks with spatial structure (RSNs) 
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!  RSNs: define local proximity coefficient 

–  first normalize all distances: 

–  define local proximity coefficient: 

–  average local proximity coefficient: 
–     

small world networks with spatial structure (RSNs) 
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!  a specific class of RSNs: mostly local connections, few global connections 

      choose     compute  

small worlds with spatial structure 
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!  a specific class of RSNs: mostly local connections, few global connections 

–    

–                                             : some long-range connections 

–    

!  low density, low clustering, but proximity remains the same 

       

small worlds with spatial structure 
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!  high density, N>>N0: unclustered small world 
–  low clustering 
–  high proximity 
–  low (average) shortest path 
still small world! (local, and global, structure) 

small worlds with spatial structure 

!  low density, N=N0: small world 
–  high clustering, high proximity 
–  low (average) shortest path 
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small-world effect: 
!  local propagation 

(traveling wave) due 
to local structure 
(proximity, not 
clustering) 

!  long-range jumps 
due to small-world 
property 

for spatial networks, 
proximity is important in 
determining whether 
small-world effects occur, 
rather than clustering 

big$world:$local$
propaga5on$

small$world:$local$and$
global$propaga5on$

uniform$world:$only$
global$propaga5on$











